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Gravitational waves from subsolar mass inspiraling compact objects would provide almost smoking-gun
evidence for primordial black holes (PBHs). We perform the first search for inspiraling planetary-mass
compact objects in equal-mass and highly asymmetric mass-ratio binaries using data from the first half of
the LIGO-Virgo-KAGRA third observing run. Though we do not find any significant candidates, we
determine the maximum luminosity distance reachable with our search to be of Oð0.1–100Þ kpc, and
corresponding model-independent upper limits on the merger rate densities to be Oð103–10−7Þ kpc−3 yr−1
for systems with chirp masses of Oð10−4–10−2ÞM⊙, respectively. Furthermore, we interpret these rate
densities as arising from PBH binaries and constrain the fraction of dark matter that such objects could
comprise. For equal-mass PBH binaries, we find that these objects would compose less than 4%–100% of
DM for PBH masses of 10−2M⊙ to 2 × 10−3M⊙, respectively. For asymmetric binaries, assuming one
black hole mass corresponds to a peak in the mass function at 2.5M⊙, a PBH dark-matter fraction of 10%
and a second, much lighter PBH, we constrain the mass function of the second PBH to be less than 1 for
masses between 1.5 × 10−5M⊙ and 2 × 10−4M⊙. Our constraints, recently released, are robust enough to
be applied to any PBH or exotic compact object binary formation models, and complement existence
microlensing results.
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Introduction—The detection of low-spinning black holes
by LIGO, Virgo, and KAGRA [1–14] has renewed interest
in primordial black holes (PBHs) as dark-matter (DM)
candidates [15–17]. Depending on when and how PBHs
formed in the early universe [18–23], they could have any
mass between ∼½10−18; 109�M⊙, and could comprise a
fraction fPBH [17,24–26] or all of DM [15,16,18,20–
22,27,28]. Such a wide mass range necessitates different
probes of PBHs, one of which is through gravitational-
wave (GW) emission. However, there is ambiguity between
astrophysical and primordial formation mechanisms to
explain observations of black holes above a solar mass
[16,29]; hence, it is worthwhile to search for GWs from
inspiraling compact objects below a solar mass, whose
origins almost certainly would be primordial [30,31].
Despite a generic feature in the PBHmass function that

appears at 10−5M⊙ [18,19,32,33], much interest so far has

focused on subsolar mass (SSM) PBHs with masses
between ½0.1; 1�M⊙ using matched filtering, the ideal,
computationally intensive signal processing technique that
correlates a huge number of waveforms with the data [34–
40], with one exception [41]. While these searches have
yielded no significant GW events (one search, however,
claims to have seen a SSM low-significance candi-
date [42,43]), they have placed stringent upper limits
on fPBH ≲ few%.
However, GWs from PBH inspirals with masses

≲0.1M⊙ could spend at least hours in the detector
frequency range, which is problematic for matched-filtering
methods, since phase mismatch between templates accu-
mulates with signal duration, thus requiring many more
templates to cover the same parameter space [44]. Thus, we
propose to search for such planetary-mass PBHs with a
more computationally efficient method than matched filter-
ing: the “generalized frequency Hough” [45–47].
Inspiraling planetary-mass PBH binaries could lead to

detectable GW signals if they formed within our galaxy,
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motivating the development of new methods to search for
them [47–49]. Furthermore, recent detections of star and
quasar microlensing events from HSC [50], OGLE [51],
and EROS [52] have suggested that PBHs with masses
between 10−6M⊙ and 10−5M⊙ could compose ∼2%–10%
of DM [53,54]. However, microlensing limits could be
evaded if PBHs form in clusters [18,26,55–58], thus we
must probe the same PBHmasses in different ways.
In this work, we perform the first-ever search for GWs

from planetary-mass PBH binaries, and place the first GW
constraints on the fraction of DM that planetary-mass
PBHs could compose. Because our search is primarily
sensitive to the chirp mass of the binary, we can constrain
both equal-mass and asymmetric-mass ratio PBH binaries,
the latter of which may form more often. Details of our
search can be found in our companion paper [45].
Signal model—Inspiraling compact objects will emit

GWs that shrink their orbits over time, leading to their
eventual merger [59]. When two objects are far from
merger, we can approximate the GW emission as arising
from two point masses orbiting around their center of mass.
Equating orbital energy loss with GW power, the rate of
change of the GW frequency over time (the spin-up) ḟgw
is [59]

ḟgw ¼ 96

5
π8=3

�
GM
c3

�
5=3

f11=3gw ≡ kf11=3gw : ð1Þ

M≡ f½ðm1m2Þ3=5�=½ðm1 þm2Þ1=5�g is the chirp mass of
the system, fgw is the GW frequency, c is the speed of light,
and G is Newton’s gravitational constant. Integrating
Eq. (1), we obtain the frequency evolution fgwðtÞ:

fgwðtÞ ¼ f0

�
1 −

8

3
kf8=30 ðt − t0Þ

�
−3
8

; ð2Þ

where t0 is a reference time for the GW frequency f0 and t
is the time at fgw. The amplitude h0ðtÞ from a source a
distance d away evolves as [59]

h0ðtÞ ¼
4

d

�
GM
c2

�
5=3

�
πfgwðtÞ

c

�
2=3

: ð3Þ

While Eq. (1) represents the zeroth-order post-
Newtonian (PN) term [59], because we observe the in-
spiral far from merger, our results are valid up to 3.5 PN for
equal-mass and asymmetric-mass ratio systems with q ¼
m2=m1 ≈ η∈ ½10−7; 10−4� in this parameter space [49]
assuming m1 ∼OðM⊙Þ.
Search—Method: We begin with six months of

cleaned, calibrated LIGO O3a strain data hðtÞ [60–64]
that we divide into chunks of length TFFT, which we fast
Fourier transform (FFT). In each FFT, we estimate the level
of the background noise power spectral density (PSD), and

FIG. 1. Summary of our search for inspiraling PBH binaries. Step 1: perform 50% interlaced FFTs of length TFFT, chosen such that the
signal power is confined to one frequency bin in each FFT: ḟgwTFFT ≤ ð1=TFFTÞ. Step 2: estimate the noise PSD and calculate the
equalized power jFFTj2=PSD. Step 3: select local maxima above a threshold θthr ¼ 2.5 to build the time-frequency peak map. Step 4:
apply the generalized frequency Hough to find the most likely f0 andM of a PBH binary, and select significant candidates in different
“squares” of the Hough map.
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divide the square modulus of the FFT by the PSD to obtain
the “equalized power” [45], which has mean and standard
deviation equal to one in Gaussian noise [65].
We repeat this procedure for each FFT to build a time-

frequency peak map, in which any “peak” (a time-
frequency point) whose power has exceeded a threshold
θthr ¼ 2.5 is labeled with “1.” This peak map is the input to
the generalized frequency Hough, which maps peaks in the
time-frequency plane to lines in the frequency-chirp mass
plane.
To apply the generalized frequency Hough, we must

linearize the peak map by setting z ¼ f−8=3gw in Eq. (2),

resulting in z ¼ z0 − 8
3
kðt − t0Þ, where z0 ¼ f−8=30 [46].

Our method sums the 1s in the t–z plane along different
linear tracks, not the power, to avoid being blinded by noise
disturbances [65,66], and results in a two-dimensional
histogram in the z0 − k (f0 −M) plane, called the
“Hough map.”We show a schematic of the search in Fig. 1.
We plot in Fig. 2(a) the searched parameter space, which

extends a few orders of magnitude lower in chirp mass than
that in previous SSM searches [38–40]. In Fig. 2(b), we
show TPM, the duration of each peak map, as a function of
starting and ending frequency of each analyzed band. We
choose the frequency band, TFFT and TPM to maximize
sensitivity to particular chirp-mass systems [45], and thus
run the search in Nconfig ¼ 129 configurations. Each
configuration corresponds to creating NPM ¼ Tobs=TPM

peak maps and running the generalized frequency
Hough on each one.
Candidates and follow-up: We analyze data from LLO

and LHO separately, and select strong “candidates,” par-
ticular z0 and k values, whose number counts in the Hough
map are high with respect to those in nearby z0 − k pixels,
and find ∼107 coincident candidates. A “coincidence”
occurs if the Pythagorean distance between the returned

z0 and k of candidates from each detector are within 3 bins
[46] at the same t0 [45]. For each candidate, we calculate the
critical ratio CR, our detection statistic: CR ¼ ½ðm − μÞ=σ�,
wherem is the number count of each candidate in the Hough
map, and μ and σ are the mean and standard deviation,
respectively, of the number counts in different squares of the
Hough map [45].
We define a configuration-dependent threshold CR [45]

above which we decide candidates are “significant.” We
determine if the remaining 7457 candidates are real by
returning to hðtÞ and correcting the data for the phase
evolution of these candidates, a process called “heterodyn-
ing” [45,67]. If the candidate parameters match the
signal parameters in the data, heterodyning results in a
monochromatic signal, allowing us to take a longer TFFT,
which leads to a larger CR. No candidate survived
heterodyning.
Upper limits—Constraints on rate density: We compute

upper limits using a hybrid theoretical or data-driven
approach that has been verified through injections [45].
The sensitivity of the generalized frequency Hough search
towards inspiraling binary systems has been computed in
[47] in terms of the maximum distance reach dmax at
confidence level Γ ¼ 0.95:

dmax ¼
�
GM
c2

�
5=3

�
π

c

�
2=3 TFFTffiffiffiffiffiffiffiffiffi

TPM
p

�XN
x

f4=3gw;x

Snðfgw;xÞ
�1=2

×

�
p0ð1 − p0Þ

Np2
1

�
−1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θthr

ðCR −
ffiffiffi
2

p
erfc−1ð2ΓÞÞ

s
: ð4Þ

Here, p0 ¼ e−θthr − e−2θthr þ 1
3
e−3θthr is the probability of

selecting a peak above θthr, p1 ¼ e−θthr − 2e−2θthr þ e−3θthr ,
N ¼ TPM=TFFT, and Sn is the averaged LHO/LLO noise
PSD in O3a, given in [45]. x indicates the sum over the

FIG. 2. Left: the chirp mass range probed in our search as a function of f0. The shape results becausewe analyze only systems that could
be detected at least 0.1 kpc away at 95% confidence. Right: TPM as a function of frequency range analyzed in this search. TFFT ∈ ½2; 29� s.
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theoretical frequency track for a system with chirp mass M
and starting frequency fgw;x¼0.
Even though each configuration was constructed to be

sensitive to a particularM and f0 [45], we can actually probe
a wide range of chirp masses and starting frequencies in each
Houghmap.Within a given Houghmap j (j∈ ½1; NPM�) for a
particular configuration i (i∈ ½1; Nconfig�), all coincident
candidates selected with a chirp mass Mk and starting
frequency fl are assigned a critical ratio (CRi;j;k;l). Using
the Feldman-Cousins approach to set upper limits, which
ensures perfect coverage at a given confidence level, CRi;j;k;l

is mapped to an “inferred” positive-definite CR based on the
upper value of Table 10 in [68] at 95% confidence. This
approach produces consistent limits compared to those obta-
ined by injecting simulated signals in real data [45,46,69,70].
Because CRi;j;k;l is found for LHO and LLO separately, we
conservatively use the maximum of the two in Eq. (4) after
applying the Feldman-Cousins approach.
Thus, we compute a distance reach di;j;k;l for all 107

candidates returned from the first step of the search.We then
select ∼100 chirp masses Ms that cover the searched
parameter space at which we set upper limits, and, at each
Ms, in each configuration, take the median of the distance
reaches over all frequencies and Hough maps (i.e., over
Tobs): di;s ¼ medianj;lðdi;k¼s;j;lÞ. Essentially, our procedure
corresponds to themedian sensitivity of the search over time.
We then have one distance reach per configuration per

Ms. Some configurations will be more sensitive than
others to certain chirp masses, though they search over-
lapping chirp-mass ranges; therefore, we take the maxi-
mum distance for each chirp mass as the upper limit,
i.e., ds ¼ maxiðdi;sÞ ¼ dmax;95%ðMsÞ.

We then compute the spacetime volume hVTi of nearby
PBH binaries and their rate density R95% [49,71,72]

hVTi ¼ 4

3
πd3max;95%Tobs; ð5Þ

R95% ¼ 3.0
hVTi ; ð6Þ

where Tobs ¼ 126 days (adjusted for the detector duty
cycle of 70%).
The upper limits on dmax;95% and R95% are shown in

Figs. 3 and 4 for the equal-mass and asymmetric mass-ratio
cases, respectively. Note that these figures look different
because we only place limits when we can ensure that the
0PN waveform does not differ by more than one frequency
bin from the 3.5 PNwaveform during TPM [45]. This makes
asymmetric mass ratio systems harder to constrain than
equal-mass ones, since the mass ratio enters at 1 PN [49].
Constraints on primordial black holes: To specialize

our results to PBHs, we use the formulas from [73,74] for
the cosmological merger rates that assume a purely
Poissonian PBH spatial separation at formation, given by

Rcos
prim ≈ 1.6 × 10−12 kpc−3 yr−1 fsupf

53=37
PBH fðm1Þfðm2Þ

×

�
m1 þm2

M⊙

�
−32=37

�
m1m2

ðm1 þm2Þ2
�
−34=37

; ð7Þ

which correspond to the rate per unit of logarithmic mass of
the two binary black hole components m1 and m2. fðmÞ is
the mass distribution function of PBHs normalized to one,
and fsup accounts for rate suppression due to the gravita-
tional influence of early forming PBH clusters, nearby

FIG. 3. For equal-mass binaries, upper limits on f̃ (left y axis), the merger rate density (right y axis), and maximum distance reach
(rightmost y axis) as a function of chirp mass (lower x axis) and PBH mass (upper x axis). Gray-hatched regions denote model-
independent constraints on f̃, distances and rate densities that are excluded by this analysis of O3a LIGO data. Model-dependent limits
on fPBH are shown on the color axis, assuming no rate suppression and a monochromatic mass function. We also include the fractional
error on distance reached in the bottom subplot.
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PBHs and matter inhomogeneities [73]. As in [47], we
calculate the expected merging rates locally by assuming a
constant local DM density of ∼1016M⊙ Mpc−3 [75] con-
sistent with the galactic DM profile. In this way, we obtain
R ¼ 3.3 × 105Rcos

prim [69].
Values for fsup vary depending on how wide the mass

function is, how high the mass ratio and eccentricity of the
binary are, and whether external tidal fields affect binary
evolution [29,73,74,76,77]. We therefore provide limits on
an effective parameter f̃, defined to be model agnostic:

f̃53=37 ≡ fsupfðm1Þfðm2Þf53=37PBH : ð8Þ
First, we constrain equal-mass PBHmerger rate densities

and denote this mass mPBH, for which

R ¼ 1.04 × 10−6 kpc−3 yr−1
�
mPBH

M⊙

�
−32=37

f̃53=37equal : ð9Þ

Upper limits on f̃ are shown in Fig. 3, which are the first to
probe f̃ < 1. We also provide constraints on fPBH assuming
a monochromatic mass function and no rate suppression,
which is below 1 for mPBH ≳ 2 × 10−3M⊙.
We can also place constraints on systems with highly

asymmetric mass ratios, assuming negligible eccentricity,
for which formation rates are larger by several orders of
magnitude. Since PBHs are well motivated by observations
of merging black holes in the stellar-mass range, we
consider the merging rate densities of systems with m1 ¼
2.5M⊙ [18,19,29], and m2 ≪ m1:

R ¼ 5.28 × 10−7 kpc−3 yr−1
�
m1

M⊙

�
−32=37

×

�
m2

m1

�
−34=37

f̃53=37asymm; ð10Þ

and constrain f̃asymm as a function of m2 in Fig. 4.

To constrain fðm2Þ, we assume that the mass function is
dominated bym1, i.e., fðm1Þ ≈ 1, which would be expected
for broad mass functions affected by the QCD transition,
implying f̃ ¼ fPBH½fðm2Þ�37=53f37=53sup . If we assume a
model in which fPBH ¼ 0.1 and fsup ¼ 1, we can translate
these limits to constrain fðm2Þ, which are also shown in
Fig. 4.We see exclusions (fðm2Þ < 1) whenm2 ≥ 10−5M⊙.
Conclusions—We presented results from the first-ever

search for GWs from inspiraling planetary-mass PBH
binaries. Depending on the chirp mass, we could detect
binary PBHs that formed between [0.1,100] kpc away.
Furthermore, we show that fPBH < 0.1 for equal-mass
PBH binaries withmPBH ∼ ½5 × 10−3; 2 × 10−2�M⊙, assum-
ing no rate suppression and monochromatic mass functions.
For asymmetric mass ratio systems, we constrain fðm2Þ <
0.1 if m1 ¼ 2.5M⊙ and m2 ≳ 1.5 × 10−5M⊙, assuming
fPBH ¼ 0.1. These limits are conservative with respect to
those obtained with injections [45]. Furthermore, a major
benefit of our formulation of upper limits is that they can be
applied to any exotic compact object formationmodels, e.g.,
strange quark star inspirals [78], or a PBH inspiral inside a
compact object [79].
However, our results neglect eccentricity of the binary,

which could induce changes in the waveform, meaning that
we would need to modify our method, or instead employ a
model-agnostic one [49]. Furthermore, our limits on fPBH
and fðm2Þ should be reevaluated if non-Poissonian cluster-
ing, e.g., from primordial non-Gaussianity in the initial
curvature distribution, occurs. Our work motivates future
searches of planetary- and asteroid-mass PBH binaries, and
our results will continue to improve when new data become
available.
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