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Early matter-dominated eras (EMDEs) are a natural feature arising in many models of the early Universe
and can generate a stochastic gravitational wave background (SGWB) during the transition from an EMDE
to the radiation-dominated universe required by the time of big bang nucleosynthesis. While there are
calculations of the SGWB generated in the linear regime, no detailed study has been made of the nonlinear
regime. We perform the first comprehensive calculation of gravitational wave (GW) production in EMDEs
that are long enough that density contrasts grow to exceed unity, using a hybrid N-body and lattice
simulation to study GW production from both a metastable matter species and the radiation produced in its
decay. We find that nonlinearities significantly enhance GW production up to frequencies at least as large as
the inverse light-crossing time of the largest halos that form prior to reheating. The resulting SGWB is
within future observational reach for curvature perturbations as small as those probed in the cosmic
microwave background, depending on the reheating temperature. Out-of-equilibrium dynamics could
further boost the induced SGWB, while a fully relativistic gravitational treatment is required to resolve the
spectrum at even higher frequencies.
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Introduction—Cosmologically generated gravitational
wave (GW) backgrounds provide a unique opportunity
to study the state of the very early Universe at temperatures
above big bang nucleosynthesis (BBN) and represent
an important new physics target for a number of upcoming
and proposed observatories, such as LISA [1,2], DECIGO
[3,4], BBO [5], μAres [6], pulsar timing with SKA [7], and
others. A notably minimal scenario in which a stochastic
GW background (SGWB) may be generated is through
structure formation during an early matter-dominated era
(EMDE). EMDEs arise in a wide variety of well-motivated
contexts [8], making early structure formation a potentially
powerful probe of the particle physics of postinflationary
reheating [9–24], secluded dark sectors [25–29], and
natural axion dark matter models [30–32]. Observationally,
an EMDE prior to BBN is consistent with all cosmological
observation so long as the return to radiation domination (RD)
occurs at a reheating temperature Teq≳ fewMeV [33,34].
The growth of scalar perturbations during an EMDE

induces stochastic GWs at second order in cosmological
perturbation theory; see Ref. [35] for a review. Provided the
density contrasts δ remain within the perturbative regime,
the induced GW signal can be studied using standard tools
from cosmological perturbation theory. This “linear” GW

spectrum depends quadratically on the amplitude of the
primordial curvature power spectrum As and is maximized
for modes that are horizon size at reheating [36–39]. For
this linear GW spectrum to be observable, either the
metastable species responsible for realizing the EMDE
must undergo faster than exponential decays [39,40] or As
must be significantly enhanced on small scales even in the
most optimistic sensitivity scenarios. For marginally detect-
able As ≳ 10−6, this limits the duration of the EMDE to at
most seven e-folds of scale factor growth before nonlinear
structure forms.
Moreover, it has been suggested that nonlinear dynamics

in the large-δ regime may amplify the GW production to
more readily observable levels [11]. An accurate calcu-
lation of the induced SGWBs produced from nonlinearities
during an EMDE is critical in order to accurately character-
ize the signal associated with this scenario. A recent effort
[41] aimed to simulate and quantify the GW production
from long EMDEs that realize a nonlinear matter density
field prior to decay via an N-body simulation approach. In
this Letter, we present work that builds considerably on this
first calculation. We perform larger simulations that evolve
the metastable decaying matter (DM) species as well as
the radiation it produces via decay with fully consistent
equations of state and background cosmological evolution.
Incorporating the decay radiation (DR) ensures that we
capture not only the details of halo formation during the*Contact author: jwfoster@mit.edu
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EMDE but also the subsequent halo evaporation and
radiation emission during and after the reheating process.
Coupled into our cosmological N-body simulations is a
real-time evaluation of the induced tensor perturbations,
fully accounting for nonrelativistic matter, relativistic
radiation, and scalar potential sources.
Induced tensor perturbations—Tensor perturbations to a

Friedmann-Robertson-Walker metric in conformal
Newtonian gauge can be numerically evolved by

h00ij þ 2Hh0ij −∇2hij ¼ 4STT
ij ; ð1Þ

where primes indicate differentiation with respect to
conformal time, H is the conformal Hubble parameter,
∇2 is the Laplacian evaluated with respect to comoving
coordinates, and STT

ij is the transverse-traceless (TT)
component of a source tensor. The source tensor relevant
for tensor mode production is given by

Sij ¼ 8πGa2T ij − 4Φ∂i∂jΦ − 2∂iΦ∂jΦ; ð2Þ
where T ij is the stress-energy tensor andΦ is the first-order
Bardeen potential [42–44]. The TT component can be
extracted via spectral projection as developed in [45,46].
A key point here is that our source tensor is composed of
quadratic combinations of the scalar potential Φ together
with the full nonlinear stress-energy tensor for both
radiation and matter species.
Tensor modes are continuously sourced during matter

domination, which complicates the identification of the
energy density in propagating GWs during the EMDE
itself. After the EMDE ends, however, the sources decay
and the tensor modes may be taken to be freely propagat-
ing, rendering the identification of the final energy density
in GWs straightforward [44,47,48].
Simulation framework—To evaluate tensor mode pro-

duction following Eq. (1), we must evaluate the gravita-
tional dynamics of DM and DR through an EMDE and
subsequent transition to RD. We do so using a modified
version of the massively parallel code CONCEPT [49].
CONCEPT is capable of both N-body and relativistic fluid
dynamics treatments of matter and radiation with nontrivial
equation of state [50–53]. We note that CONCEPT performs
Newtonian simulations, meaning that the scalar potential
propagates instantaneously, unlike our tensor perturbations,
which propagate merely at c. As a result, our simulations
realize unphysically rapid dynamics at the smallest scales
that must be interpreted carefully.
Using custom-generated initial conditions in the con-

formal Newtonian gauge associated with a long EMDE, we
use CONCEPT to evaluate the gravitational evolution of DM
as a particle species as it simultaneously decays to produce
a DR fluid. We consider an initially scale-invariant spec-
trum of adiabatic perturbations, and study three different
values of the amplitude As of the curvature power spectrum
as described further below. The decay of DM into DR

proceeds at a constant rate Γ ∼Heq. Perturbative analyses
of this system have been done in, e.g., [12,54–56].
The radiation both fully contributes to and experiences

the gravitational dynamics of our simulation; we model it
by assumption as a perfect fluid. This assumption is in line
with the treatment of, e.g., [36–38], and lets us compare
directly to the perturbative calculation of Ref. [38] in the
linear regime.
Our simulations begin at ai ≈ 10−5 in the matter-domi-

nated era, advancing through matter-radiation equality at
aeq ≈ 0.2 and ending deep in the radiation-dominated era at
af ≡ 1. At ai, density contrasts are sufficiently small that
initial conditions can be generated with the Zel’dovich
approximation [57]. Our simulations end late, with a return
to RD realized through an adiabatically evolving particle
mass for the DM and a self-consistently evaluated back-
ground expansion rate, as in [52], together with a real-space
treatment inhomogeneously sourcing the DR following the
DM distribution, which we have implemented here for the
first time. As a result, our simulations capture the effects of
not just the collapse of gravitationally bound DM structures
as studied in [41], but also the GW emission from the
radiation produced in DM decay, which was conjectured to
be the dominant source in the nonlinear regime [11]. As an
illustration of data evolved by our simulation, we present
2D slice plots of DM densities, DR densities, and the scalar
potential in Fig. 1.
Gravitational wave calculation—We calculate GW pro-

duction in the nonlinear EMD-to-RD scenario in real time
as part of our simulations following Eq. (1). Radiation
contributions to the source tensor are calculated directly
from the fluid grids evolved by CONCEPT. Meshes of the
DM energy and momentum densities, which are used to
source the DR, and meshes of the DM stress-energy tensor
elements, which contribute to the source for tensor pertur-
bations, are generated from particle data using a decon-
volved piecewise cubic spline interpolation [58].
Meanwhile, the Bardeen potential is calculated from the
total matter and radiation density in the Newtonian
approximation, which is sufficient as our initial conditions
provide power only to modes that are subhorizon at the
decay time when the GW signal is generated.
We perform simulations in a comoving box with periodic

boundaries. Fluid dynamics are evaluated with a Kurganov-
Tadmor scheme using a second-order forward Runge-Kutta
with a Van Leer flux limiter [59]. We evolve Eq. (1) in
nondissipative special form [60] using a Störmer-Cowell
linear multistep method with a fifth order forward step
and sixth order backward step in predict-evaluate-correct-
evaluate mode [61]. All spatial differentiations are per-
formed spectrally, and our time step satisfies the Courant-
Friedrichs-Lewy condition with Δτ ¼ Δx=20, where Δx is
the comoving lattice scale.
Table I summarizes the simulations considered in this

Letter. Our simulations are specified by a box dimension
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Lbox, a resolution parameterN whereN3 is both the number
of lattice sites for GWevolution and the number of particles,
and As. We summarize our small-scale resolution in terms of
kNyq=kNL, where kNyq is the Nyquist frequency of the mesh
and kNL is the smallest k for which Δ2

k ≥ 1 at matter-
radiation equality. We perform three strongly nonlinear
simulations at As ¼ 5.4 × 10−5, labeled as Slow, Smid,
and Shi in terms of their small-scale resolution, and two
weakly nonlinear simulations at As ¼ 10−5, labeled Wlow
and Wmid. We also perform a simulation (Linear) with
As ¼ 5.4 × 10−13, which does not realize any nonlinearity
within the simulation resolution and enables comparison
with [38]. In Fig. 2, we depict 2D slices of the metric
perturbations hij evaluated from two simulations at aeq.
Results—The total GW energy density is calculated by

ρGW ¼ hh0ijh0iji=ð32πGa2Þ, with associated energy-density
spectrum ΩGW ¼ 1=ρcdρGW=d ln k. We calculate this spec-
trum from the late-time field configuration of the tensor
perturbations in our simulations. In the left-hand panel of
Fig. 2, we present the energy-density spectrum of GWs

generated in our strongly nonlinear simulations. We also
compare our linear simulation to the perturbative calcu-
lation developed in [38], which used approximated fitting
formulas that do not capture the full oscillatory behavior
of the time-evolving scalar metric perturbations that enter
the source for tensor modes. The results of our linear
regime simulation demonstrate relatively good agreement
with the perturbative calculation in peak height, location,
and falloff. In our nonlinear regime simulations, while we
do not find significant enhancement of power at the
reheat-scale peak, the power at smaller scales is consid-
erably enhanced.
One of our main results is that our DR is not an important

source of GW emission in the nonlinear regime. This is
shown in Fig. 2, where simulations with and without
radiation are shown to realize an identical GW spectrum.
On linear scales, our results demonstrate that structure
formation does not result in substantial enhancement of the
GW spectrum over the perturbative prediction. Since we
find that the radiation fluid sourced by small-scale non-
linearities is inefficient at transporting anisotropic small-
scale power to larger scales, the dominant source for GWs
on horizon scales remains the decay of the scalar poten-
tials. Examining Eqs. (1) and (2) reveals that source terms
quadratic in Φ have the effect of transferring power across
scales down to the horizon scale at reheating, where GW
production is efficient. However, in the nonlinear regime,
the growth of overdensities slows, leading to a decrease of
the scalar potential relative to the linear theory prediction.
As a result, matter nonlinearities result in a scale-depen-
dent suppression of scalar potentials and the GWs they
produce relative to the linear-theory prediction, which was
noted by [36].
On the other hand, we observe significant GW emission

at frequencies corresponding to scales that have gone
nonlinear. On these scales, the TT source tensor receives
its dominant contribution from DM. The collapse into

FIG. 1. Left: the density contrast field of DM obtained by meshing particle data at aeq from the Smid simulation. DM clusters, realizing
overdensities that have grown as large as δ ≈ 2300. Middle: the density contrast field of DR, which does not cluster but traces the spatial
distribution of the DM that sources it. In this simulation, we observe overdensities as large as δ ¼ 10. Right: the Newtonian scalar
potential produced by the sum of the DM and DR energy densities.

TABLE I. A summary of the six simulations presented in this
Letter. We provide the box volume measured in terms of the
conformal time at matter-radiation equality, the resolution
parameter N, the choice of As for the scale-invariant initial
curvature perturbation, and the small-scale resolution figure of
merit kNyq=kNL. See text for details.

Simulation name Lbox=τeq N As kNyq=kNL

Linear 3.84 5603 5.4 × 10−13 � � �
Slow 3.84 5603 5.4 × 10−5 11
Smid 0.88 2563 5.4 × 10−5 22
Shi 0.96 5603 5.4 × 10−5 44
Wlow 3.84 8403 1 × 10−5 11
Wmid 0.88 3843 1 × 10−5 22
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gravitationally bound structures generates anisotropic
stress during shell crossing, efficiently sourcing GWs at
frequencies associated with the timescales on which DM
halos evolve.
The GW emission from collapsing halos is dominated by

the largest halos for two reasons. First, the stress energy
associated with a halo is given parametrically by Mhv2h,

whereMh is the mass of the halo and vh ∝ M1=2
h the typical

speed of its constituents. Second, the largest halos are the
latest forming, and so their GW emission is least diluted by
redshifting prior to the return to RD, as discussed in [11,41].
Thus the amplitude of the emitted GW spectrum is set by the
typical mass scale of halos that are collapsing immediately
prior to reheating. Using the Press-Schechter mass function,
we can estimate the typical latest-forming halo mass as well
as the number density of such halos at reheating in terms
of As and Heq. Assuming a collapsing halo contributes to

the GW source tensor in an amount proportional to its
total energy, this simple estimate then predicts that the GW
energy density sourced by collapsing halos should scale
as ΩGW ∝ A7=4

s , independent of Heq (see Supplemental
Material [62]). We observe exactly this scaling in Fig. 3.
However, the frequency spectrum depends on the

dynamical timescale of these halos, which is determined
by their density, not their mass. This density is in turn set by
the background matter density at the time of formation.
Thus the frequency spectrum is determined by the reheating
timescale and is independent of the mass scale Mh. This is
shown in the left-hand panel of Fig. 3. The cutoff we
observe in the small-scale GW power is not physical: as we
see from varying N across Slow, Smid, and Shi, it comes
from the resolution of the simulation.
However, we caution that the Newtonian N-body model

allows collapsing halos to act as coherent sources for

FIG. 2. Left: the spectrum of GW energy density in the Linear simulation and the strongly nonlinear simulation at the three
resolution choices considered in this Letter in light, medium, and dark blue in order of ascending small-scale resolution. In red, we show
the result from an Smid simulation performed without DR, which achieves a GW spectrum identical to that of the Smid simulation that
includes DR. The dashed black line indicates kNL while the gray band indicates frequencies above the light-crossing time of the largest
halos. Right-hand panels: 2D slices of the hyz metric perturbation field evaluated from our Linear and Slow simulations, which use
identical box volume, resolution, and time stepping, differing only in terms of the value of As. Considerably enhanced small-scale
structure can be observed in the Slow simulation, which realizes nonlinear gravitational dynamics within the matter species.

FIG. 3. Left: a comparison of GW spectra between our strongly and weakly nonlinear simulations at equal low and mid resolution of
the small-scale dynamics, demonstrating that the morphology of the GW spectrum is independent of As while its amplitude scales as
A7=4
s . The light (dark) gray band indicates frequencies above the light-crossing time of the largest virialized halos in the strongly

(weakly) nonlinear simulations. The dashed gray line shows the fit of Eq. (3). Right: predictions for the induced GW spectrum from
Eq. (3) for some representative choices of Teq and As, compared to projected observational sensitivities for future GW observatories
obtained from [63–65].
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GWs with frequencies substantially above the halo’s
light-crossing time, and thus for frequencies above the
inverse light-crossing time of the largest halos in our
simulations, the GW spectrum should be interpreted with
care. We expect that, in a more causal treatment, the
power radiated by a halo on scales smaller than its light-
crossing time would be suppressed by the incoherence of
emission across its volume, leading to anMh and therefore
As-dependent cutoff.
Comparing to our highest resolution simulation Shi at k

below its resolution cutoff, we find our late-time GW power
spectrum to be well approximated by the power-law fit,

ΩGWðkÞ ≈ 0.05 × A7=4
s

�
k

Heq

�
3=2

; ð3Þ

with a high-k cutoff at khi ≈ 14Heq=A
1=4
s associated with

the light-crossing time of the largest virialized halos and a
low-k cutoff at klow ≈ 15Heq, which is of order the collapse
time of the latest-collapsing halos. Fitting to Smid realizes
an identical power law index with a ∼10% smaller
amplitude, consistent with the higher resolution simulation
capturing GW production from smaller halos forming at
late times. In Fig. 3, right, we compare this spectrum to
projected observational sensitivities for several different
values of Teq and As: depending on the frequency range,
we find the SGWB from nonlinear EMDEs is potentially
within reach for values of As ≳ 10−9. In the Supplemental
Material, we discuss how the dominant role of the largest,
latest-collaping structures renders this GW signal insensi-
tive to deviations from scale invariance on much smaller
scales [62].
Discussion—Our results provide a conservative and

model-independent lower bound on the SGWB resulting
from structure formation during an EMDE. The SGWB
spectrum that we find reproduces the perturbative predic-
tion on linear scales together with a larger contribution on
nonlinear scales, which is dominated by the collapse of the
largest and latest-forming halos. We thus expect that, for
scale-invariant spectra, the amplitude and location of the
nonlinear peak depend on the properties of the EMDE only
through Teq and kNL, the largest scale to go nonlinear prior
to reheating. Even in our minimal scenario, we find that
SGWBs from early structure formation may be within
observational reach even for primordial curvature pertur-
bations as small as those probed in the cosmic microwave
background (CMB), potentially opening a new window
onto the expansion history of the Universe prior to BBN.
Intriguingly, a large As ∼ 10−3 initial curvature perturbation
spectrum with a low reheat temperature Teq ∼ 10 MeV
produces a SGWB with amplitude and frequencies broadly
similar to the claimed detection by current pulsar arrays
[66–69]. However, a more complete characterization of
the GW spectrum is required before it is possible to assess

the goodness of fit subject to consistency both with
primordial black hole constraints [70] and big bang
nucleosynthesis [33].
In order to reliably predict the GW spectrum on scales

smaller than the light-crossing time of the largest halos, it is
necessary to go beyond the framework utilized here and
perform a fully relativistic simulation of halo formation,
e.g., through the approach of [71]. A more relativistic
treatment would also be necessary to make accurate
predictions in scenarios of observational interest where
the DM decays on a faster-than-Hubble timescale. As a side
benefit, such an approach would also correctly handle the
difference between Φ and Ψ that is generated by aniso-
tropic stress during the process of collapse, although this
effect is subleading.
Finally, we find that as long as the DR can be modeled as

a perfect fluid, radiation sourced by the decay of collapsed
structures does not provide an important source of GWs.
Because anisotropic stress is a leading source for tensor
modes, our treatment of the DR as a perfect fluid at
equilibrium at all times is a conservative assumption, but
one that should be revisited in the future.
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