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We introduce the domain wall color code, a new variant of the quantum error-correcting color code that
exhibits exceptionally high code-capacity error thresholds for qubits subject to biased noise. In the infinite
bias regime, a two-dimensional color code decouples into a series of repetition codes, resulting in an error-
correcting threshold of 50%. Interestingly, at finite bias, our color code demonstrates thresholds identical to
those of the noise-tailored XZZX surface code for all single-qubit Pauli noise channels. The design
principle of the code is that it introduces domain walls which permute the code’s excitations upon domain
crossing. For practical implementation, we supplement the domain wall code with a scalable restriction
decoder based on a matching algorithm. The proposed code is identified as a comparably resource-efficient
quantum error-correcting code highly suitable for realistic noise.
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Quantum computers hold the promise to solve certain
classes of computational problems with exponential speed-
ups over the best known classical algorithms [1]. To enable
large-scale quantum computations, information must be
stored and processed in a nearly noiseless fashion.
However, all components of the quantum computer, includ-
ing physical qubits, gate operations, and measurements, are
inevitably prone to errors. Fragile quantum information can
be protected by countering errors with quantum error-
correcting codes (QECCs), albeit at substantial resource
overheads [2–5]. Such codes turn a collection of noisy,
physical qubits into a more robust logical qubit by
redundantly encoding information in a nonlocal way.
Provided the physical qubit noise is below a certain
threshold, the logical error rate can be made arbitrarily
small by increasing the number of physical qubits in the
code [6,7]. The challenge of practical error correction is to
design codes that admit sufficiently high error thresholds
and use a reasonable number of physical qubits to achieve
the desired logical failure rates. Optimizing these figures of
merit has been the core subject of research in the field of
quantum error correction.
Among the diverse range of QECCs, topological surface

[8–11] and color codes [12–15] are of special interest for
practical purposes since they require only geometrically
local operations on a two-dimensional qubit layout and

exhibit remarkable abilities to protect quantum informa-
tion. The color code is especially appealing as it supports
the transversal implementation of the full Clifford gate
set [12,16,17], such that single-qubit errors do not propa-
gate to the remaining qubits of the code when logical gates
are executed [18,19]. Furthermore, the three-dimensional
color code supports transversal non-Clifford gates
[15,17,20], which, in conjunction with a technique called
code switching [17,21,22], paves the way to a universal set
of fault-tolerant gates. Finally, the color code requires
smaller resource overhead to encode a logical qubit
compared to the surface code of the same distance [23–28].
The ability of a code to detect and correct errors strongly

depends on the structure of noise affecting qubits on the
physical level. Practical error correction strategies have to
be tailored to properties of realistic noise, such as the
common situation where noise is biased towards a diagonal
Pauli channel, e.g., dephasing. Such noise regimes are
common in many hardware architectures, including super-
conducting qubits [29,30], trapped ions [31], and quantum
dots [32]. Certain qubit architectures are purposely
designed to exhibit strong bias in their noise characteristics
[33,34]. The capability of the standard surface and color
codes to correct errors quickly deteriorates for such
asymmetric biased-noise channels. The same asymmetry
can be exploited to fit the error correction strategy [34–39],
resulting in remarkable gains in the code’s efficiency. The
surface code in its so-called XZZX configuration [35]
yields exceptionally high biased-noise thresholds which
can match and even exceed the random-code hashing
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bound. In contrast, the existing noise-tailored version of the
color code—the XYZ code—demonstrates much more
modest improvements, albeit admitting interesting features
such as local decoding [40]. Finding a high-threshold color
code that can compete on par with the XZZX surface code
at realistic noise bias would be a significant milestone in the
design of fault-tolerant architectures.
In this Letter, we introduce a family of color codes

tailored for the efficient correction of biased noise, which
we collectively refer to as domain wall (DW) color codes.
They are obtained by introducing domain walls which
permute the code’s excitations upon DW crossing [25].
Certain instances of these new codes demonstrate strikingly
high code-capacity thresholds, matching those achievable
with the noise-tailored XZZX surface code and exceeding
the random-code hashing bound [41] in the regime of
experimentally relevant noise parameters. In our work, we
extensively explore these superior thresholds. The pro-
posed scheme provides a means to high-threshold logical
qubits and serves as a potential test bed for the experimental
demonstration of the superadditivity of the coherent infor-
mation [1,42–44]. Lastly, we show that various noise-
tailored topological QECC studied so far—such as the
XZZX surface [35] and the XYZ color [40] codes—can be
formulated as instances of DW codes. Our approach hence
unifies previous findings within a single framework.
The color code is a topological QECC formed by a

stabilizer group S acting on physical qubits placed at the
vertices of a trivalent, three-colorable lattice. The 6.6.6

color code is defined on a hexagonal lattice with triangular
boundary conditions, as shown in Fig. 1(a). The stabilizer
group S of the code is generated by operators associated
with the faces of the lattice. Particularly, in the conven-
tional, or the Calderbank-Shor-Steane (CSS), color code
each face supports two stabilizer generators,

Sp;f ¼
Y

v∈ ∂f

Xv and Sd;f ¼
Y

v∈ ∂f

Zv; ð1Þ

which we call primal and dual stabilizers, respectively.
Here, v∈ ∂f denotes all qubits in the support of face f and
Xv, Zv are the corresponding Pauli operators acting on
qubit v. The code subspace is theþ1 eigenvalue eigenspace
of all elements of S. One can verify from Fig. 1(a) that the
code contains one more physical qubit than there are
independent stabilizer generators. This remaining degree
of freedom constitutes a nonlocally encoded logical qubit.
Logical operators on the color-code qubit are nontrivial

strings of single-qubit Paulis which commute with code
stabilizers. Identifying a string of single-qubit X operators
with a logical X̄ operator, a logical Z̄ is derived from it by
replacing X operators of the string with Zs. The correct
anti-commutation relation fX̄; Z̄g ¼ 0 of logical operators
is guaranteed due to an odd number of qubits in their
support. Alternative configurations of logical operators can
be constructed by multiplying these strings with code
stabilizers and, due to the CSS structure of the code,
any logical X̄ (Z̄) operator can be implemented as a tensor

(a) (c)

(d)

(b)

FIG. 1. A distance-11 color code in its (a) CSS and (b) X3Z3 configurations. (a) Qubits lie on the vertices of the hexagonal lattice. Each
tile corresponds to a primal and a dual stabilizers of Eq. (1). Logical Pauli operators are tensor products of physical Pauli operators acting
on qubits supported on non-trivial strings that commute with all stabilizers of the code. Logical operators can be deformed by
multiplying them with stabilizers. Two realizations of the logical Z̄ operator are shown with the red and green strings of Pauli Zs.
Similarly, logical X̄ is a product of Pauli Xs supported on the same qubits. Because of the CSS structure of the stabilizers, there exist
many possible logical operators composed of only X or only Z Paulis. (b) The X3Z3 color code. For convenience, we show primal
stabilizers along even diagonals and dual stabilizers along odd diagonals. The stabilizers form domains, where single-qubit Paulis of one
type are measured by stabilizers. The domains are separated by DWs (thin purple lines). Anyons of the same color can be paired by
single-qubit Pauli errors of one type if they lie within the same domain, as in panel (c). In contrast, anyons located in different domains
can only be connected by chains of errors that change their type when cross a DW, as in panel (d). Hence, for the X3Z3 code there is only
one logical X̄ consisting of Pauli-X operators only, as shown with the red string, and one logical Z̄ dual to it. Any other logical operator
will be composed of Paulis of both types, as exemplified with the green logical operator.
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product of single-qubit X (Z) operators. As an example, the
red and green strings of Fig. 1(a) are equivalent up to
multiplication by the primal stabilizers of the code.
Error correction is achieved by measuring stabilizers

throughout the computation. Since stringlike logical oper-
ators commute with all stabilizers, such measurements do
not perturb the encoded information. By combining the
information from stabilizer measurements, collectively
called a syndrome, a correction can be proposed by a
decoding algorithm. The performance of a QECC under an
error model relies on its ability to correctly identify errors
that have occurred on physical qubits and produced an
observed syndrome.
The noise model we consider is independent and

identically distributed across qubits. We characterize the
noise model by a single-qubit error probability p and the
bias η ¼ pZ=ðpX þ pYÞ, with pX ¼ pY and pi for i ¼ X,
Y, Z being the probability of the corresponding error
channel. With this definition, η takes values between ηd ¼
0.5 (depolarizing) and ηph ¼ ∞ (pure dephasing). The
standard surface and color codes of the CSS type achieve
their peak performance for depolarizing noise and become
less efficient when dephasing prevails. To see why, consider
pure dephasing noise. Since all the dual stabilizers of
Eq. (1) commute with a phase-flip event, the dual syndrome
indicates no information about the occurred error.
Consequently, the ability of the standard surface and color
codes to correct errors degrades as bias η increases.
A common strategy for improving the error correction

efficiency of a code is to modify its stabilizers by applying
single-qubit Clifford rotations, collectively referred to as a
Clifford deformation of the code [39,45]. As an example,
deforming the CSS surface code to the XZZX configuration
doubles the amount of useful information associated
with the dominant noise, which significantly enhances
error-correcting capabilities of the code [35]. A similar
deformation of the color-code stabilizers maximizes the
information content of the syndrome under biased noise,
resulting in a substantial gain in performance.
Our DW color code is locally equivalent to the conven-

tional color code up to the Hadamard rotations applied to
half of the qubits in the code. The DW code is therefore
reminiscent of the XZZX code derived by applying the
Hadamard rotation to every second qubit of the surface
code [35]. An example of the DW code is shown in
Fig. 1(b). Each stabilizer of weight six measures three
Pauli-X and three Pauli-Z operators. Because of the
structure of its stabilizers, we will refer to this instance
of the DW code as the X3Z3 code. As shown in the figure,
stabilizers of the code naturally form domain walls,
separating regions where one type of Pauli is measured
on each stabilizer sublattice, hence the name DW code.
To understand the advantage of the X3Z3 DW code over

the standard color code, consider the propagation of code
stabilizers flipped by Pauli errors. Flipped stabilizers are

known to obey anyonic statistics [8,14], thus we will refer
to them as anyons for brevity. In the CSS code of Fig. 1(a),
anyons due to Pauli-Z (X) errors can propagate in any
direction within the two-dimensional lattice. Assume for
instance a Z-type anyon, i.e., an anyon created by Pauli-Z
errors in a primal stabilizer. Such an anyon can move freely
in a 2D plane due to subsequent Z errors. Hence, the
number of possible shortest-path logical operators com-
posed of Paulis of one type is highly degenerate. In the
X3Z3 color code, on the other hand, propagation of anyons
under pure Z (or, equivalently, pure X) noise is restricted to
1D domains bounded by the DWs. This is, because the
transmission of anyons through a DW requires anyons to
change type [25,46,47]. Indeed, consider two stabilizers of
the same color partially lying within the same domain, such
as the two red stabilizers of in Fig. 1(c). Strings of single-
qubit errors connecting two such anyons have to be
composed of Paulis of one type. In contrast, strings
connecting two anyons separated by a DW have to be
composed of different Paulis, as in Fig. 1(d). Hence, at
infinite bias, anyons are not permitted to cross DWs since
that would require a Pauli error of a different type. The only
possible logical Z̄ operator that does not cross a DW is
shown with the red string in Fig. 1(b), which is in contrast
to a highly degenerate number of logical operators in the
CSS code. Consequently, the probability of logical errors in
the X3Z3 code is greatly suppressed. Since at infinite bias,
the propagation of anyons is restricted to 1D domains, the
decoding problem reduces to decoding a series of repetition
codes, resulting in a 50% threshold. A detailed proof of this
threshold is provided in Ref. [48].
Clifford transformations similar to the one described

above give rise to an entire family of DW codes. We denote
different instances of the DW codes as DW (κ;ϕ), with the
density of domain walls κ defined as the number of domain
walls nDW per unit distance d,

κ ¼ lim
d→∞

nDW
d

: ð2Þ

The parameter ϕ denotes a clockwise rotation of DWs with
respect to horizontal orientation, and the values it can take
are determined by the symmetries of the code stabilizers.
Using this nomenclature, the X3Z3 code of Fig. 1(b)
corresponds to DWð1; π=6Þ. In DW codes characterized
by κ ≤ 1, the dynamics of anyons at infinite bias are
restricted within regions bounded by DWs, similarly to
the case of the X3Z3 code. Such DW codes together with
the XZZX code belong to a category of so-called lineon
codes, i.e., codes whose anyon dynamics is restricted to
quasi-1D manifolds. We will refer to DW codes with κ ¼ 1
as the dense codes and κ < 1 as the underdense codes, with
κ ¼ 0 being the CSS code. In contrast, in codes charac-
terized by κ > 1, DWs are placed so close to each other that
anyons can propagate both along and across domains even
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at infinite bias. Anyon dynamics are hence not restricted to
one-dimensional manifolds. We will refer to such DW
codes as overdense codes, with a particularly notable
example being the XYZ [40,48] color code. Anyonic
excitations in such codes propagate isotropically in
two dimensions, giving rise to a type-II fracton syndrome.
Here, we focus on the properties of the dense X3Z3 code
and present various alternative instances of DW codes
in Ref. [48].
We numerically investigate the properties of DW codes

under biased noise by performing comprehensive
Monte Carlo simulations [52,53]. For decoding, we adapt
the approximate maximum-likelihood decoder [36,54] and
assume perfect stabilizer measurements [55]. Figure 2(a)
shows the calculated code-capacity thresholds of the X3Z3

code at different noise biases η. Interestingly, we find that
for any bias, the threshold of the X3Z3 color code perfectly
matches that of the surface XZZX code and violates the

zero-rate hashing bound of random codes in the strong-bias
regime. This observation might imply the existence of a
more general theoretical upper bound that holds for non-
CSS codes. We note that the hexagonal XYZ2 code of
Ref. [58] under biased noise exhibits a code-capacity
threshold identical to those of the XZZX and X3Z3 codes,
which further motivates research on what is achievable with
non-CSS codes.
Below the threshold, the logical failure rates pL of the

X3Z3 and the square-shaped XZZX codes demonstrate
qualitatively similar scaling with the number of qubits,

logpL ∝ −d ∝ −
ffiffiffiffiffiffi
Nq

p
; ð3Þ

where Nq is the number of qubits in the code. However, we
observe the X3Z3 code to be more resource-efficient than its
surface-code counterpart, as shown in Fig. 2(b). There, we
also provide a version of the X3Z3 code on a periodic
hexagonal lattice with co-prime dimensions. We prove
analytically the remarkable property of such a code at high
bias: the logical failure rate scales as

logpL ∝ −d2 ∝ −Nq; ð4Þ

similarly to the case of the co-prime XZZX code [35].
Translating the high thresholds of Fig. 2(a) into practice

requires a scalable decoder, such as a commonly used
one based on the matching algorithm [59–61]. To this end,
we adopted a matching-based restriction decoder of
Refs. [62,63] to the X3Z3 code. As we show in Ref. [48],
error thresholds derived with the restriction decoder mono-
tonically increase with the noise bias, however, are notice-
ably below the optimal thresholds, which we attribute to a
nonoptimal decoding algorithm. Further improvements
may be possible using more advanced versions of a
matching decoder, such as the Möbius-strip decoder of
Ref. [64]. We leave the question of designing optimized
scalable decoders as well as fault-tolerant threshold calcu-
lations outside of the scope of this work.
Quantum error-correcting color codes are known to be

more versatile than surface codes when it comes to fault-
tolerant gates. Their thresholds, on the other hand, are
conventionally believed to be lower than those of the
surface codes for noise models other than depolarization.
In this work, we have shown that the color code with a
minor modification in fact demonstrates thresholds match-
ing those achievable with tailored surface codes when
qubits are subject to biased noise ubiquitous in many
physical architectures. Practically, those high thresholds,
accompanied by comparably resource-efficient scaling of
the logical failure rate and transversality of the full Clifford
gate set make the noise-tailored color codes an efficient
quantum error-correcting scheme highly suitable for
realistic noise.

FIG. 2. (a) Code-capacity thresholds of the X3Z3 color (blue
solid line) and the XZZX surface (thick salmon line) codes versus
noise bias. For comparison, we also present the hashing bound
(black dash-dotted line) and thresholds of the standard CSS
surface (green diamonds) and color (purple squares) codes
derived in Ref. [36]. All curves are fitted using quadratic splines
for a better visual appearance. For the X3Z3 code, the calculated
threshold values are shown explicitly with blue dots. (b) Sub-
threshold logical error rates of the X3Z3 DW code (blue circles)
and the rotated squared-shape XZZX code (red squares) calcu-
lated at bias η ¼ 50 and single-qubit error probability p ¼ 25%.
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In this work, we have considered only the simplest color
code with a hexagonal layout of physical qubits. Clifford
deformation into a DW-type code can be directly imple-
mented in alternative color-code configurations. As such, a
few examples of 4.8.8 DW color codes are presented in
Ref. [48]. In the future, it will be important to determine the
thresholds of such codes, as they typically require fewer
qubits to achieve the desired failure rates and support a
more diverse variety of physically distinct DW configura-
tions due to higher-weight stabilizers. A more fundamental
question is whether it is possible to impose a domain-wall
structure on 3D color codes, i.e., to find a Clifford
deformation that restricts propagation of anyons to
lower-dimensional manifolds. The first adaptation of 3D
topological codes to biased noise has very recently been
reported in Ref. [65]. Such noise-tailored 3D codes, in
conjunction with fault-tolerant code switching between the
color codes of different dimensions, allows for transversal
implementation of non-Clifford operations. Furthermore,
the DW color code can be conjugated with the standard
techniques for topological codes, such as magic state
distillation [21,66] and entangling gates via lattice surgery
[24,67,68], paving the way to a universal set of fault-
tolerant gates. Combined with bias-preserving entangling
gates [33,34,69,70], the logical qubit based on the DW
color code becomes a promising candidate for the basic
element of a universal quantum computer. On a higher
level, this work reinforces the understanding that concepts
from mathematical condensed matter physics are highly
valuable in devising practical schemes for topological
quantum error correction.
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