
Comment on “Excitation Spectrum and Superfluid Gap
of an Ultracold Fermi Gas”

At zero temperature, as any three-dimensional superfluid
with short-range interactions, a gas of paired fermionic
atoms exhibits an acoustic excitation branch of low wave-
number expansion ωq ¼ cq½1þ ζq2=k2F þOðq4 ln qÞ� with
c the speed of sound and ζ the curvature parameter (scaled
by the Fermi wave number kF). Reference [1] claims to
have experimentally determined whether the branch has a
convex ζ > 0 or concave ζ < 0 start, depending on the
interaction strength. This is crucial information that dictates
the nature of the gas relaxation mechanisms at low temper-
atures (the well studied three-phonon Beliaev-Landau or
the yet unobserved four-phonon Landau-Khalatnikov
mechanism [2,3]). However, in this Comment, we argue
that the high wave numbers q and temperature T used in the
experiment introduce a large bias capable of turning a
convex branch into a concave one, so that further mea-
surements at lower q and T are required to give a definitive
answer.
To fix ideas, we consider the unitary limit 1=kFa ¼ 0

with a the s-wave scattering length, where the interactions
are strongest and no solid argument can predict the sign of
ζ. Theoretically, one has ζ ¼ −π2 ð2ξBÞ1=2 ½c1 þ ð3=2Þc2�
where Bertsch’s parameter gives the chemical potential in
units of the Fermi energy μ ¼ ξBEF and c1;2 quantify
gradient corrections to quantum hydrodynamics [4]. Only
ξB is well known, ξB ≃ 3=8 [5]. The dimensional expansion
in powers of ϵ ¼ 4 − d ¼ 1 gives c1 ≃ −0.0624ð1 −
2ϵ=3Þ þOðϵ2Þ and c2 ¼ Oðϵ2Þ [6], so ζ > 0 to subleading
order. Anderson’s random-phase approximation (RPA),
spectrally equivalent to the Gaussian fluctuations approxi-
mation of [7], also predicts a positive value ζRPA ≃ 0.0838
[8] (for c1 ≃ −0.021 [6] this gives c2 ≃ 0.0073 ≪ jc1j). The
experimental value ζexp ¼ −0.085ð8Þ [1] is negative.
However, assuming that the RPA is correct and that the
branch start is convex, as we will do, actually has no clear
incompatibility with the experiment, because the analysis
in [1] suffers from two serious limitations.
First, the value ζexp, obtained by cubic fitting of ωq [1],

could strongly depend on the fitting interval if too wide. In
the RPA, fitting ωq, e.g., to the interval 0.22 ≤ q=kF ≤ 1.08
of Fig. 1 in [1] gives ζfitRPA ≃ −0.026, which even has the
wrong sign. Since ωRPA

q has an inflection point at q=kF ≃
0.5 [8], the fit blindly mixes convex and concave parts,
which also explains the erroneous (negative) value of ζRPA
in [9].
Second, the high temperature T ≃ 0.13TF ≃ 0.8Tc (Tc is

the superfluid transition temperature) in [1] could modify
the curvature of the acoustic branch by a non-negligible
amount δζϕϕ via interaction with thermal phonons ϕ.
Treating the cubic phonon-phonon couplingHϕϕ

3 to second
order and the quartic coupling Hϕϕ

4 to first order, then

taking the limit kBT=mc2 → 0 (m is the fermion mass),
[10] obtains an expression for the thermal shift of ωq. This
gives δζϕϕ ∼ −½π2=ð3ξBÞ3=2�ðT=TFÞ2, or δζϕϕ ≃ −0.140 at
the experimental temperature. Since the small para-
meter used kBT=mc2 ≃ 0.5 is not ≪ 1, we abandon the
T → 0 limit and add corrective curvature factors ð1�
αq2=k2FÞ to the amplitudes ρq and ϕq of the superfluid
density and phase quantum fluctuations [α ¼ π2ðξB=2Þ1=2
½c1 − ð3=2Þc2� ≃ −0.136 [3] ]. We find δζϕϕ ≃ −0.110, still
negative enough to change the sign of curvature in the RPA.
Furthermore, thermal pair dissociation creates fermionic
quasiparticles γ (another gas excitation branch) that interact
with the phonons. Treating to second order the coupling
Hϕγ

3 and to first order the coupling Hϕγ
4 given in [11] with

curvature factors in ωq, ρq, and ϕq, we find δζϕγ ≃ −0.052.
This is a rough estimate: [11] uses a simple local-density
approximation whose small parameter ðkBT=m�c2Þ1=2 is
≈1 here (we use the γ dispersion relation of [12] with the
effective mass m� ≃ 0.56m and an energy minimum Δ ¼
0.44EF located at wave number k0 ¼ 0.92kF [13]).
Summing the thermal corrections gives ζthRPA ≃ −0.078 to
compare with ζexp ¼ −0.085ð8Þ.
The experiment, at first sight at odds with the RPA, could

therefore very well be in agreement with it due to large
finite-momentum and thermal bias, and the sign of curva-
ture announced in [1] may differ from the zero-temperature
low-momentum one relevant for phonon damping.
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