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In covert target detection, Alice attempts to send optical or microwave probes to determine the presence
or absence of a weakly reflecting target embedded in thermal background radiation within a target region,
while striving to remain undetected by an adversary, Willie, who is co-located with the target and collects
all light that does not return to Alice. We formulate this problem in a realistic setting and derive quantum-
mechanical limits on Alice’s error probability performance in entanglement-assisted target detection for
any fixed level of her detectability by Willie. We demonstrate how Alice can approach this performance
limit using two-mode squeezed vacuum probes in the regime of small to moderate background brightness,
and how such protocols can outperform any conventional approach using Gaussian-distributed coherent
states. In addition, we derive a universal performance bound for nonadversarial quantum illumination
without requiring the passive-signature assumption.
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Alice wishes to interrogate a distant region embedded
in a thermal background for the presence or absence of a
target adversary by probing it with a microwave or optical
beam and monitoring the resulting reflections. Meanwhile,
the adversary, Willie, monitors his thermal background for
statistical deviations from thermal noise, aiming to detect
if Alice is actively probing him. In this cat-and-mouse
game, how can Alice maximize her probability of correctly
detecting Willie while minimizing Willie’s chances of
knowing he is being probed? This question falls under
the domain of covert sensing and naturally arises in the
adversarial arms race between radar and radar detectors [1].
Alice faces a trade-off between performance and covert-

ness. Sending a probe with greater energy relative to the
background can better sense Willie but also risks being
detected. A better idea would be to prepare coherent state
probes fjαig with field amplitude α Gaussianly distributed
in phase space around the origin to perfectly mimic the
statistics of the thermal background, which allows some
chance of detecting Willie while being perfectly covert.
However, what is the ultimate limit of Alice’s performance,
and would moving toward this limit be facilitated by
employing nonclassical light, as is well-known for quantum
illumination (henceforth abbreviated as QI) in nonadver-
sarial settings [2–9]? Indeed, several other covert protocols

have been introduced in the quantum continuous-variable
setting [10–15].
To answer our question, we suppose that Alice wishes to

remain ϵ-covert, i.e., that the probability of Willie detecting
her is at most 1=2þ ϵ. We then ask: What is Alice’s
minimal error probability for detecting Willie? We obtain a
closed-form lower bound on this error probability as a
function of ϵ, the number of available optical modesM, and
levels of loss and noise in the system. We show that two-
mode squeezed vacuum (TMSV) probes can approach this
limit in certain regimes. Comparing TMSV performance
with that of the aforementioned Gaussian-distributed coher-
ent state (GCS) probes, our results show that TMSV probes
enable a reduction in error probability that scales exponen-
tially with M.
To ensure our bounds apply to all adversaries, we

assume Willie can detect any statistical deviation from
the thermal background noise—including those resulting
from using multimode vacuum probes. This involves
dropping the commonly adopted “no passive signature”
(NPS) assumption in quantum illumination [2–9], a mathe-
matically expedient but nonphysical approximation
whereby the background temperature depends in a fine-
tuned manner on whether the target is present or absent so
as to ensure Alice cannot detect Willie using a vacuum
probe. The new techniques we develop for this more
mathematically complex setting have immediate relevance
to general QI, supporting recent interest in dropping the
NPS assumption therein [16–19]. Indeed, our Letter pro-
vides as a natural byproduct the first universal performance
limit for QI without the NPS approximation.
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Problem setup—Target detection is illustrated in Fig. 1.
Alice (A) wishes to detect the absence (h ¼ 0) or presence
(h ¼ 1) of a weakly reflecting target (the two cases being
assumed to be equally likely for simplicity) with reflec-
tance η ≪ 1 [20]. The target is immersed in a thermal
background such that each background mode is in a
thermal state ρthðNBÞ ¼

P∞
n¼0 N

n
B=ðNB þ 1Þnþ1jnihnj

with average photon number NB. Alice controls both the
transmitter and receiver [21], and can prepare M signal
modes. Thus, any covert sensing protocol involves prepar-
ing some incident probe state

jψiIS ¼
X
n

ffiffiffiffi
p

p
njχniIjniS; ð1Þ

where jniS ¼ jn1i1jn2i2 � � � jnMiM is an M-mode number
state of the signal (S) system, fjχniIg are normalized (not
necessarily orthogonal) states of an idler (I) system, and pn
is the probability mass function (PMF) of n. The signal
modes are sent to probe the target region while the idler is
held losslessly. In the return (R) modes, Alice obtains an

h-dependent return-idler state ρðhÞIR that she measures to
make a guess hest for the value of h. Alice’s performance is
given by the error probability PA

e , i.e., the probability
that hest ≠ h.
The adversary, Willie (W), is situated at the target’s

location. He is constrained only by the laws of physics and
can have prior knowledge of which probe Ψ ¼ jψihψ jIS
Alice plans to use. Thus any statistical deviation of the state
intercepted by Willie from the M-mode thermal back-
ground ρthðNBÞ⊗M allows him to achieve an error prob-
ability PW

e that is better than guessing randomly (this
assumes Willie’s prior of being probed is uniform. We
discuss the case of unequal prior probabilities for Willie in
Sec. III.A of the Supplemental Material [22]). Alice’s probe
state is said to be ϵ-covert if

PW
e ≥ 1=2 − ϵ: ð2Þ

We then ask: What is Alice’s minimal error probability PA
e

(as a function of M) when optimized over ϵ-covert probes?
We model the weakly reflecting object by a beam splitter

with reflectance η ≪ 1 [20]. Let âðmÞ
S and âðmÞ

B be annihi-
lation operators of the corresponding signal and back-
ground modes (see Fig. 1). Then

âðmÞ
R ¼

ffiffiffiffiffiffiffi
ηðhÞ

q
âðmÞ
S þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηðhÞ

q
âðmÞ
B ð3Þ

represents the annihilation operator of the mth mode
returning to Alice, where ηð0Þ ¼ 0 and ηð1Þ ¼ η. When

Willie is present (h ¼ 1), he receives the modes âðmÞ
W for

each m ¼ 1;…;M from the other output of the beam
splitter so that

âðmÞ
W ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
âðmÞ
S −

ffiffiffi
η

p
âðmÞ
B : ð4Þ

Thus Alice faces the hypothesis test

H0∶ ρ0 ¼ ðTrSΨÞ ⊗ ρthðNBÞ⊗M;

H1∶ ρ1 ¼
�
idI ⊗ L⊗M

η;NB

�
Ψ; ð5Þ

where Lκ;N denotes a thermal loss (or noisy attenuator)
channel of transmittance κ and excess noise N [28].
Meanwhile, Willie faces his own hypothesis test

H0
0∶ σ0 ¼ ρthðNBÞ⊗M;

H0
1∶ σ1 ¼ L⊗M

1−η;NB
ðTrIΨÞ: ð6Þ

to decide whether Alice has sent a probe (H0
1) or not (H

0
0).

FIG. 1. (a) In covert target detection, Alice (A) attempts to detect the presence of the adversary Willie (W) using an ancilla-entangled
probe while remaining undetected herself. In the beam splitter model (b), Alice prepares a joint stateΨwithM signal (S) and idler modes

(I). Each signal mode âðmÞ
S is either replaced by a background mode âðmÞ

B when Willie is absent, or mixed with the background at a beam

splitter with reflectance η ≪ 1 representing the target. Alice makes an optimal measurement on the return modes fâðmÞ
R gMm¼1 along with

the idler system. Willie, when present, makes an optimal measurement on all his modes fâðmÞ
W gMm¼1.
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Assuming that both parties make optimal quantum
measurements and that their hypotheses are equally likely,
their resulting average error probabilities are given by the
Helstrom formula [29]:

PA
e ¼ 1=2 − kρ0 − ρ1k1=4 ≤ inf

0≤s≤1
Tr ρs0ρ

1−s
1 =2; ð7Þ

PW
e ¼ 1=2 − kσ0 − σ1k1=4 ≤ inf

0≤s≤1
Tr σs0σ

1−s
1 =2; ð8Þ

where kXk1 ≔ Tr
ffiffiffiffiffiffiffiffiffi
X†X

p
is the trace norm. We have also

indicated the quantum Chernoff bound [30] that is an
exponentially tight upper bound on the average error
probability.
The above framework deviates in several significant

ways from previous studies of covert target detection [31].
Firstly, our notion of ϵ-covertness defined by way of
Willie’s error probability has clear operational significance.
Previous formulations use relative entropy [31], which
provides no upper bound on the error probability [32]
and cannot therefore be used to derive a performance
limit in our setting. Secondly, our framework fixes the
background brightness at NB regardless of whether a
target is present or absent. In contrast, prior work makes
the NPS assumption which fine-tunes background bright-
ness from its nominal value of NB to NB=ð1 − ηÞwhen the
target is present [33]. Under this assumption, Willie’s null
hypothesis is to receive multimode vacuum states from
Alice [31]. In our setting, Willie, being bathed in thermal
radiation from all directions, receives a thermal state with
the same brightness as the background when Alice is
absent. Thus, Willie’s null hypothesis is based on multi-
mode probes that are statistically identical to the thermal
background.
Dropping the NPS assumption induces new qualitative

behavior in both nonadversarial and covert QI. Alice’s
performance then explicitly depends on the number M of
signal modes, e.g., the available time-bandwidth product
for temporal modes. This is in line with findings for
other quantum sensing and discrimination problems for
which the mode number is an important resource aiding the
performance even when vacuum probes are used [34–37].
For ϵ-covert illumination, we can quantify the performance
of a target detection protocol by defining its Chernoff
exponent χ ≔ −limM→∞ð1=MÞ lnPA

e . A difference Δ in the
exponents of two probes implies a ratio of e−ΔM between
their error probabilities PA

e , which scales exponentially
in M.
Illumination with passive signature—We first derive

analytical bounds on Alice’s performance in the non-
adversarial setting, i.e., for standard QI but without the
NPS approximation. In Sec. II of the Supplemental
Material, we show a more general result: For b∈ f0; 1g,
let states ρb ≔ ðidI ⊗ L⊗M

κb;Nb
ÞΨ be the respective output

states of any two thermal loss channels Lκ0;N0
and Lκ1;N1

in

response to the input Ψ of Eq. (1). Then the output fidelity
F ≔ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0

p
ρ1

ffiffiffiffiffi
ρ0

pp
satisfies

F≥νM
X∞
n¼0

pn

h
ν

ffiffiffiffiffiffiffiffiffi
κ̃0κ̃1

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− κ̃0Þð1− κ̃1Þ

p i
n
; ð9Þ

where ν ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
G0G1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðG0 − 1ÞðG1 − 1Þp Þ−1 and κ̃b ¼
κb=Gb for Gb ¼ ð1 − κbÞNb þ 1. For target detection, we
set κ0 ¼ 0, κ1 ¼ η, N0 ¼ N1 ¼ NB and use the Fuchs-van
de Graaf inequality [38] to conclude that

PA
e ≥

1

2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2M

�X∞
n¼0

pnð1 − γη;NB
Þn2
�
2

s #

≥
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2Mð1 − γη;NB

ÞN S

q �
; ð10Þ

where γη;NB
¼ fη=½ð1 − ηÞNB þ 1�g, N S ≔

P∞
n¼0 npn is

the total signal energy, and we have used Jensen’s inequal-
ity in the last step. The above result gives the ultimate limit
of Alice’s performance in QI with the passive signature
assumption. It contrasts with the ultimate quantum limits of
NPS QI derived in Ref. [39] [see Eqs. (12)–(13) therein],
which do not include the M-dependent factor ν2M charac-
teristic of the passive signature.
Necessary condition for ϵ-covertness—To incorporate

the covertness constraint, we formulate a necessary con-
dition for ϵ-covertness. Suppose that Alice transmits the
probe Ψ of Eq. (1) with signal energy N S. The Fuchs-van
de Graaf inequality PW

e ≤ Fðσ0; σ1Þ=2 that relates the trace
distance to the fidelity [38] between Willie’s hypothesis
states (6) implies that Fðσ0; σ1Þ ≥ 1–2ϵ is a necessary
condition for ϵ-covertness. In Ref. [22], Sec. III, we use this
to show that

X∞
n¼0

ffiffiffiffiffi
qn

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nþM − 1

n

�
Nn

B

ðNB þ 1ÞnþM

s
≥ 1 − 2ϵ ð11Þ

is a necessary condition for ϵ-covertness, where qn ¼
hnjσ1jniW and fqn ¼

P
n∶n1þ���þnM qng∞n¼0

is the PMF of
the total photon number seen by Willie under H0

1.
Signal energy constraints—The above condition then

implies bounds on the allowed signal energies. Clearly, for
ϵ ¼ 0, an M-mode quantum or classical probe with perfect
covertness must have signal energy N S ¼ MNB to match
perfectly with Willie’s thermal background. For ϵ > 0,
we use Lagrange multipliers to extremize the average
energy

P∞
n¼0 nqn of σ1 under the constraint of Eq. (11),

which then constrains the probe energy N S ¼
½Pn¼0 nqn − ηNB�=ð1 − ηÞ [cf. Eq. (4)]. We find (Fig. 2)
that the probe energy must lie in a bounded region around
MNB that gets smaller as ϵ is reduced—see Ref. [22],
Sec. IV, for details. Curve fitting indicates that the
per-mode probe energy NS ≔ N S=M varies between
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∼NB � A�=
ffiffiffiffiffi
M

p
, where Aþ and A− depend only on η; NB,

and ϵ (see Fig. 2). To maintain covertness, Alice’s per-mode
probe must look progressively more similar to the thermal
background as we increase M. In a significant departure
from standard QI, it no longer makes operational sense to
consider the scaling of Alice’s performance with signal
energy N S. Instead, the key resource is the number of
available optical modes M.
Fundamental limits under ϵ-covertness—The thermal

loss channel L1−η;NB
connecting the modes in S to those in

W [cf. Eq. (6)] admits the decomposition

L1−η;NB
¼ AG ∘Lð1−ηÞ=G ð12Þ

into a quantum-limited amplifier AG of gain G ¼ ηNB þ 1
and a pure-loss channel Lð1−ηÞ=G of transmittance ð1−ηÞ=G
[40]. The right-hand side of the bound of Eq. (10) is
expressed in terms of the probability generating function
(PGF) PSðξÞ of the total photon number in S, defined as
PSðξÞ ≔

P∞
n¼0 pnξ

n evaluated at ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γη;NB

p
. Haus

has developed relations connecting the input and output
photon number PGFs of these single-mode quantum-
limited channels [41]. In Ref. [22], Sec. V, we use the
decomposition (12) to extend these to multimode thermal
loss channels and find the one-to-one mapping between the
photon number PGF of the probe and the PGF PWðξÞ ≔P∞

n¼0 qnξ
n of the total photon number in Willie’s modes

under H0
1. By connecting PWðξÞ to the covertness condition

of Eq. (11), we show in Ref. [22], Sec. VI, that

PA
e ≥

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − 2ϵÞ4f2Mη;NB

q
2

; ð13Þ

where fη;NB
¼ ν½NB þ 1 − ðNB=xÞ�½ηNBð1 − xÞ þ 1�, x ¼

1 − fΘ=η½1þ NBð1 − ΘÞ�g and Θ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞðNB þ 1Þp
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1 − ηÞNB

p �. While this equation looks complex, it
provides a universal, analytical and probe-independent
lower bound for Alice’s error probability for any desired
covertness level ϵ.
Figure 3 compares the lower bound of Eq. (13) to

quantum TMSV and classical GCS probes. For each M,
we consider the M-mode an independently and identically
distributed (IID) TMSV state with per-mode signal
energy NS chosen to be the maximum allowable by the
covertness constraint (see Ref. [22], Sec. VI.C for details).
When limited to classical probes, Alice can generate
GCS probes—coherent states in each signal mode with
amplitude α∈C chosen according to a product circular
Gaussian distribution PðαÞ ¼ ½1=ðπNSÞ�e−jαj2=NS with per-
mode energy identical to the TMSV probe (In this case,
Alice’s measurement can be informed by knowledge of
the amplitude transmitted in each of the M shots). For
NB ¼ 0.2, the large-M error exponent achieved by TMSV
probes was about a factor of 1.37 lower than that of the
bound, with the discrepancy becoming smaller for smaller
NB, along with the gap between the GCS and TMSV
exponents.
Perfect covertness—Consider the special case of perfect

covertness, i.e., ϵ ¼ 0. Among quantum probes, the
M-mode TMSV state with signal brightness NS ¼ NB is
the only viable pure state (modulo unitary transformations
on the idler) quantum probe. Among classical probes, only
the IID GCS probes with NS ¼ NB are possible. To
compare their target detection performance, we calculate
the quantum Chernoff exponents χ (Ref. [22], Sec. I).

FIG. 2. The maximum and minimum allowed per-mode energy
NS for an ϵ-covert probe according to Eq. (11) as a function ofM
with NB ¼ 0.2 and ϵ ¼ 10−3 (solid blue) and ϵ ¼ 10−4 (dashed
blue). Curve fitting produced the estimates NB þ 0.0671=

ffiffiffiffiffi
M

p
and NB − 0.0591=

ffiffiffiffiffi
M

p
for the maximum and minimum energy

curves for ϵ ¼ 10−3. The allowed range of NS for NB ¼ 20,
ϵ ¼ 10−3 is also shown (red). η ¼ 0.01 for all curves.

FIG. 3. The lower bound Eq. (13) (solid) on Alice’s error
probability is compared to that of ϵ-covert TMSV (dashed) and
GCS probes (dash-dotted line) for NB ¼ 0.2 (blue) and NB ¼
0.002 (red). ϵ ¼ 10−3 for both. For large M, the ratio of the error
exponents predicted by the bound (13) and of TMSV probes are
1.37 (for NB ¼ 0.2) and 1.16 (for NB ¼ 0.002) respectively.
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These are very close to the quantum Bhattacharyya
(s ¼ 1=2) exponents, which have the approximate forms

χTMSV≃ ln
�
1−

η

4

�
1−

1

ð2NBþ1Þ2
��

;

χGCS≃ ln

�
1−2ηNB

�
NB−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBðNBþ1Þ

p
þ1

2

��
: ð14Þ

The results are compared in Fig. 4. When NB is small, the
requirement NS ≪ 1 for quantum advantage in target
detection (similar to NPS QI [2,39]) aligns with covertness
requirements (NS ≃ NB). However, this advantage is small
since GCS probes of the same NS have identical covertness
and near-identical detection performance. When NB ≫ 1,
requirements for optimal detection advantage (NS ≪ 1)
conflict with that of covertness (NS ≈ NB). Thus, we
anticipate the maximum advantage at some intermediate
value of NB. This turns out to be NB ∼ 0.2with a maximum
ratio of ≃1.45. For NB ¼ 0.575 and M ¼ 106 (current
technology already reaches M ∼ 106 [5]), TMSV probes
offer a ∼10237-fold reduction in error probability.
Discussion—We introduced an operational framework

for covert quantum target detection: Alice wishes to
minimize her error probability in detecting an adversary
Willie in thermal noise, subject to an ϵ-covertness con-
straint and assuming Willie can detect any deviation from
the thermal background. Our lower bound (13) is a
fundamental limit on an ϵ-covert Alice’s performance.
As indicated in Fig. 3, the lower bound can be approx-
imately achieved using a TMSV in the optical regime of
NB ≪ 1, with the maximum advantage over the Gaussian-
distributed coherent states being obtained forNB ≃ 0.2. The

achievable quantum advantage—measured by the factor by
which entangled probes can reduce error probabilities—
scales exponentially with the number of optimal modes M.
There are multiple directions for continuation. Our

choice of TMSV probes was motivated by their exper-
imental accessibility and demonstrated near optimality for
NB ≪ 1. Are they also near-optimal for general NB?
(cf. numerical studies for standard QI [42]). Meanwhile,
the optimality of the GCS scheme among all classical
methods remains a conjecture for general ϵ-covertness (it is
clearly true for ϵ ¼ 0). Toward practical realization, we will
also need to understand how such quantum advantage
can be accessed using linear-optics-based measurements,
mirroring similar studies in standard QI [43]). Meanwhile,
scenarios where Willie has further practical constraints
(e.g., he cannot collect all the modes that do not return
to Alice after reflection at the target), will be of great
relevance in more downstream use cases. Beyond covert
sensing, the regime of validity of the no passive signature
approximation is a topic of ongoing study in nonadversarial
target detection [16–19], where our analytical bound (10)
will certainly be relevant.
Beyond target detection, suitable modification of

Willie’s hypothesis test and Alice’s performance metric
could enable applying our techniques to other sensing
problems where passive signature is present. In particular,
our fidelity-based approach encompasses all ϵ-covert
probes without further assumptions on, e.g., their pho-
ton number variance [13,14], and may yield explicit
M-dependent performance bounds for protocols such as
covert phase and transmittance sensing [13–15]. Finally,
our fidelity bounds of Eqs. (9) on the outputs of thermal loss
channels should be useful for obtaining fundamental perfor-
mance bounds for schemes such as quantum reading [44],
pattern recognition [45], and channel position finding [46,47].
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