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Schwarzschild Metric from Scattering Amplitudes to All Orders in Gy
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We apply a formulation of Einstein’s general relativity with only cubic interactions for deriving the
metric of a Schwarzschild black hole to all orders in perturbation theory. This cubic interactions
formulation coupled to effective worldline action of a massive point particle allows to derive a recursion
relation for the form factors of the off-shell graviton emission current. The unique solution to the recursion
relation leads to the Schwarzschild black-hole solution in four dimensions. This provides the first
derivation of the black hole metric from a matter source to all orders in perturbation theory from an

amplitude approach.
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Introduction—The necessity for high precision analytic
computations of gravitational waves emitted from the
gravitational two-body scattering in Einstein gravity has
led to the development of important theoretical frameworks
[1-3]. The remarkable connection between the perturbative
quantum scattering method and the classical post-
Minkowskian expansion, as demonstrated in [4,5], has
provided analytic expressions up to the fourth post-
Minkowskian order in the spinless case [6-23], with the
conservative sector result at the fifth post-Minkowskian
order [24]. These results are in impressive agreement with
those obtained from numerical general relativity [25,26]. A
variety of amplitude methods have been employed to derive
the space-time metric of a black hole induced by a massive
object in perturbation from scattering amplitudes tech-
niques [27-33]. The intricacy of the computational process
precluded the derivation of the complete metric to all orders
in perturbation. Recurrence relations between the oft-shell
graviton emission from a massive source was obtained in
[34] using the perturbiner approach—which encode the
classical equations of motion—leading to the complete
Schwarzschild metric.

In this work, we show how to derive the Schwarzschild
metric to all orders in the gravitational coupling from a
scattering amplitude computation. The approach uses the
reformulation of the Einstein-Hilbert action with only cubic
interactions [35] coupled to a massive source within a
worldline EFT formalism. The graviton or auxiliary field
off-shell emission from the massive source are only given
by multiloop triangle Feynman diagrams which is expected
from general arguments about the emergence of the
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classical contribution from the quantum amplitude [4].
The worldline construction directly provides the velocity
on the massive lines [13,36] and reduce the computation to
the multiloop massless bubble master integrals of [32]. The
restriction to cubic interactions results to a crucial simpli-
fication that at each order in perturbation these multiloop
triangle diagrams are represented only by binary tree graphs.
This binary tree structure implies a recursive relation
between the various orders in perturbation. The solution
to this recursion relation is unique and is given by the
Schwarschild solution in four dimensions. Remarkably the
derivation of the Schwarzschild metric in this work does not
require any regularization contrary to the previous pertur-
bative computations [28,32,33]. The freedom from the
harmonic gauge condition [37] allowed absorbing the short
distance singularities [32] arising in the amplitude compu-
tation removing all possible ambiguities from the quantum
computation, rendering the computation finite and consis-
tent albeit limited to a finite order in perturbation. The new
ingredient in this work is the use of a different set of degrees
of freedom (d.o.f.) given by the perturbative expansion of the
gothic inverse metric in (5) and the auxiliary field (4). This
set of variables fix all the remaining freedom from the
harmonig gauge condition, leading to a unique solution
given by the Schwarschild metric to all orders.

Cubic formulation of general relativity—In this section,
we will briefly present the cubic formulation of GR as
initially introduced in [35]. We will use the mostly positive
metric signature (—, -+, - - -, +). The Einstein-Hilbert action
Len = /—9gR(g)/(162Gy) can be recast in the form

1
16ﬂGN‘CEH = — <AZCA251 - mAZCAgd) ng —|—A‘b’caagbc,
(1)

where Gy is Newton’s constant, A7, = A%, is an auxiliary
field and g°* = /=gg*" is the gothic inverse metric used to
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and the second equation can be inverted as

1 a a m [ SimSbe gl(bgc)m
:§<9d(bac)g ¢+ g*0,4" (E—T . (4)

From now on we will work perturbatively by expanding the
gothic inverse metric near flat space

— /322Gy het (5)

and the indices are raised and lowered with the flat metric
as usual. Additionally, we shift the auxiliary field as

ad
n

—— | dpheya +
D) <(b c)d

in order to decouple the quadratic interactions between the
graviton h,;, and the auxiliary field Af_, since our aim is to
work in a perturbative QFT setup. Finally, we will add the
gauge fixing term

a
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which corresponds to the harmonic gauge condition
0d,9°? = 0 for the gothic inverse metric. Upon gauge fixing,
the Lagrangian becomes £ = Lgy + Lsx containing only
cubic self interactions. The corresponding Feynman rules
were derived in [35]. These Feynman rules adapted to our
conventions are given in the Appendix. The above cubic
formulation of GR is crucial to derive an all order result for
the off-shell currents as it will be shown in the next section.

We provide here for later convenience the exact classical
solutions in D =4 in the harmonic gauge [37] for the
gothic inverse metric perturbation, using p = Gym/r, the
spatial unit vector n*:= (0,x,/r,...,xp_1/r) with

2 2 2
=Xyt Xpogs

(1+p)°

327rGNh””:< I+ - >5’655+p2n”n", (8)

and the auxiliary field perturbation, using (4) and (6)

aln pl(2-p) 1+p)\ o,
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Off-shell currents from worldline formalism—We derive
the off-shell three-point functions, for the graviton and the
auxiliary field, via a worldline EFT to all orders in Gy
[38,39]. In order to proceed, we express the point-particle
wordline action

L,, = —%/df (e7'¢"v,v, + e) (10)

using the new d.o.f. ¢** = ¢"/(,/=4) 2/(D=2) and fix the

einbein to e = 1 so that

o0,
=——/ <g 2+1> (11)
—g D=2
which has the perturbative expansion to the first order
L,, = —% / d‘t[l 02 = /327G g

x <vﬂyy _ 2 an2> + O(GN)} (12)

Working in the rest frame of the particle where v, =

(=1,0,0,0) and v*> = —1, the corresponding Feynman rule
for the 1-graviton emission from the worldline is

\/m 5 <5a5ﬁ+Daﬂ2> (13)

and is the only worldline vertex that we will need.

In the cubic formulation the projector of the graviton
propagator in Eq. (A1) does not depend on the space-time
dimension D, and it has the usual form for D =4
dimensions [40]. In general, dimension the vertices derived
from (12) project on the transverse d.o.f. which ensure that
the harmonic condition k*h,,(x) = 0 is satisfied.

Furthermore, at each order in perturbation in Gy the
graviton and auxiliary field emission

32ﬂGNhf¢'Z) (x) = /dD—lx eik-XJ/S';> (k). (14)
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3271'GNAZ(")(X) :/dD‘lxeik'XYz£’7>(k), (15)

are parametrized by eight scalar dimension dependent form
factors

x(D) = (", s (16)

entering the off-shell current for the one-graviton emission

I (k) = p(

) kuk,
)()(§ )5050 —1—;(2 11”” +)(3 kz ),

(17)

and the off-shell current for the auxiliary field emission

¥ 00 = =ip(Ikl. Do) (ko (1005 + 2751 )

., kyk,
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The order parameter in momentum space

) () o)
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which Fourier transforms to

[ st K. D) = p(r. DY (20

with the coordinate space order parameter [32]

r(%) g
m
p(r,D): ”M N

(21)

which evaluates to the Schwarzschild parameter in four
dimensions p(r,4) = p. Notice that the transversality of the

graviton k*h,, = 0 implies that )(g") + )(g") =0 for all n.
Starting with these two independent form factors we will
derive this relation as a consequence of the gauge invari-
ance of the computation.

Tree-level order: Because only the graviton couples
directly to the matter line, at tree-level there is only the 1-
graviton emission contribution (we refer to the Appendix

for notations and conventions on the Feynman rules)

J0) = § = /32rGNPlg,, t°7 = p([k|, D,1)45560,

(22)
and the form factors can be identified as

(D) = (4,0,0,0,0,0,0,0). (23)

One-loop order: At one-loop order we have two con-
tributions, the graviton emission and the auxiliary field
emission. The off-shell graviton emission is given by

1
2) _
J2) = -

2 ; (24)

which reads, using the Feynman rules of the Appendix,

2y «/—327ZGN / d>-q

J2 =
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(25)

yopo

is given by the one-loop bubble contribution which is the
master integral arising at this order [32]
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which evaluates to
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The off-shell auxiliary field emission is given by

1
Yo (2) _ .
be 2
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(28)

which explicitly reads
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From these results we can identify the eight one-loop form
factors

- (D=3) 2(D=3)? 2(D-3)
200 = (=255 G5 T o
8 — D42D420 40) (31)

To make explicit the iteration we use the tree-level graviton

emission J| /SL) to express the one-loop emissions [using the

barred notation introduced in Eq. (A6)]

1 o s
J;(L?/) = 5‘]'5? Jpgi') VhSB’Yép Pg[ip.y = (32)
JW g
and
a (2 1 1 aByd e
Y;;a = - _§Jo(¢[3)‘]'(y§)vh2€4’y fPA bc ef —
J g
(33)

This iterative structure persists to all order in perturba-
tion and is one of the key ingredients that lead to a recursion
relation connecting the /-loop contribution to lower-loop
contributions.

Two-loop order: At two-loop order the graviton emis-
sion is given by the sum of the two diagrams

J® == (34)

)Jf‘;)»j]}‘

where J) is the 1-graviton emission from the massive
particle. Because of the cubic structure of the theory, this is
the complete set of contributing diagrams. This is of great
importance for the generalization of the iterative structure

J ) 7 T1)

to all orders, as the absence of higher-order self-interactions
restricts the topologies of the diagrams to the above binary
tree structure. It should be noted that in the worldline
formalism, the sources are static, thus all the different
symmetrizations of the propagators are equivalent, and the
total symmetry factor of the diagram is 1/2. This feature is
applicable to all loops, enabling the symmetry factors to be
incorporated into the definitions of the lower-order
diagrams.

Using the Feynman rules given in the Appendix, this
expression can be rewritten with respect to the one-loop
order off-shell currents as

) = & - (; L (35)
J g2 Jb y?2)

Likewise, for the emission of the auxiliary field we have

/N
JW JU’%}L?‘)

which can be expressed using the lowest-order result as

ve® = & + gﬁ) N (37)
J g2 J Y?Q)

All-loop order: The previous iterative structure carries
over to all loop orders. The fact that the auxiliary field does
not couple directly to the massive line and that there are
only cubic interactions leads to the expression of the
(n — 1)-loops graviton emission as a sum of lowest-loop
contributions

n—1
J(n> == Z - \\ - // \\
m=1 \\ // \\
g0 o%m) Fi) Y(nlm) YPm) Y(nlm)
(38)

and, similarly for the emission of the auxiliary field

o1 | |
ym=3%" ﬁ + ,jf - (39)
m=1 \
Jim)  j(n=m) Jtm) Y(n.*m)

The n — 1-loop contribution is therefore given by a finite
sum of generalised one-loop diagrams with effective
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vertices given by the lowest-loop contributions. These
iterated diagrams evaluate directly into the multiloop
massless bubble master integrals of Sec. 2.2 of [32]. The
fact that the classical result is only built from binary tree
graphs is an important simplification over previous ampli-
tude approaches [27-33] that involved either higher grav-
iton vertices or nonminimal couplings.

In the perturbiner method [34], a similar recursion
relation is derived for the off-shell currents of the inverse
gothic. It is interesting to note that both our amplitude
based and the perturbiner method approach utilize the
harmonic gauge and introduce an auxiliary d.o.f. (4) in our
case and §,, = 1, + hyp in [34]. Furthermore, the spe-
cific choice of the auxiliary d.o.f. is crucial for the
derivation of the recursion relations in each approach. It
is apparent that the choice of suitable gauge and d.o.f. is
formalism dependent and there is an optimal choice
corresponding to each formalism. This observation is
further supported by the results of [32], where it was
not possible to derive the metric to all orders in perturba-
tion theory working with the metric perturbation g,, =
N + Ry as a d.o.f. only.

Form factors recursion relations—From the iterative
structure of the diagrammatic expansion we can derive
recursion relations for the form factors, in general-D given
by the bilinear recursion relation for 1 < k <8

8 n-1
2(D) = 3" 2Dy (D)ME (D). (40)
1

i,j=1 m=

together with the initial conditions provided by the tree-
level result in (23). We have explicitly verified to any order
and any dimension-D that )(g"> + ;(g’” = 0, as required from
the conservation of the effective stress-tensor/off-shell
current kh{}) (x) = k*J (k) = 0. The matrix coefficients
M f‘j(D) for 1 < k < 8 are provided in the Appendix and on
this site [41].

After Fourier transforming to position space we can write
the classical solution with respect to the form factors as
using p(r, D) introduced in (19),

W(x) = p(r. DY’ [(xi'” —x§”>>5259

(,,>1—(n—1)(D—3)
T T T D =3)%
(n) n(D-3
S e L D

and for the auxiliary field

a(n nl’l D-3 n n a
A (x) = p(r. D) ¥ Kxé L >)50”(b52)

+ (;(E(’) - ;(g'”) na5)50

(n)
(n) _ X6 as. .
*(’“ <n—1><D—3>—2)”5“5“‘

(n) n(D—3)+2
X T (D-3)-2

(n)
(”) )(6 ai
— 05 NP
*(”8 <n—1><D—3>—2) f“’””}

Schwarzschild black-hole in D =4—In D =4 the
solution to the recursion relations of the form factors in (31)

a
1nnyn,

(42)

151 1
@y = (= -.-2.6.2.0.-4 4
x5 <2’2’ 2’6’ -0, ’O> (43)

and (40) for n > 3 give

143(=1)"
2n(n+2)°
143(=1)" 14+3(=1)"
2n(n+2) " 2n(n+2)
RSV 1)’1+3(—1)">’ )

n 2n(n+2) 2n(n+2)

x"(4) = (8,0,0,4+n(—1)"+

(n=3),

which plugged in (41), (42) with p = p(r,4) = Gym/r and
n; = x;/r reproduce exactly the classical solutions in
8), 9.

The present derivation does not need introducing non-
minimal couplings [38] for removing the ultraviolet diver-
gences that occurred in the previous perturbative
computations [32,33]. The momentum space expressions
(17) and (18) are divergent for n = {2m+ (D —1)]/
(D —-3)}, n,meN, since the p(|k|, D, n) develops a pole,
which in D =4 corresponds to two-loop divergence of
[32,33]. But this momentum space divergence is cancelled
after Fourier transforming to direct space, thanks to the
parametrization of the off-shell currents, and the final
expressions (41) and (42) are free of divergences because
the form factors y(")(D) are finite for D = 4.

Discussion—We have successfully derived the exact
classical black-hole solutions (8) and (9) generated by a
massive source to all orders in Gy in four dimensions. The
crucial ingredient of our approach is the cubic formulation
[35] of general relativity combined with the powerful
worldline EFT formalism. Specifically, we were able to
organize the computation of the form factors from the
effective off-shell currents for the graviton and auxiliary
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field emission to any order in Gy, into recursion relations
relating the various order in perturbation. These recursion
relations originate from the simple diagrammatic expansion
given by binary trees in (38) and (39).

The computation presented in this Letter shows that with
a suitable choice of gauge and d.o.f., amplitude based
classical GR computations can be simplified immensely.
We can find a closed form for the form factors in D = 4
because within our setup all the residual freedom of
harmonic coordinates within the harmonic gauge is fixed
[37]. Most importantly, the all-order derivation is possible
because no non-minimal worldline couplings nor quartic or
higher order self-interaction vertices are needed, rendering
the computation maximally minimal from an amplitude
point of view. The form factors y(")(D) have been
determined in general dimensions, but in order to establish
a connection with the Schwarzschild-Tangherlini metric, it
is necessary to match the gauge used in the amplitude
computation with the gauge used in the GR side. A
mapping can be determined perturbatively in powers of
p(r, D), but it is difficult to find an all order expression.

The knowledge of the exact metric generated by a
massive source is a first step toward an amplitude based
approach [24,42—44] to the self-force calculation [45]. We
expect that the simplicity of the cubic interactions, pre-
sented in this work, will be instrumental to setup a complete
self-force calculation from an amplitude calculation.
Furthermore, the formalism presented here could be
extended to include spin contributions, since the simplicity
of the computation resulting from the restriction to cubic
interactions would not be spoiled in this case as well.
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End Matter

Appendix A: Feynman rules—Restoring the normali-
zation factors give an extra 1/2 in the propagators and
24/327Gy to the three-point vertices compared to [35].

The graviton propagator:

,Ph o i Nyualup —+ Nuvalup — MuMap
apuv _z 2 :

(A1)

Notice that the numerator does not depend on the space-
time dimension and does not have the usual 2/(D —2)
factor multiplying the #,,n,; term [40], needed for

|

propagating only the transverse degree of freedom of the
graviton. This is compensated by the D dependence in the
vertices derived from the worldline action.

The auxiliary field propagator:

i1 n“ (nbcne f

Aad __ a sd
Pbcef__ikz <5fécnbe +7 D—2 _nbencf)>' (AZ)

The three-graviton vertex:

. 1 ab,cd )
bed . nmn .
Vil (p1, pa. p3) =21\/32ﬂGN{ [5 (D_2 —n“‘n”") PPy = pipsn’en’

ac,de fb _
+<f7 =359

(n“onen’ +n""77“ef7fb)> (1 ‘Pz)] + [pz - p3] + [pl - pﬂ } (A3)

cd<ef ab < ef
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The two-graviton and one auxiliary field vertex:

Vit (py. pa. p3) =24/322Gy

. Sen™
X { {P?ﬂ”ﬁ <53 b —m)

' 5dl’]ab
_ n9,cf 5¢ bd __~¢
P177 < e D_2):|

|:p1<_>p2
ab < cd

] -’ “n""n"-"pse} (Ad)
The one-graviton two auxiliary fields vertex:

VAN (py. pa. ps) =2i\/320Gy

ah,,bd [ s9 se 5?5;
X < 2ty 505f—D_1 . (A5)

In the main text, we also use the normalized Feynman rules
denoted with a bar as

i -

h — h
P(l/)’/w - _EP(I/}[HJ’
Aad I DAad
Pbgef - _E bgef’
ViIvell = 2i\/322Gy VT,
VIl = 2.\ /320Gy Vv,
Vit = 2iy/322Gy Vyed!. (A6)

m*(4n+5)—mn(4n+5)+5n(n*=1) _ mPntm(n*=2)+n*—n

Appendix B: The recursion relation—We explicitly
give the matrices M*(D) of the recursion relations in
(40). The matrices take the block diagonal form

m, 0 0
M@Y=y o )
where  m;

are 3 x3 upper-triangle matrices and
mk are upper-triangular 5 x 4 matrices with m2 =0 for
4<r<8.
The recursion relation takes the form for 1 <i <3

(BI)

1

and for4 <i <8

n 3
(D) (mb)s (D)D), (B3)

—1
m=1r,s

2" =

In D =4 dimensions the matrices are given by [general
dimension expressions are in the file Matrices-recur-
sion.txt on the repository [41]]

_ = (n 1)) +m? (n=1)+m(n(n+2)-1)+(n=2) (n=D)n(n+1)

6n(n*-1) 6n(n*-1)
m = 0 =
0 0

6n(n*—1)(m-n+2)

m(3m*+m(n—1)=5n+n+1) .
12n(n?=1)(m—n+2) i

(B4)

8m*+m?=2(m+2)n+(m+2) (10m—1)n?>—(m(16m+19)+1)mn+2n*+4n

mz(n+2)—m(n+2)n+n3—n (m—n)(m—n2+1)

24(m=2)n(n*~1)(m-n+2)

m? (n4-1)=2m? (n*4+n—=2)+m(2n3 =5n-+1)—(n=2)(n—1)n(n+1)

6n(n’—1) 6n(n*-1) 12n(n>=1)(m—n+2)
ml— 0 —m?(2n+3)+m(2n+3)n—3n+3n =3m?(2n+1)+m*(16n>+n—17)+m(n((9=16n)n+23)=7)+6(n—2) (n—1)n(n+1)
27 3n(n*-1) 12n(n*~1)(m—n+2)
0 0 —8m*n+16m>n?+m?* (n(5—n(16n+5))+24)+mn(n(n(8n+5)—5)—24)=5(n-2)(n—1)n(n+1)
24(m=2)n(n*~1)(m-n+2)
(BS)
(m—n) m(m—n) m(n=3)(n—m)
3n(n+1) 3n(n+1) 6n(n+1)(m—n+2)
o 2m(n—m) (4m+3)n*>+2((3=2m)m~+3)n+3m((m—2)m—1)-3n> .
mfli - 0 3n(n+1) +1 6n(n+1)(m—n+2) ’ (B6)
0 0 8m*—16m*n+m?(n(16n=7)+7)+mn((7-8n)n=7)+3(n—2)n(n+1)
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5 _2m+n m?(4n+3)—m(n(2n+3)+2)+2n(=n’+n+2) 1 _ 1 m(2n+1)(m—n)
12 12n 24n(n+1)(m—n+2) 12 12 24n(n+1)(m—n+2)
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m}l =10 0 24n(r(1+1)(m—n1rZ) > mé =[0 % ( 24n((n+])(m—r2+2) ) > (B7)
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