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We apply a formulation of Einstein’s general relativity with only cubic interactions for deriving the
metric of a Schwarzschild black hole to all orders in perturbation theory. This cubic interactions
formulation coupled to effective worldline action of a massive point particle allows to derive a recursion
relation for the form factors of the off-shell graviton emission current. The unique solution to the recursion
relation leads to the Schwarzschild black-hole solution in four dimensions. This provides the first
derivation of the black hole metric from a matter source to all orders in perturbation theory from an
amplitude approach.
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Introduction—The necessity for high precision analytic
computations of gravitational waves emitted from the
gravitational two-body scattering in Einstein gravity has
led to the development of important theoretical frameworks
[1–3]. The remarkable connection between the perturbative
quantum scattering method and the classical post-
Minkowskian expansion, as demonstrated in [4,5], has
provided analytic expressions up to the fourth post-
Minkowskian order in the spinless case [6–23], with the
conservative sector result at the fifth post-Minkowskian
order [24]. These results are in impressive agreement with
those obtained from numerical general relativity [25,26]. A
variety of amplitude methods have been employed to derive
the space-time metric of a black hole induced by a massive
object in perturbation from scattering amplitudes tech-
niques [27–33]. The intricacy of the computational process
precluded the derivation of the complete metric to all orders
in perturbation. Recurrence relations between the off-shell
graviton emission from a massive source was obtained in
[34] using the perturbiner approach—which encode the
classical equations of motion—leading to the complete
Schwarzschild metric.
In this work, we show how to derive the Schwarzschild

metric to all orders in the gravitational coupling from a
scattering amplitude computation. The approach uses the
reformulation of the Einstein-Hilbert action with only cubic
interactions [35] coupled to a massive source within a
worldline EFT formalism. The graviton or auxiliary field
off-shell emission from the massive source are only given
by multiloop triangle Feynman diagrams which is expected
from general arguments about the emergence of the

classical contribution from the quantum amplitude [4].
The worldline construction directly provides the velocity
on the massive lines [13,36] and reduce the computation to
the multiloop massless bubble master integrals of [32]. The
restriction to cubic interactions results to a crucial simpli-
fication that at each order in perturbation these multiloop
triangle diagrams are represented only by binary tree graphs.
This binary tree structure implies a recursive relation
between the various orders in perturbation. The solution
to this recursion relation is unique and is given by the
Schwarschild solution in four dimensions. Remarkably the
derivation of the Schwarzschild metric in this work does not
require any regularization contrary to the previous pertur-
bative computations [28,32,33]. The freedom from the
harmonic gauge condition [37] allowed absorbing the short
distance singularities [32] arising in the amplitude compu-
tation removing all possible ambiguities from the quantum
computation, rendering the computation finite and consis-
tent albeit limited to a finite order in perturbation. The new
ingredient in this work is the use of a different set of degrees
of freedom (d.o.f.) given by the perturbative expansion of the
gothic inverse metric in (5) and the auxiliary field (4). This
set of variables fix all the remaining freedom from the
harmonig gauge condition, leading to a unique solution
given by the Schwarschild metric to all orders.
Cubic formulation of general relativity—In this section,

we will briefly present the cubic formulation of GR as
initially introduced in [35]. We will use the mostly positive
metric signature ð−;þ; � � � ;þÞ. The Einstein-Hilbert action
LEH ¼ ffiffiffiffiffiffi−gp

RðgÞ=ð16πGNÞ can be recast in the form

16πGNLEH¼−
�
Aa
bcA

b
ad−

1

D−1
Aa
acAb

bd

�
gcdþAa

bc∂ag
bc;

ð1Þ
where GN is Newton’s constant, Aa

bc ¼ Aa
cb is an auxiliary

field and gab ¼ ffiffiffiffiffiffi−gp
gab is the gothic inverse metric used to
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lower and raise the indices Aa
bcg

bb0gcc
0 ¼ Aab0c0 . The cor-

responding classical equations of motion are

δLEH

δgab
¼ −Ac

daA
d
cb þ

1

D − 1
Ac
caAd

db − ∂cAc
ab ¼ 0; ð2Þ

δLEH

δAa
bc

¼
�
Aðb
ad −

1

D − 1
Ae
edδ

ðb
a

�
gcÞd − ∂agbc ¼ 0; ð3Þ

and the second equation can be inverted as

Aa
bc ¼

1

2

�
gdðb∂cÞgadþgad∂dglm

�
glmgbc
D−2

−
glðbgcÞm

2

��
: ð4Þ

From now on we will work perturbatively by expanding the
gothic inverse metric near flat space

gab ¼ ffiffiffiffiffiffi
−g

p
gab ¼ ηab −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
hab ð5Þ

and the indices are raised and lowered with the flat metric
as usual. Additionally, we shift the auxiliary field as

Aa
bc → Aa

bc −
ηad

2

�
∂ðbhcÞd þ

ηbc∂dh
D − 2

− ∂dhbc

�
; ð6Þ

in order to decouple the quadratic interactions between the
graviton hab and the auxiliary field Aa

bc, since our aim is to
work in a perturbative QFT setup. Finally, we will add the
gauge fixing term

LGF ¼ −
1

32πGN
ηcd∂agac∂bgbd; ð7Þ

which corresponds to the harmonic gauge condition
∂agab ¼ 0 for the gothic inverse metric. Upon gauge fixing,
the Lagrangian becomes L ¼ LEH þ LGF containing only
cubic self interactions. The corresponding Feynman rules
were derived in [35]. These Feynman rules adapted to our
conventions are given in the Appendix. The above cubic
formulation of GR is crucial to derive an all order result for
the off-shell currents as it will be shown in the next section.
We provide here for later convenience the exact classical

solutions in D ¼ 4 in the harmonic gauge [37] for the
gothic inverse metric perturbation, using ρ ¼ GNm=r, the
spatial unit vector nμ ≔ ð0; x1=r;…; xD−1=rÞ with
r2 ¼ x21 þ � � � þ x2D−1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
hμν ¼

�
−1þ ð1þ ρÞ3

1 − ρ

�
δμ0δ

ν
0 þ ρ2nμnν; ð8Þ

and the auxiliary field perturbation, using (4) and (6)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
AaðnÞ
bc ðxÞ¼ρ

r

� ð2−ρÞ
ð1−ρ2Þ

�
−1þð1þρÞ3

1−ρ

�
δa0nðbδ

0
cÞ

þ
�
−1þ 2

ð1−ρÞ2−
1−ρ

ð1þρÞ3
�
naδ0bδ

0
c

þ2

�
−1þ 1

ð1−ρÞ2
�
naδbjδck

þρ

�
−2þ 1

1þρ
þ 1

1−ρ2

�
nanbnc

�
: ð9Þ

Off-shell currents from worldline formalism—We derive
the off-shell three-point functions, for the graviton and the
auxiliary field, via a worldline EFT to all orders in GN
[38,39]. In order to proceed, we express the point-particle
wordline action

Lp:p: ¼ −
m
2

Z
dτ ðe−1gμνvμvν þ eÞ ð10Þ

using the new d.o.f. gμν ¼ gμν=ð ffiffiffiffiffiffi−gp Þ2=ðD−2Þ and fix the
einbein to e ¼ 1 so that

Lp:p: ¼ −
m
2

Z
dτ

�
gμνvμvν
ð ffiffiffiffiffiffi−gp Þ 2

D−2
þ 1

�
; ð11Þ

which has the perturbative expansion to the first order

Lp:p: ¼ −
m
2

Z
dτ

�
1þ v2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
hμν

×

�
vμvν − v2

ημν
D − 2

�
þOðGNÞ

�
: ð12Þ

Working in the rest frame of the particle where vμ ¼
ð−1; 0; 0; 0Þ and v2 ¼ −1, the corresponding Feynman rule
for the 1-graviton emission from the worldline is

tαβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p im
2

�
δα0δ

β
0 þ

ηαβ

D − 2

�
; ð13Þ

and is the only worldline vertex that we will need.
In the cubic formulation the projector of the graviton

propagator in Eq. (A1) does not depend on the space-time
dimension D, and it has the usual form for D ¼ 4
dimensions [40]. In general, dimension the vertices derived
from (12) project on the transverse d.o.f. which ensure that
the harmonic condition kμhμνðxÞ ¼ 0 is satisfied.
Furthermore, at each order in perturbation in GN the

graviton and auxiliary field emission

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
hðnÞμν ðxÞ ¼

Z
dD−1x eik·xJðnÞμν ðkÞ; ð14Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
AaðnÞ
bc ðxÞ ¼

Z
dD−1x eik·xYaðnÞ

bc ðkÞ; ð15Þ

are parametrized by eight scalar dimension dependent form
factors

χ ðnÞðDÞ ¼ ðχðnÞ1 ;…; χðnÞ8 Þ ð16Þ

entering the off-shell current for the one-graviton emission

JðnÞμν ðkÞ ¼ ρðjkj; D; nÞ
�
χðnÞ1 δ0μδ

0
ν þ χðnÞ2 ημν þ χðnÞ3

kμkν
k2

�
;

ð17Þ

and the off-shell current for the auxiliary field emission

YaðnÞ
bc ðkÞ ¼ −iρðjkj; D; nÞ

�
kðb

�
χðnÞ7 δ0cÞδ

a
0 þ χðnÞ8 δacÞ

�

þ ka
�
χðnÞ4 δ0bδ

0
c þ χðnÞ5 ηbc þ χðnÞ6

kbkc
k2

��
: ð18Þ

The order parameter in momentum space

ρðjkj; D; nÞ ¼
Γ
�
2−ðD−3Þðn−1Þ

2

�

Γ
�
nðD−3Þ

2

�
�
Γ
�
D−3
2

�
GNm

�
n

½jkj=ð2 ffiffiffi
π

p Þ�2−ðD−3Þðn−1Þ ;

ð19Þ

which Fourier transforms to

Z
dD−1k
ð2πÞD−1 e

ik·rρðjkj; D; nÞ ¼ ρðr;DÞn; ð20Þ

with the coordinate space order parameter [32]

ρðr;DÞ ¼
Γ
�
D−3
2

�
π

D−3
2

GNm
rD−3 ; ð21Þ

which evaluates to the Schwarzschild parameter in four
dimensions ρðr; 4Þ ¼ ρ. Notice that the transversality of the

graviton kμhμν ¼ 0 implies that χðnÞ2 þ χðnÞ3 ¼ 0 for all n.
Starting with these two independent form factors we will
derive this relation as a consequence of the gauge invari-
ance of the computation.
Tree-level order: Because only the graviton couples

directly to the matter line, at tree-level there is only the 1-
graviton emission contribution (we refer to the Appendix
for notations and conventions on the Feynman rules)

ð22Þ
and the form factors can be identified as

χ ð1ÞðDÞ ¼ ð4; 0; 0; 0; 0; 0; 0; 0Þ: ð23Þ

One-loop order: At one-loop order we have two con-
tributions, the graviton emission and the auxiliary field
emission. The off-shell graviton emission is given by

ð24Þ

which reads, using the Feynman rules of the Appendix,

Jð2Þμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
2

Z
dD−1q
ð2πÞD−1 P

h
αβκλt

αβPh
γδρσt

γδVϵζκλρσ
h3

Ph
ϵζμν;

ð25Þ

is given by the one-loop bubble contribution which is the
master integral arising at this order [32]

Jð2Þμν ¼
Z

dD−1q
ð2πÞD−1

8π2
�
GNmχð1Þ1

�
2

ðqÞ2ðq−kÞ2

×

��
1−

ðD−3Þ
4ðD−2Þ2

�
δ0μδ

0
νþ

ðD−3Þ2
4ðD−2Þ2

�
ημν−

kμkν
jkj2

��
;

ð26Þ

which evaluates to

Jð2Þμν ¼ ρðjkj; D; 2Þ
�
χð1Þ1

�
2

2

��
1 −

ðD − 3Þ
4ðD − 2Þ2

�
δ0μδ

0
ν

þ ðD − 3Þ2
4ðD − 2Þ2

�
ημν −

kμkν
jkj2

��
: ð27Þ

The off-shell auxiliary field emission is given by

ð28Þ

which explicitly reads
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Yað2Þ
bc ¼

�
GNmχð1Þ1

�
2
Z

dD−1q
ð2πÞD−1

−32π2i
ðqÞ2ðq−kÞ2

×
�

ka

D−2

�
ð2D−5Þδ0bδ0cþηbc

�
−kðbδ0cÞδ

a
0

�
ð29Þ

and evaluates to

Yað2Þ
bc ¼−i2ρðjkj;D;2Þ

�
χð1Þ1

�
2

×

�
ka

D−2
ðð2D−5Þδ0bδ0cþηbcÞ−kðbδ0cÞδ

a
0

�
: ð30Þ

From these results we can identify the eight one-loop form
factors

χ ð2ÞðDÞ ¼
�
8 − 2

ðD − 3Þ
ðD − 2Þ2 ;

2ðD − 3Þ2
ðD − 2Þ2 ;−

2ðD − 3Þ2
ðD − 2Þ2 ;

8 −
4

D − 2
;

4

D − 2
; 0;−4; 0

�
: ð31Þ

To make explicit the iteration we use the tree-level graviton

emission Jð1Þμν to express the one-loop emissions [using the
barred notation introduced in Eq. (A6)]

ð32Þ

and

ð33Þ

This iterative structure persists to all order in perturba-
tion and is one of the key ingredients that lead to a recursion
relation connecting the l-loop contribution to lower-loop
contributions.
Two-loop order: At two-loop order the graviton emis-

sion is given by the sum of the two diagrams

ð34Þ

where Jð1Þ is the 1-graviton emission from the massive
particle. Because of the cubic structure of the theory, this is
the complete set of contributing diagrams. This is of great
importance for the generalization of the iterative structure

to all orders, as the absence of higher-order self-interactions
restricts the topologies of the diagrams to the above binary
tree structure. It should be noted that in the worldline
formalism, the sources are static, thus all the different
symmetrizations of the propagators are equivalent, and the
total symmetry factor of the diagram is 1=2. This feature is
applicable to all loops, enabling the symmetry factors to be
incorporated into the definitions of the lower-order
diagrams.
Using the Feynman rules given in the Appendix, this

expression can be rewritten with respect to the one-loop
order off-shell currents as

ð35Þ

Likewise, for the emission of the auxiliary field we have

ð36Þ

which can be expressed using the lowest-order result as

ð37Þ

All-loop order: The previous iterative structure carries
over to all loop orders. The fact that the auxiliary field does
not couple directly to the massive line and that there are
only cubic interactions leads to the expression of the
(n − 1)-loops graviton emission as a sum of lowest-loop
contributions

ð38Þ
and, similarly for the emission of the auxiliary field

ð39Þ

The n − 1-loop contribution is therefore given by a finite
sum of generalised one-loop diagrams with effective
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vertices given by the lowest-loop contributions. These
iterated diagrams evaluate directly into the multiloop
massless bubble master integrals of Sec. 2.2 of [32]. The
fact that the classical result is only built from binary tree
graphs is an important simplification over previous ampli-
tude approaches [27–33] that involved either higher grav-
iton vertices or nonminimal couplings.
In the perturbiner method [34], a similar recursion

relation is derived for the off-shell currents of the inverse
gothic. It is interesting to note that both our amplitude
based and the perturbiner method approach utilize the
harmonic gauge and introduce an auxiliary d.o.f. (4) in our
case and g̃ab ¼ ηab þ h̃ab in [34]. Furthermore, the spe-
cific choice of the auxiliary d.o.f. is crucial for the
derivation of the recursion relations in each approach. It
is apparent that the choice of suitable gauge and d.o.f. is
formalism dependent and there is an optimal choice
corresponding to each formalism. This observation is
further supported by the results of [32], where it was
not possible to derive the metric to all orders in perturba-
tion theory working with the metric perturbation gμν ¼
ημν þ hμν as a d.o.f. only.
Form factors recursion relations—From the iterative

structure of the diagrammatic expansion we can derive
recursion relations for the form factors, in general-D given
by the bilinear recursion relation for 1 ≤ k ≤ 8

χðnÞk ðDÞ ¼
X8
i;j¼1

Xn−1
m¼1

χðmÞ
i ðDÞχðn−mÞ

j ðDÞMij
k ðDÞ; ð40Þ

together with the initial conditions provided by the tree-
level result in (23). We have explicitly verified to any order

and any dimension-D that χðnÞ2 þ χðnÞ3 ¼ 0, as required from
the conservation of the effective stress-tensor/off-shell

current kμhðnÞμν ðxÞ ¼ kμJðnÞμν ðkÞ ¼ 0. The matrix coefficients
Mk

ijðDÞ for 1 ≤ k ≤ 8 are provided in the Appendix and on
this site [41].
After Fourier transforming to position space we can write

the classical solution with respect to the form factors as
using ρðr;DÞ introduced in (19),

hðnÞμν ðxÞ ¼ ρðr;DÞn
��

χðnÞ1 − χðnÞ2

�
δ0μδ

0
ν

þ χðnÞ2

1 − ðn − 1ÞðD − 3Þ
2 − ðn − 1ÞðD − 3Þ δij

þ χðnÞ2

nðD − 3Þ
2 − ðn − 1ÞðD − 3Þ nμnν

�
ð41Þ

and for the auxiliary field

AaðnÞ
bc ðxÞ¼ ρðr;DÞn nðD−3Þ

r

��
χðnÞ8 −χðnÞ7

�
δa0nðbδ

0
cÞ

þ
�
χðnÞ4 −χðnÞ5

�
naδ0bδ

0
c

þ
�
χðnÞ5 −

χðnÞ6

ðn−1ÞðD−3Þ−2

�
naδbjδck

þχðnÞ6

nðD−3Þþ2

ðn−1ÞðD−3Þ−2
1nanbnc

þ
�
χðnÞ8 −

χðnÞ6

ðn−1ÞðD−3Þ−2

�
δaiδjðbncÞ

�
: ð42Þ

Schwarzschild black-hole in D ¼ 4—In D ¼ 4 the
solution to the recursion relations of the form factors in (31)

χ ð2Þð4Þ ¼
�
15

2
;
1

2
;−

1

2
; 6; 2; 0;−4; 0

�
ð43Þ

and (40) for n ≥ 3 give

χ ðnÞð4Þ¼
�
8;0;0;4þnð−1Þnþ1þ3ð−1Þn

2nðnþ2Þ ;

2þ1þ3ð−1Þn
2nðnþ2Þ ;

1þ3ð−1Þn
2nðnþ2Þ ðn−3Þ;

1

n
−4−

1þ3ð−1Þn
2nðnþ2Þ ðnþ1Þ;1þ3ð−1Þn

2nðnþ2Þ
�
; ð44Þ

which plugged in (41), (42) with ρ ¼ ρðr; 4Þ ¼ GNm=r and
ni ¼ xi=r reproduce exactly the classical solutions in
(8), (9).
The present derivation does not need introducing non-

minimal couplings [38] for removing the ultraviolet diver-
gences that occurred in the previous perturbative
computations [32,33]. The momentum space expressions
(17) and (18) are divergent for n ¼ f½2mþ ðD − 1Þ�=
ðD − 3Þg, n;m∈N, since the ρðjkj; D; nÞ develops a pole,
which in D ¼ 4 corresponds to two-loop divergence of
[32,33]. But this momentum space divergence is cancelled
after Fourier transforming to direct space, thanks to the
parametrization of the off-shell currents, and the final
expressions (41) and (42) are free of divergences because
the form factors χ ðnÞðDÞ are finite for D ¼ 4.
Discussion—We have successfully derived the exact

classical black-hole solutions (8) and (9) generated by a
massive source to all orders in GN in four dimensions. The
crucial ingredient of our approach is the cubic formulation
[35] of general relativity combined with the powerful
worldline EFT formalism. Specifically, we were able to
organize the computation of the form factors from the
effective off-shell currents for the graviton and auxiliary
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field emission to any order in GN , into recursion relations
relating the various order in perturbation. These recursion
relations originate from the simple diagrammatic expansion
given by binary trees in (38) and (39).
The computation presented in this Letter shows that with

a suitable choice of gauge and d.o.f., amplitude based
classical GR computations can be simplified immensely.
We can find a closed form for the form factors in D ¼ 4
because within our setup all the residual freedom of
harmonic coordinates within the harmonic gauge is fixed
[37]. Most importantly, the all-order derivation is possible
because no non-minimal worldline couplings nor quartic or
higher order self-interaction vertices are needed, rendering
the computation maximally minimal from an amplitude
point of view. The form factors χ ðnÞðDÞ have been
determined in general dimensions, but in order to establish
a connection with the Schwarzschild-Tangherlini metric, it
is necessary to match the gauge used in the amplitude
computation with the gauge used in the GR side. A
mapping can be determined perturbatively in powers of
ρðr;DÞ, but it is difficult to find an all order expression.
The knowledge of the exact metric generated by a

massive source is a first step toward an amplitude based
approach [24,42–44] to the self-force calculation [45]. We
expect that the simplicity of the cubic interactions, pre-
sented in this work, will be instrumental to setup a complete
self-force calculation from an amplitude calculation.
Furthermore, the formalism presented here could be
extended to include spin contributions, since the simplicity
of the computation resulting from the restriction to cubic
interactions would not be spoiled in this case as well.

Acknowledgments—We would like to thank Poul
Damgaard, Leonardo de la Cruz, and Donal O’Connell
for useful comments and discussions. The work of P. V. has
received funding from the ANR grant “SMAGP” ANR-20-
CE40-0026-01. S. M. acknowledges financial support by
ANR PRoGRAM project, Grant No. ANR-21-CE31-
0003-001.

Data availability—The supporting data for this Letter are
openly available from the repository [46].

[1] N. E. J. Bjerrum-Bohr, P. H. Damgaard, L. Planté, and P.
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Vanhove, The amplitude for classical gravitational scatter-
ing at third post-Minkowskian order, J. High Energy Phys.
08 (2021) 172.

[14] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C. H.
Shen, M. P. Solon, and M. Zeng, Scattering amplitudes and
conservative binary dynamics at OðG4Þ, Phys. Rev. Lett.
126, 171601 (2021).

[15] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C. H.
Shen, M. P. Solon, and M. Zeng, Scattering amplitudes, the
tail effect, and conservative binary dynamics at O(G4),
Phys. Rev. Lett. 128, 161103 (2022).

[16] E. Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng,
Radiative classical gravitational observables at OðG3Þ from
scattering amplitudes, J. High Energy Phys. 10 (2021) 148.

[17] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano,
The eikonal approach to gravitational scattering and radi-
ation at OðG3Þ, J. High Energy Phys. 07 (2021) 169.

[18] C. Dlapa, G. Kälin, Z. Liu, J. Neef, and R. A. Porto,
Radiation reaction and gravitational waves at fourth post-
Minkowskian order, Phys. Rev. Lett. 130, 101401 (2023).

[19] G. Kälin, J. Neef, and R. A. Porto, Radiation-reaction in the
effective field theory approach to post-Minkowskian dy-
namics, J. High Energy Phys. 01 (2023) 140.

[20] P. H. Damgaard, E. R. Hansen, L. Planté, and P. Vanhove,
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End Matter

Appendix A: Feynman rules—Restoring the normali-
zation factors give an extra 1=2 in the propagators and
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
to the three-point vertices compared to [35].

The graviton propagator:

Ph
αβμν ¼ −

i
2

ημαηνβ þ ηναημβ − ημνηαβ
k2

: ðA1Þ

Notice that the numerator does not depend on the space-
time dimension and does not have the usual 2=ðD − 2Þ
factor multiplying the ημνηαβ term [40], needed for

propagating only the transverse degree of freedom of the
graviton. This is compensated by the D dependence in the
vertices derived from the worldline action.
The auxiliary field propagator:

PAad
bcef ¼−

i
2

1

k2

�
δafδ

d
cηbeþ

ηad

2

�
ηbcηef
D−2

−ηbeηcf

��
: ðA2Þ

The three-graviton vertex:

Vabcdef
h3

ðp1;p2;p3Þ¼ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p 	�
1

2

�
ηabηcd

D−2
−ηacηbd

�
pe
1p

f
2 −pc

1p
a
2η

beηfd

þ
�
ηacηdeηfb−

1

2ðD−2Þðη
abηceηfdþηcdηaeηfbÞ

�
ðp1 ·p2Þ

�
þ
�
p2↔p3

cd↔ ef

�
þ
�
p1 ↔p3

ab↔ ef

�

: ðA3Þ
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The two-graviton and one auxiliary field vertex:

Vabcdfg
h2Ae

ðp1;p2;p3Þ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p

×

	�
pd
1η

cf

�
δaeη

bg−
δgeηab

D−2

�

−pg
1η

cf

�
δaeη

bd−
δdeη

ab

D−2

��

þ
�
p1 ↔p2

ab↔ cd

�
−ηfaηbcηdgp3e



: ðA4Þ

The one-graviton two auxiliary fields vertex:

Vabdegh
hA2cf

ðp1;p2;p3Þ¼ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p

×

	
2ηahηbd

�
δgcδef−

δecδ
g
f

D−1

�

: ðA5Þ

In the main text, we also use the normalized Feynman rules
denoted with a bar as

Ph
αβμν ¼ −

i
2
P̄h

αβμν;

PAad
bcef ¼ −

i
2
P̄Aad

bcef;

Vabcdef
h3

¼ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
V̄abcdef
h3

;

Vabcdfg
h2Ae

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
V̄abcdfg
h2Ae

;

Vabdegh
hA2cf

¼ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
V̄abdegh
hA2cf

: ðA6Þ

Appendix B: The recursion relation—We explicitly
give the matrices MkðDÞ of the recursion relations in
(40). The matrices take the block diagonal form

MkðDÞ ¼
�
m1

k 0 0

0 0 m2
k

�
; ðB1Þ

where m1
k are 3 × 3 upper-triangle matrices and

mk
2 are upper-triangular 5 × 4 matrices with m2

r ¼ 0 for
4 ≤ r ≤ 8.
The recursion relation takes the form for 1 ≤ i ≤ 3

χðnÞl ¼
Xn−1
m¼1

X3
r;s¼1

χðmÞ
r ðDÞðm1

l ÞrsðDÞχðn−mÞ
s ðDÞ

þ
Xn−1
m¼1

X8
r;s¼4

χðmÞ
r ðDÞðm2

l ÞrsðDÞχðn−mÞ
s ðDÞ ðB2Þ

and for 4 ≤ i ≤ 8

χðnÞl ¼
Xn−1
m¼1

X3
r;s¼1

χðmÞ
r ðDÞðm1

l ÞrsðDÞχðn−mÞ
s ðDÞ: ðB3Þ

In D ¼ 4 dimensions the matrices are given by [general
dimension expressions are in the file Matrices-recur-
sion.txt on the repository [41]]

m1
1 ¼

0
BBBBB@

m2ð4nþ5Þ−mnð4nþ5Þþ5nðn2−1Þ
6nðn2−1Þ − m2nþmðn2−2Þþn3−n

6nðn2−1Þ −−ðm3ðnþ1ÞÞþm2ðn−1Þþmðnðnþ2Þ−1Þþðn−2Þðn−1Þnðnþ1Þ
6nðn2−1Þðm−nþ2Þ

0
mðm−nÞ
3n−3n3

mð3m2þmðn−1Þ−5n2þnþ1Þ
12nðn2−1Þðm−nþ2Þ

0 0
8m4þm2−2ðmþ2Þn3þðmþ2Þð10m−1Þn2−ðmð16mþ19Þþ1Þmnþ2n4þ4n

24ðm−2Þnðn2−1Þðm−nþ2Þ

1
CCCCCA
; ðB4Þ

m1
2¼

0
BBBBB@

m2ðnþ2Þ−mðnþ2Þnþn3−n
6nðn2−1Þ

ðm−nÞðm−n2þ1Þ
6nðn2−1Þ

m3ðnþ1Þ−2m2ðn2þn−2Þþmð2n3−5nþ1Þ−ðn−2Þðn−1Þnðnþ1Þ
12nðn2−1Þðm−nþ2Þ

0
−m2ð2nþ3Þþmð2nþ3Þn−3n3þ3n

3nðn2−1Þ
−3m3ð2nþ1Þþm2ð16n2þn−17Þþmðnðð9−16nÞnþ23Þ−7Þþ6ðn−2Þðn−1Þnðnþ1Þ

12nðn2−1Þðm−nþ2Þ

0 0
−8m4nþ16m3n2þm2ðnð5−nð16nþ5ÞÞþ24Þþmnðnðnð8nþ5Þ−5Þ−24Þ−5ðn−2Þðn−1Þnðnþ1Þ

24ðm−2Þnðn2−1Þðm−nþ2Þ

1
CCCCCA
;

ðB5Þ

m1
3 ¼

0
BBBBB@

mðm−nÞ
3nðnþ1Þ

mðm−nÞ
3nðnþ1Þ

mðn−3Þðn−mÞ
6nðnþ1Þðm−nþ2Þ

0
2mðn−mÞ
3nðnþ1Þ þ 1

ð4mþ3Þn2þ2ðð3−2mÞmþ3Þnþ3mððm−2Þm−1Þ−3n3
6nðnþ1Þðm−nþ2Þ

0 0
8m4−16m3nþm2ðnð16n−7Þþ7Þþmnðð7−8nÞn−7Þþ3ðn−2Þnðnþ1Þ

12ðm−2Þnðnþ1Þðm−nþ2Þ

1
CCCCCA
; ðB6Þ
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m1
4¼

0
BBBBB@

5
12

−2mþn
12n

m2ð4nþ3Þ−mðnð2nþ3Þþ2Þþ2nð−n2þnþ2Þ
24nðnþ1Þðm−nþ2Þ

0 0
mð2m−3n−1Þ

24nðnþ1Þðm−nþ2Þ

0 0
−5m2þ5mnþðn−2Þnðnþ1Þ
24ðm−2Þnðnþ1Þðm−nþ2Þ

1
CCCCCA
; m1

5¼

0
BBBBB@

1
12

− 1
12

mð2nþ1Þðm−nÞ
24nðnþ1Þðm−nþ2Þ

0 1
6

−2m2ð2nþ1Þþmð6n2þn−3Þþ2nð−n2þnþ2Þ
24nðnþ1Þðm−nþ2Þ

0 0
m2ð6nþ1Þ−mnð6nþ1Þþnðn2−n−2Þ

24ðm−2Þnðnþ1Þðm−nþ2Þ

1
CCCCCA
; ðB7Þ

m1
6¼

0
BBBB@
−1

4
1
4

mðn−mÞ
24nðnþ1Þðm−nþ2Þ

0 0
mð2mþnþ3Þ

24nðnþ1Þðm−nþ2Þ

0 0
mð4n−1Þðm−nÞ

24ðm−2Þnðnþ1Þðm−nþ2Þ

1
CCCCA; m1

7¼

0
BBBB@
0 0

mðn−mÞ
24nðnþ1Þðm−nþ2Þ

0 1
4

mð2mþnþ3Þ
24nðnþ1Þðm−nþ2Þ

0 0
mð4n−1Þðm−nÞ

24ðm−2Þnðnþ1Þðm−nþ2Þ

1
CCCCA; m1

8¼

0
BBBB@
0 0 − mðn−2Þðm−nÞ

12nðnþ1Þðm−nþ2Þ

0 0
ðn−2Þðm−nÞð2mþ3nþ3Þ

12nðnþ1Þðm−nþ2Þ

0 0
ðn−2Þðm2ð8n−2Þþ2mð1−4nÞnþ3nðnþ1ÞÞ

24ðm−2Þnðnþ1Þðm−nþ2Þ

1
CCCCA;

ðB8Þ

m2
1 ¼

0
BBBBBBBBBBBB@

0
2mðn−mÞ
ðn−1Þn

2mðm−nÞ
ðn−1Þn 0

3mðm−nÞ
4nðn2−1Þ

mð8nþ9Þðm−nÞ
4nðn2−1Þ

mðm−nÞ
2n−2n3

mðm−nÞð3mþnþ2Þ
4nðn2−1Þðm−nþ2Þ

0
3mðm−nÞ
4nðn2−1Þ

mðm−nÞ
2nðn2−1Þ

mðm−nÞ
4nðn2−1Þ

0 0
mðm−nÞ
n−n3

mðm−nÞðmþnÞ
2nðn2−1Þðm−nþ2Þ

0 0 0
mð3mðm−nÞ−4n−2Þðm−nÞ
4ðm−2Þnðn2−1Þðm−nþ2Þ

1
CCCCCCCCCCCCA

; ðB9Þ

m2
2 ¼

0
BBBBBBBBBB@

0
mðn−mÞ
ðn−1Þn

mðm−nÞ
ðn−1Þn 0

3mðn−mÞ
4ðn2−1Þ

mð3nþ4Þðm−nÞ
4nðn2−1Þ

mð5nþ6Þðn−mÞ
2nðn2−1Þ − mðm−nÞðnð3m−3nþ2Þþ4Þ

4nðn2−1Þðm−nþ2Þ

0
3mðn−mÞ
4ðn2−1Þ

mðn−mÞ
2ðn2−1Þ

mðn−mÞ
4ðn2−1Þ

0 0
mðm−nÞ
n2−1 − mðm−nÞðnðm−nÞþ2Þ

2nðn2−1Þðm−nþ2Þ

0 0 0 − mðm−nÞðnð3mðm−nÞ−2Þ−4Þ
4ðm−2Þnðn2−1Þðm−nþ2Þ

1
CCCCCCCCCCA
; ðB10Þ

m2
3 ¼

0
BBBBBBBBBB@

0 0 0 0
3mðm−nÞ
2nðnþ1Þ

mðm−nÞ
2nðnþ1Þ

mðn−mÞ
nðnþ1Þ

mð3m−3n−2Þðm−nÞ
2nðnþ1Þðm−nþ2Þ

0
3mðm−nÞ
2nðnþ1Þ

m2−mn
n2þn

mðm−nÞ
2nðnþ1Þ

0 0
2mðn−mÞ
nðnþ1Þ

mðm−n−2Þðm−nÞ
nðnþ1Þðm−nþ2Þ

0 0 0
mð3mðm−nÞþ2Þðm−nÞ
2ðm−2Þnðnþ1Þðm−nþ2Þ

1
CCCCCCCCCCA
: ðB11Þ
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