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From correlations in measurement outcomes alone, can two otherwise isolated parties establish whether
such correlations are atemporal? That is, can they rule out that they have been given the same system at two
different times? Classical statistics says no, yet quantum theory disagrees. Here, we introduce the necessary
and sufficient conditions by which such quantum correlations can be identified as atemporal. We
demonstrate the asymmetry of atemporality under time reversal and reveal it to be a measure of spatial
quantum correlation distinct from entanglement. Our results indicate that certain quantum correlations
possess an intrinsic arrow of time and enable classification of general quantum correlations across space-
time based on their (in)compatibility with various underlying causal structures.

DOI: 10.1103/PhysRevLett.133.110202

Consider Alice and Bob, situated in their own labora-
tories. In each round, they each receive correlated random
variables A and B. The correlations were distributed via one
of three possible causal mechanisms: (i) spatially such that
A and B share a common cause, (ii) temporally such that
measurement outcomes of A are communicated to B or vice
versa, and (iii) some combination of the above (see Fig. 1).
Alice and Bob record these correlations. With only this
recording, can we rule out one of the causal mechanisms
above? Classical statistics says no. The observed correla-
tions will always be compatible with all possible scenarios.
Thus the adage “correlation does not imply causation.”
Quantum correlations can exhibit remarkable differences.

Suppose Alice and Bob each receive a single qubit each
round, which they then measure in some Pauli basis. The
correlations between their measurement outcomes can lie
outside what a density operator describes. Such “aspatial
correlations” cannot be explainedpurely by a commoncause
[see Fig. 1(a)], leading to quantum correlations that can
indeed imply causation [4,5]. There is thus significant
interest in quantum causal inference [4–11] due to its stark
departure from classical statistics.

Here we ask, do certain quantum correlations require a
common cause? We answer in the affirmative by formal-
izing the notion of “atemporal” quantum correlations—
correlations between Alice and Bob’s qubit measurements
that cannot be explained by purely temporal means [i.e., as
two measurements on a qubit communicated by some
quantum channel between Alice and Bob; see Fig. 1(b)].
We demonstrate computable necessary and sufficient
indicators for atemporality and demonstrate that (1) it is

FIG. 1. Causal distribution mechanisms. Consider Alice and
Bob that make respective projective measurements MA and MB
on respective quantum systems A and B (blue boxes). We divide
potential mechanisms of correlating these measurements into
three categories: (a) purely spatially distributed mechanisms
involving A and B being two aims of some bipartite state ρAB,
reflecting the case of common cause; (b) purely temporally
distributed such that A and B represent the input and output of
some quantum channel E, reflecting the case of direct cause; or
(c) some combination of both. Examples include non-Markovian
evolution [1,2] or cases of indefinite causal order [3]. We refer to
correlations that are incompatible with (a) as aspatial and those
incompatible with (b) as atemporal.
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asymmetric under time reversal and thus reveals the
existence of correlations possessing an intrinsic arrow of
time, and (2) it represents a new operational form of
nonclassical correlations distinct from entanglement.
This induces a framework for “causal classification”—
classifying general spatiotemporal quantum correlations
based on their compatibility with various causal mecha-
nisms. Our results thus provide new mathematical tools and
concepts for understanding how quantum correlations can
infer causal structure in ways without classical analogs.
Framework—Returning to Alice and Bob in their own

laboratories, we label the qubits Alice and Bob each
possess respectively by A and B. We assume that the qubit
pair is prepared in the same way in each round. Such a
preparation scheme may be (i) “spatially distributed” such
that A and B correspond to two parts of some bipartite state
ρAB [see Fig. 1(a)], (ii) “temporally distributed” such that B
is the output of A subject to some fixed quantum channel
(completely positive trace-preserving map) E or vice versa
[see Fig. 1(b)], or (iii) neither purely spatially nor tempo-
rally distributed such A and B are related by general
“process matrices” [see Fig. 1(c)]. A special case being
“non-Markovianity,” where evolution from A to B involves
coupling from an ancillary environment E that is initially
correlated with A [1,2,12].
Let σ0 ¼ I, σ1 ¼ X, σ2 ¼ Y, σ3 ¼ Z be the identity and

the three standard Pauli operators [13]. Let Prðx; yja; bÞ then
denote the probability of Alice getting outcome x and Bob
getting outcome ywhenAlice chooses tomeasure in basis σa
and Bob in σb. Alice and Bob do not perform any other
interventions. By choosing appropriate Pauli measurements
over a large number of rounds, Alice and Bob can deter-
mine the expectation values hσa;σbi¼

P
x;y xyPrðx;yja;bÞ

describing how their measurement outcomes correlate in
various Pauli basis to any desired level of accuracy. Alice
and Bob then pass this information to us. What can we
conclude about the causal distribution mechanisms behind
the preparation of A and B?
Given Pauli correlations hσa; σbi for each a; b ∈

f0; 1; 2; 3g, Ref. [5] proposed a concise description of
this information via the pseudodensity operator (PDO)

RAB ≡ X3
a;b¼0

hσa; σbi
4

σa ⊗ σb: ð1Þ

Initially proposed to identify quantum correlations that
imply causality, it has seen significant uses toward building
quantum information theories that place space and time on
equal footing [9,14–23]. They contain all the information
about hσa; σbi, since the latter can be retrieved directly via
hσa; σbi ¼ tr½RABðσa ⊗ σbÞ�. Thus, our capacity to infer
causal distribution mechanisms from the Pauli correlations
coincides with our capacity to infer causal distribution
mechanisms from the corresponding PDO. Also note that
when qubits A and B are spatially distributed, RAB reduces

to a standard density operator. Meanwhile, their marginal
distributions are always positive and describe local meas-
urement statistics for Alice and Bob.
Spatial and temporal compatibility—We introduce two

distinct criteria on PDOs. We say that RAB is “spatially
compatible,” or belongs to S if its statistics can be
generated via a spatial distribution mechanism [i.e., as in
Fig. 1(a)]. Similarly, we say that RAB is “temporally
compatible,” or belongs to T if its statistics can be
generated via a temporal distribution mechanism [i.e., as
in Fig. 1(b)]. We will often use the terms “spatial” and
“temporal” for brevity, but we stress that they only mean
compatible with a spatially or temporally distributed
structure. PDOs that lie outside of S are referred to as
“aspatial,” and those that lie outside of T are referred to as
“atemporal.”
We then divide the set of all PDOs using a Venn diagram

into four separate classes based on their spatiotemporal
compatibility: those that (a) lie in S and T and are thus
compatible with any distribution mechanism, (b) lie in S
but not T and thus rule out purely temporal distribution
mechanisms, (c) lie in T but not S and thus rule out purely
spatial distribution mechanisms, and (d) lie outside S and
T and cannot be explained by either purely spatial or
temporal distribution schemes but rather rely on a more
complicated combination of spatial and temporal mecha-
nisms. States that lie in (a) behave like classical probability
distributions, and we cannot infer anything conclusive
about their underlying causal distribution mechanism.
Quantum correlations, however, permit PDOs in each of
(b), (c), and (d), where certain causal distribution mech-
anisms can be ruled out (see Fig. 2).

FIG. 2. Venn diagram of all spatiotemporal compatibility. The
set P of observed spatiotemporal quantum correlations (as
described by PDOs) is divided into four mutually exclusive
subsets: (a) S ∩ T represents correlations that are compatible
with purely spatial and purely temporal distribution mechanisms,
(b) S ∩ T c represents correlations that rule out purely temporal
distribution mechanisms, (c) Sc ∩ T represents correlations that
rule out purely spatial distribution mechanisms such as two
coexisting qubits measured separately, and (d) Sc ∩ T c desig-
nates correlations that require a combination of spatial and
temporal distribution mechanisms to explain. Note that unlike
S, T does not form a convex set (see Example 5 in the
Supplemental Material [24]).
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To better understand what PDOs lie within each class, we
need a necessary and sufficient criterion for aspatiality and
atemporality. PDOs were initially introduced to study the
former, with Ref. [5] showing that the negativity of RAB is
necessary and sufficient for aspatiality. Some works also
looked into temporal correlations in some limited scenarios
under additional assumptions, e.g., maximally mixed or full
ranked initial state [4,6,9,17], or unitary evolution [7,8].
We will derive conditions without such assumptions for
when a PDO is atemporal, and thus build a full picture of
spatiotemporal compatibility.
Certifying atemporality—Given RAB, our goal is to

determine identifiers of atemporality that rule out compat-
ibility with temporal distribution mechanisms. Consider
first a “forward atemporality” measure f⃗ that is zero if and
only if RAB has statistics consistent with a temporal
distribution mechanism from A to B, and a “reverse
atemporality” measure f⃖ that is zero if and only if RAB
has statistics consistent with a temporal distribution mecha-
nism from B to A. Together they naturally induce a general
“atemporality” measure f ¼ minðf⃗; f⃖Þ that is zero if and
only if RAB lies in T .
We then introduce “pseudochannels,” a temporal analog

of pseudodensity operators. Recall that the Choi-
Jamiołkowski isomorphism enables us to represent each
qubit channel Λ by a Choi operator [26]

χΛ ≡ ðI ⊗ ΛÞjϕþihϕþj ð2Þ

describing the output state whenΛ is applied to one arm of a
Bell state jϕþi ¼ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ. Here, I denotes

the identity channel. We observe that this output does not
need to be a valid spatial quantum state if Λ is not a valid
quantum channel. More generally, let χΛ be a PDO with
nonzero negativity N ðχΛÞ (absolute sum of its negative
eigenvalues). In such scenarios, Λ remains trace-preserving,
Hermiticity-preserving, and linear but is no longer com-
pletely positive.
This motivates us to define “pseudochannels”: linear

maps that preserve trace and Hermiticity but which can be
non-completely positive. Λ is then a pseudochannel, and
N ðχΛÞ provides a necessary and sufficient indicator of its
“nonphysicality.” Such pseudochannels provide a natural
means to define f⃗ (and thus f⃖ and f). Given RAB, we first
assert that it describes correlations resulting from some
quantum channel Λ⃗ with input system A and output system
B. References [9,27] demonstrated that for temporal PDOs,
the associated quantum channel satisfies

RAB ¼
�
IA ⊗ Λ⃗

�
KAB; ð3Þ

where KAB ≡ fρA ⊗ ðIB=2Þ;SABg with ρA ≡ trBRAB
being the first marginal, f·; ·g the anticommutator, I the
identity operator, and S the swap operator. In more general

cases where RAB is not necessarily a temporal PDO, we
rationalize the following: whenRAB is incompatible with a
temporal distribution mechanism from A to B, no such
valid quantum channels exist. However, we can drop the
complete positivity requirements on Λ⃗. In the Supplemental
Material [24] (see Lemma 1), we prove that any PDO will
have at least one compatible forward pseudochannel. This
allows us to interpret any spatiotemporal correlations as
resulting from a pseudochannel Λ⃗ acting on A to generate B
(see Fig. 3). The minimal nonphysicality of such a channel
then motivates our definition for “forward atemporality”,

f⃗ðRABÞ≡min
Λ⃗

N ðχ Λ⃗Þ; ð4Þ

where the minimization is over all forward pseudochannels
Λ⃗ that are compatible with RAB. Similarly, we define the
“reverse atemporality” f⃖ by interchanging A and B, thus
also defining the overall atemporality f ¼ minðf⃗; f⃖Þ. For
example, the entangled Bell state ð1= ffiffiffi

2
p Þðj01i − j10iÞ has

forward, reverse, and overall atemporality of 0.5 (its
corresponding pseudochannel being the nonphysical uni-
versal-NOT gate [28]). This then leads to one of our key
results.
Result 1—Given spatiotemporal correlations described

by a PDO RAB, let

f⃗ðRABÞ≡min
Λ⃗

N ðχ Λ⃗Þ; ð5Þ

FIG. 3. Choi operator and pseudochannels. (a) The Choi
operator of a quantum channel Λ describes the resulting
state when we apply Λ on one arm of the Bell state
jϕþi≡ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ. (b) In cases where the resulting

correlations RAB between A and B are atemporal, there is no
valid quantum channel from A to B. (c) Nevertheless, we can
identify a pseudochannel Λ that forcibly interprets the dynamics
as a map from A to B. The resulting Λ is nonphysical, which is
reflected by the negativity of its Choi operator. We show that this
negativity is a necessary and sufficient condition for the forward
atemporality of RAB.
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where the minimization is over all forward pseudochannels
Λ⃗ that are compatible with RAB [i.e., those that satisfy
Eq. (3)]. Then f > 0 is a necessary and sufficient condition
for atemporality. Moreover, we have a systematic algorithm
(see below) to compute f⃗ for any RAB.
Observe first f > 0 implies that no physical channel is

compatible with RAB by definition, while existence of a
compatible Λ⃗ (as expressed by their Choi operator) can be
systematically identified as follows: when RAB has full
rank marginals, Λ⃗ is unique and the algorithm that returns
its Choi operator χ is particularly simple (see Algorithm 1).
From this, the forward atemporality can be directly
computed.
When the first marginal ρA is rank-deficient (i.e., some

pure state jϕihϕj), the pseudochannels compatible withRAB
are no longer unique. This is because any such causal
interpretation corresponds to Alice being given a system
in jϕi, such that measured statistics do not contain any
information regarding outputs when Λ acts on a state jϕ⊥i
perpendicular to jϕi. In the Supplemental Material [24], we
generalize the above algorithm to identify all compatible
pseudochannels, and a semidefinite program to find the
minimum nonphysicality among them. Thus, we can sys-
tematically evaluate the forward atemporality f⃗ for all two-
qubit PDOs. InterchangingA andB enables evaluation of the
reverse atemporality f⃖ and thus overall atemporality f.
Properties of atemporality—The computability of atem-

porality offers efficient means to study its properties. Here,
we survey key results (see Supplemental Material [24] for
further details). The first is time-reversal asymmetry.
Unlike classical correlations, certain quantum correlations
admit temporal mechanisms in only one temporal direction.
Result 2—Forward atemporality does not imply reverse

atemporality or vice versa.
Consider a PDO describing a single qubit A undergoing

probabilistic dephasing EðρÞ ≔ pρþ ð1 − pÞZρZ†, the
output of which we label qubit B. Clearly, its forward
atemporality is 0 by construction. However, f⃖ðRABÞ > 0
for all p ≠ 0, 1 (see Example 8 in the Supplemental
Material [24]). Thus, quantum correlations not only can
imply causality as previously suggested [4,5], but can also
only imply causality in a particular temporal direction.

The interplay of temporal and spatial compatibility is
also a natural point of interest. Specifically, let us restrict
ourselves to density operators (i.e., correlations that lie
in S) and let fjejihejjg and fjfjihfjjg be some ortho-
normal basis respectively on A and B. In the Supplemental
Material [24], we show that classical distributions of such
orthogonal states, i.e., of form

P
jk pjkjejihejj ⊗ jfkihfkj

have zero atemporality in either direction—aligning with
the intuition that classical statistics cannot rule out any
causal distribution mechanism without active intervention.
Meanwhile states of the form ρAB ¼ P

j pjjejihejj ⊗ τj,
where τj is an arbitrary state on B (i.e., those with zero
one-way discord [29–31]) has zero forward atemporality.
One might also speculate that entanglement implies

atemporality. Indeed, we show whenever R∈S is pure
or has maximally mixed marginals (see Theorem 3 in the
Supplemental Material [24]), nonzero atemporality coin-
cides with nonzero entanglement. However, this does not
hold in more general conditions.
Result 3—Entanglement does not imply atemporality:

certain entangled states are temporally compatible.
Consider the parametrized family of biasedWerner states

ρBWp;q ≡ ð1 − pÞρWerner
q þ pj00ih00j, achieved by mixing a

standardWerner state ρWerner
q [32]with the state j00ih00j (see

Fig. 4). Here, ρBW0.5;0.25 has zero atemporality, but nonzero
entanglement negativity (≈0.0087) [33]. Nevertheless, suf-
ficiently strong entanglement does guarantee atemporality.
In the Supplemental Material [24] (see Theorem 4 within),
we prove the following.
Result 4—Any temporally compatible two-qubit state

must have entanglement negativity of at most 1
2
ð ffiffiffi

2
p

− 1Þ.
Indeed a scatter plot of atemporality vs entanglement

negativity for 1000 randomly generated density operators
suggests that two concepts are heavily correlated but not
the same—with atemporality looking to be a stronger

Algorithm 1. Choi operator of pseudochannel construction.

Require: 2-qubit PDO RAB

1: ρA ← trBRAB

2: L ← ½ρA − ðI=2Þ� ⊗
trA

��
1
2
ρ−1A ⊗ I

�
RAB

�þ ðI=2Þ ⊗
trA

��ðI − 1
2
ρ−1A Þ ⊗ I

�
RAB

�

3: χ ← ðT ⊗ IÞðRAB −LÞ ▹ T denotes the transpose map

4: return χ

FIG. 4. Entanglement and atemporality. The family of biased
Werner states ρBWp;q ≡ ð1 − pÞρWerner

q þ pj00ih00j illustrates the
differences between entanglement and atemporality. The plot
depicts a color map depicting entanglement and atemporality of
ρBWp;q for various values of p and q. While (i) all separable states
are not atemporal, (ii) there exist entangled states that never-
theless admit temporal distribution mechanisms. Notwithstand-
ing, (iii) most entangled states within the family are atemporal.
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notion of nonclassical correlations than entanglement (see
the Supplemental Material [24]). Thus, we anticipate that
future study of atemporality could well lead to a new and
finer-grained understanding of quantum correlations.
Discussion—Spatiotemporal quantum correlations differ

crucially from classical counterparts in that they can be
fundamentally incompatible with certain underlying causal
distribution mechanisms. In this Letter, we showed that
such correlations between various Pauli measurements on
two qubits A and B can be atemporal, such that their
explanation necessitates some common cause. We provided
a necessary and sufficient indicator of atemporality and a
systematic algorithm to compute it. In studying atempor-
ality, we illustrated (1) the existence of temporal asymme-
try whereby certain correlations admit purely causal
explanations in only one temporal direction and (2) that
atemporality induces a notion of quantum correlations
distinct from entanglement. Combined with prior work
showing quantum correlations can also be aspatial such
that they cannot be purely explained by a common cause,
our results enable a framework to classify quantum
correlations based on their compatibility with spatial and
temporal mechanisms.
This classification opens a number of interesting direc-

tions. Our work here focused on the spatiotemporal corre-
lation between two qubits as it allowed for closed-form
expressions for atemporality; however, the fundamental
concept introduced applies to arbitrary bipartite systems.
Fundamentally, we can define the atemporality of any
correlations between A and B (or vice versa) as how
nonphysical a quantum channel from A and B (or vice
versa)must be to generate the correlations observed. Indeed,
PDOs are well-defined for bipartite systems with n-qubit
partitions [21], while variants extend these ideas to general
d-dimensional or continuous variable systems [34,35]. The
identification of an analog of our Algorithm 1 for finding
(pseudo)channels then provides a natural pathway for
understanding spatiotemporal compatibility on systems of
arbitrary dimensions. Meanwhile, our quantifier of atem-
porality used one particular measure of nonphysicality. This
choice is not unique; other definitions of nonphysical maps
and quantifiers of nonphysicality exist [15,36–48], and thus
we can anticipatemany alternativemeasures of atemporality
akin to what exists for entanglement.
The relation between atemporality and spatial quantum

correlations also yields fascinating insights. We proved
that some forms of quantum correlation are required for
a standard bipartite quantum system to be temporal, and
sufficient entanglement guarantees atemporality. Still, many
open questions remain. Some entangled states are not
atemporal, so is atemporality a strictly stronger notion of
quantum correlations? And if so, is it guaranteed by steering
or Bell nonlocality [49]? We also have no proof that
atemporality guarantees entanglement, and thus could
atemporality persist in more robust forms of quantum

correlations [31]? Whatever the case, atemporality has a
clear operational interpretation and introduces an entirely
new category to the existing hierarchy of quantum correla-
tions. Answering such questions will help us better under-
stand the uniquely quantum incompatibility between spatial
and temporal correlations.
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