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Although higher-order interactions are known to affect the typical state of dynamical processes giving
rise to new collective behavior, how they drive the emergence of rare events and fluctuations is still an open
problem. We investigate how fluctuations of a dynamical quantity of a random walk exploring a higher-
order network arise over time. In the quenched case, where the hypergraph structure is fixed, through large
deviation theory we show that the appearance of rare events is hampered in nodes with many higher-order
interactions, and promoted elsewhere. Dynamical fluctuations are further boosted in an annealed scenario,
where both the diffusion process and higher-order interactions evolve in time. Here, extreme fluctuations
generated by optimal higher-order configurations can be predicted in the limit of a saddle-point
approximation. Our study lays the groundwork for a wide and general theory of fluctuations and rare
events in higher-order networks.
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The appearance of fluctuations in dynamical processes is
central in determining the future evolution of many real-
world systems [1]. The emergence of rare events may be
bolstered or hindered by the hosting complex environment,
often conveniently modeled as a complex network [2–4].
Large fluctuations in complex networks have been studied
across a variety of processes, including percolation [5–8],
spreading [9,10], and transport [11–14]. A stream of
research has focused on random walks as a versatile model
of diffusion in discrete spaces [15–19] and on their rare
event properties [20–22]. Large deviation theory has
revealed that low-degree nodes are more susceptible than
hubs to the appearance of atypical loads, possibly leading
to dynamical phase transitions [23–26].
Despite their success, graphs can only provide a

constrained description of real-world systems, as links
are inherently limited to model pairwise interactions only
[27–29]. Yet, from social [30–33] to biological [34–37]
networks, in a wide variety of real-word systems inter-
actions may occur among three or more units at a time.
Interestingly, taking into account higher-order interactions
has shown to lead to new collective phenomena in a variety

of dynamical processes [38], including diffusion [39,40],
contagion [41–43], synchronization [44–48], percola-
tion [49], and evolutionary games [50–52]. While such
studies have focused on characterizing dynamical behavior
at the typical state, understanding fluctuations and rare
events driven by the presence of higher-order interactions is
to this day still an open problem.
To this end, in this work we propose a study of

fluctuations and rare events on higher-order networks using
large-deviation theory tools. We focus on random walks on
higher-order networks and on an observable that monitors
the time the random walker spends in certain regions of the
hypergraph. Our study reveals how fluctuations arise in
time for a random walk on a fixed hypergraph structure
(quenched case), and which higher-order structure is
optimal to achieve them (annealed case). In the quenched
case the density of higher-order interactions regulates
fluctuations of occupation times, which are hampered
around well-connected nodes and enhanced elsewhere.
In the annealed case, where the structure of interactions
is not a priori fixed, the random walk dynamics select the
optimal higher-order structure that maximizes fluctuations
and rare events are boosted.
In the following, we present a computationally easy-to-

handle hypergraph model to introduce a theory of fluctua-
tions for higher-order networks. Our theory and results are
further validated in the Supplemental Material [53] by
means of extensive numerical simulations on a wide variety
of more complex structures with local heterogeneity and
with or without starlike structure, as well as more general
dynamics of biased random walks.
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Model—We consider a hypergraph G ¼ ðV; EÞ, where V
represents the set of nodes, and E ¼ fE1; E2;…; EMg the
set of hyperedges, i.e., Em is an unordered collection of
nodes belonging to the same hyperedge m. We focus in
particular on an illustrative structure consisting of a core
node, labeled 0, connected with peripheral nodes through a
varying number of higher-order connections, labeled by
i∈ f1;…; N − 1g. As shown in Fig. 1, the graph is
composed by jVj ¼ N nodes, a fully connected pairwise
structure, i.e., ðN=2Þ binary edges Eið2N−i−1Þ=2þj ¼ fi; jg
for ði; jÞ∈ ½0; N − 1�2 and i < j, and a number η drawn
from a binomial distribution of parameter p∈ ½0; 1� of
three-body interactions ENðN−1Þ=2þi ¼ f0; i; jg, where i is
an odd node and j − i ¼ 1, i.e., all triangular interactions
are centered in 0. We constrain the higher-order structure so
that each peripheral node can participate in at most one
three-body interaction. As we will show, for this symmetric
model, nonpairwise interactions affect the statistics of the
core occupation time only through their total number η. In
particular, the probability of drawing a hypergraph with a
number of three-body interactions H ¼ η is given by

PðηÞ ≔ PðH ¼ ηÞ ¼
�
N△

η

�
pηð1 − pÞN△−η; ð1Þ

where N△ ¼ ceil½ðN − 2Þ=2� is the maximum number of
possible three-body interactions that the hypergraph
can have.
In summary, G is as an instance of an ensemble of

hypergraphs whose higher-order structure is fully described
by two parameters only, namely, N and p.
We consider on G an n-step discrete-time random walk

X ¼ fXlgnl¼1, where Xl denotes the node where the random

walk sits at time l [40]. The random walk follows
an unbiased dynamics given by the transition matrix
Π ¼ fπijg whose entries are

πij ¼
kHijP
N
l¼1 k

H
il
; ð2Þ

where kHij represents the hyperdegree, i.e., the number of
nodes, excluding i, that are present in the hyperedges that
are common to i and j (see Appendix A for details on how
to derive the transition matrix). As the random walk
explores the graph, it collects information in the form of
the time-additive observable

Tn ¼
1

n

Xn
l¼1

δXl;0; ð3Þ

which measures the fraction of time the random walk has
spent on the core node 0 up to time n. In the limit of
n → ∞, the typical fraction of time Tη;typ the walker
spends in 0 for a number H ¼ η of three-body interactions
reads [40]

Tη;typ ¼
4ηþ N − 1

8ηþ ðN − 1Þ2 : ð4Þ

The higher the number of triangular interactions, the better
connected the core with the periphery of the graph, and the
longer the time the random walk will spend in 0. Having
delineated the typical behavior of the dynamical process,
we now focus on its finite-time fluctuations. We consider
dynamical fluctuations in two different physical scenarios.
First, we study the mean behavior of rare events of Tn over
the ensemble of possible hypergraphs of our model
(quenched case). Then, at the expense of an entropic cost
associated with the logarithm of PðηÞ in (1), we let the
random walk choose the optimal hypergraph that generates
a particular atypical fluctuation of Tn (annealed case).
Results for more complex higher-order topologies, and for
more general dynamics considering random walks biased
on the higher-order structure, are qualitatively consistent
and illustrated in the Supplemental Material [53].
Quenched fluctuations—In the quenched scenario, we

consider averaged fluctuations in static hypergraph struc-
tures with η three-body interactions and investigate how
higher-order network configurations impact the dynamics
of random walks. To do so, we employ large deviation
theory [54–56], making use of the leading scaling behavior
of the probability distribution Pη;nðtÞ ≔ Pη;nðTn ¼ tÞ that
is exponential in time, i.e.,

Pη;nðtÞ ¼ e−nIηðtÞþoðnÞ; ð5Þ

where IηðtÞ is the non-negative large-deviation rate func-
tion containing the relevant information about rare events

FIG. 1. Illustration of our model. Dashed lines represent
pairwise interactions that form the underlying complete graph.
In pink, two higher-order interactions connect the core node 0
with the peripheral nodes (1,2), and (3,4). The random walk’s
dynamics are represented by arrows departing from certain nodes
and pointing towards others, where different thicknesses refer to
different jump probabilities.
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and oðnÞ denotes sublinear corrections in n. Evaluating Iη
directly is often nontrivial, thus we resort to a change of
ensemble to get meaningful information on fluctuations. To
this end, we introduce the scaled cumulant generating
function (SCGF)

ΨηðsÞ ¼ lim
n→∞

1

n
lnGη;nðsÞ ¼ lim

n→∞

1

n
lnE½ensTn �; ð6Þ

which characterizes the leading exponential behavior of the
moment generating function Gη;nðsÞ associated with Tn.
Here, s, the Laplace parameter that enters in the SCGF,
plays the role of the conjugate parameter to Tn. Intuitively,
as much as the inverse temperature in equilibrium statistical
mechanics is connected to the internal energy of a system
through the derivative of the canonical free energy, s is
connected to the observable Tn. When s > 0, Tn will more
likely take values that are larger than the typical value and
vice versa when s < 0. For finite and connected hyper-
graphs,ΨηðsÞ is analytic, and one can calculate IηðtÞ via the
Gärtner–Ellis theorem [54–57] that makes use of the
Legendre–Fenchel (LF) transform

IηðtÞ ¼ sup
s∈R

ðst −ΨηðsÞÞ; ð7Þ

which links the Laplace parameter s with a fluctuation
Tn ¼ t as

t ¼ Ψ0
ηðsÞ: ð8Þ

Because the random walk X is ergodic, the SCGF can be
obtained as

ΨηðsÞ ¼ ln ζs; ð9Þ

where ζs, computed numerically, is the dominant eigen-
value of the so-called tilted matrix

Πs ¼ fðπsÞijg ¼ fπijesδ0;jg: ð10Þ

To account for average properties of the ensemble of
hypergraphs considered, one can take a quenched average
over the disorder—here characterized by the number η of
higher-order interactions—of the functionΨη. Recalling that
H is a binomially distributed random variable with parameter
p and that the maximum number of higher-order interactions
is N△, the quenched average can explicitly be written as

ΨqðsÞ ¼
XN△

η¼0

PðηÞΨηðsÞ; ð11Þ

where “q” stands for quenched [58]. GivenΨqðsÞ in (11), the
quenched rate function IqðtÞ can be obtained via an LF
transform of Ψq (rather than Ψη) in (7).

To understand the role of higher-order interactions, we
first look at whether fluctuations of a given magnitude are
more or less likely to appear on higher-order networks
generated with different values of p. To understand this, we
rescale t in IqðtÞ with the typical fraction of time spent in 0
by the random walk at a fixed parameter p, namely, T typ,
obtained by averaging (4) over PðηÞ. In Fig. 2(a) we plot
the rate functions Iqðt̃ ¼ t=T typÞ (t̃ is the time fraction on
the core node relative to typical time) for different values of
p. Because of the rescaling, all rate functions are 0 at the
typical value t̃ ¼ 1. The likelihood is encoded in the shape
of the rate function branches, the higher (lower) the branch
the exponentially less (more) likely is a fluctuation t̃ ≠ 1 to
appear. We notice that with increasing p the average
number of higher-order interactions pointing to node 0
grows generating a “confinement” effect, which has two
consequences on the dynamics. First, at fixed p, fluctua-
tions are more likely for times greater than the typical time,
making it easier to visit the core node than peripheral
nodes, as revealed by the asymmetric shape of the rate
functions in Fig. 2(a). Moreover, as p increases the
transition towards the core node is favored, and fluctua-
tions, both in excess and in deficit relative to the typical
time, are hampered, as evidenced by the narrowing of the
rate functions with increasing p in Fig. 2(a).
More in detail, in Fig. 2(b) we show how Iq depends both

on the nonrescaled time t and p. We observe that the typical
time increases with p but also that relative time changes are
associated with bigger absolute fluctuations [the level lines
of Iqðp; tÞ are not parallel to T typ]. Moreover, comparing
with the case of a fully pairwise graph (p ¼ 0), on the one
hand we show that the typical behavior at greater p is
atypical for the case p ¼ 0. On the other hand, rare values
of Tn greater than the typical one for the case p ¼ 0 can
become typical just by increasing the number of higher-
order interactions. By contrast, rare values of Tn smaller

(a) (b)

FIG. 2. (a) Rate functions Iqðt̃Þ as a function of the rescaled
time t̃ for different densities of higher-order interactions in the
hypergraph p. The higher the p, the narrower the rate functions
for jt̃j > 1. (b) Heat map representing how the rate function IqðtÞ
behaves as a function of t and p (for visualization purposes we
plot

ffiffiffiffiffi
Iq

p
). The light-blue line represents the typical value T typ

which linearly increases with p. Plots obtained for a hypergraph
with N ¼ 1000 nodes.
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than the typical one become even more atypical by
introducing higher-order interactions.
Annealed fluctuations—We now consider random walks

defined on nonstatic hypergraphs. Such an annealed [59]
scenario is relevant to predict dynamical behaviors in time-
varying systems where the structure evolves at a rate that is
comparable to the timescale of the process on top [60], or in
large systems whose precise characterization is often
limited by lack of data or noise [61]. In particular, we
investigate the annealed fluctuations of the occupation time
observable in (3) over nonfixed realizations of three-body
interactions for the model introduced above. In such a
scenario, large fluctuations of a dynamical observable, such
as Tn, could be generated by an optimal, albeit rare,
realization of the underlying structure.
We consider the joint probability of obtaining a reali-

zation of the higher order structure and the occupation time
in (3), and compute the moment generating function GnðsÞ
associated with the observable Tn with respect to this
probability. We notice that GnðsÞ takes the form of an
annealed average of the moment generating function Gη;n

over the disorder

GnðsÞ ¼
XN△

η¼0

PðηÞGη;nðsÞ; ð12Þ

where we remind the reader that fixing s corresponds to
fixing a fluctuation t (on average) according to (8).
We consider the regime of long times and large graphs,

with the condition n ≫ N△ ≫ 1, and introduce the fraction
of total triangles h ¼ η=N△. The moment generating
function GnðsÞ can be expressed using a saddle point
approximation in ðh; tÞ, i.e.,

GnðsÞ ≈ enðl
−1 logPðh�ÞþΨη� ðsÞÞ; ð13Þ

where we call l ¼ n=N△ the annealing parameter and
indicate the saddle-point solution with ðh�; t�Þ, adopting
the shorthand notation η� ¼ h�N△. In the following, we
focus on the nontrivial exponent of (13):

Ψ̂lðsÞ ≔ l−1 logPðh�Þ þ Ψη� ðsÞ: ð14Þ

We can obtain the annealed SCGF from (14) by taking
the infinite l limit, that is ΨaðsÞ ≔ Ψ̂l→∞ðsÞ. The function
ΨaðsÞ, together with its LF transform IaðtÞ, completely
describes atypical fluctuations of occupation times in the
annealed regime. For large values of l, disorder and
dynamics “interact” at the saddle-point solution of (13)
selecting the most likely structure that realizes the occu-
pation-time fluctuation associated with s. We remark that
(13) is valid as long as l is large [62]. However, since the
disorder is self-averaging, in the limit l → 0 all probability
concentrates around the typical number of higher-order

interactions, recovering the quenched average (11) for a
fixed p.
In Fig. 3(a) we plot Îl for several values of l.

As expected, for small l we retrieve the quenched rate
function Iq (for the parameter p ¼ 0.5 used here) which is
realized by the typical number of higher-order interactions
η� ¼ h�N△ ∼ ceil½N△=2� throughout all fluctuations shown
in Fig. 3(b). As we increase l, the function Îl tends to
flatten, and in the limit l → ∞ the annealed rate function Ia
develops a plateau of zeros [63]. Although Ia exhibits a
continuous rangewhere it equals zero, not every occupation
time twithin this range is a typical event. Within the saddle-
point approximation in (13), it appears that only the times
resulting from the most probable network configurations,
which manifest at the boundaries of this zero plateau, truly
represent the typical behavior of the observable Tn. These
specific configurations, as shown in Fig. 3(b), are sta-
tistically favored and dominate the ensemble. To further
validate our observations, in Fig. 3(a) we also plot
Monte Carlo (MC) simulations for both the quenched
and annealed case. Details on how to perform such
simulations and their physical interpretations are reported
in Appendixes B and C. Quenched simulations appear as
colored cross-shaped scatter points for three different

(a)

(b)

FIG. 3. (a) Rate functions Îl functions for different l, as a
function of t. Monte Carlo quenched simulations for the three
cases with no (leftmost), maximum (rightmost), and half-maxi-
mum (center) number of higher-order interactions are plotted as
cross-shaped scatter points. Annealed simulation results are
plotted as round scatter points for different values of l, colored
according to the legend. (b) The optimal value η� of the number
of higher-order interactions plotted as a function of s (the
fluctuation parameter). Results are obtained for a hypergraph
with N ¼ 21 nodes and p ¼ 0.5.
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scenarios of random walks exploring a graph with no
(leftmost gray), max (rightmost gray), and half-max
(orange) number of higher-order interactions. Annealed
simulations appear as enlarged green and gray scatter
points for two different values of l. In particular, orange
crosses well describe the shape of the quenched rate
function Iq and gray circles well show the flattening of
the function Îl at large values of l. Noticeably, from the
saddle-point calculation in Fig. 3(b) it is evident that for
large values of l as one slightly moves from the typical
scenario s ¼ 0 and looks into fluctuations for either s < 0
or s > 0, the structure η� optimally realising such fluctua-
tions abruptly changes from, respectively, a graph with no
higher-order interactions, i.e., minðη�Þ ¼ 0, to a structure
that maximizes their number, i.e., maxðη�Þ¼10 for N¼21.
For finitelwe observe a continuous crossover centered in

s ¼ 0 between these two regimes. For large l, such cross-
over appears to bemuch steeper, hinting at the existence of a
transition in the limit l → ∞ between two regimes, one
where the random walk spreads over the entire graph, and
one where it spends more time on the core node due to
higher-order interactions. As discussed in Appendix C and
in the SupplementalMaterial [53], this behavior is an artifact
of the saddle-point approximation. Indeed, the existence of a
phase transition is not confirmed by an analysis of the
distribution of Tn at large l of simulations of random walks
on evolving hypergraphs, which converge to an unimodal
distribution with l → ∞. This suggests that the observed
flattening might be due to neglecting subleading oðnÞ terms
in Eq. (13). Furthermore, the lack of an exponential scaling
in the bulk distribution of Tn indicates that typical fluctua-
tions occur more frequently. In summary, while the saddle-
point solution is limited in describing fluctuations of the
system close to the typical time, it allows to correctly capture
the extreme values of the annealed rate function, as con-
firmed by the good matching between MC simulations and
analytical predictions in the tails of the rate functions.
Conclusion—In this work we have shed light on the

impact of higher-order interactions on the atypical behav-
iors of dynamical processes on networks. In particular, we
have investigated random walks dynamics in a simplified
higher-order model, a fully connected pairwise graph with
additional random three-body interactions connecting a
core node with peripheral nodes. By applying large
deviation tools we have derived the leading exponential
scaling of fluctuations for a dynamical observable, here
considered to be the mean fraction of time the random walk
spends on the system nodes. We characterized the dynam-
ics of the system in two different scenarios, showing that
the presence of higher-order interactions greatly affects rare
events and atypical dynamics. In the quenched case, where
the structure of the system is fixed, higher-order inter-
actions inhibit random walk fluctuations of the occupation
time at the core. Conversely, in the Supplemental Material
[53], we show that fluctuations of the occupation time on

peripheral nodes are enhanced far off the typical occupation
time. In the annealed case, averaging over dynamics on
non-fixed structures, the random walk dynamics select the
optimal structure that realizes a particular fluctuation. In
such a scenario, fluctuations of the occupation time are
more likely to appear, and by means of a saddle-point
approximation, it is possible to capture dynamical fluctua-
tions far from the typical time. In the Supplemental
Material [53], we validated our results on complex struc-
tures and showed that homogeneous hypergraphs exhibit a
nontrivial density of higher-order interactions boosting
fluctuations. Finally, results shown here for random walks
extend to broader dynamics, such as for large values of the
biasing parameter for biased randomwalks on hypergraphs,
where the bias promotes or hampers the visit of nodes with
many higher-order interactions. In the future, it might be
interesting to broaden our understanding of the impact of
specific higher-order structural features, such as scale-free
distribution of higher-order interactions [68], community
structure [69], or directed hyperedges [70].
Eventually, our work might be proven useful also to

characterize the appearance of rare and catastrophic events
in the interconnected structure of higher-order systems, or
to control patterns of infections in adoption and rumor
diffusion in real-world social networks.
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End Matter

Appendix A: Transition matrix of random walk on
hypergraphs—In the random walk on hypergraph the
walker chooses with equal probability among its
hyperlinks and then selects one of the nodes belonging
to such a higher-order structure, favoring intrinsically
those neighbors that belong to highest-order hyperlinks.
In order to write the transition matrix, we start defining
the hyper incidence matrix eiα telling if a node i belong
to a hyperlink Eα, namely,

eiα ¼
�
1 if i∈Eα

0 otherwise
: ðA1Þ

From the hyperincidence matrix one can define the
hyperadjacency matrix as follows:

A ¼ eeT; ðA2Þ

where Aij represents the number of hyperlinks
containing both nodes i and j. Furthermore, one can
build the hyperedges matrix, Cαβ,

C ¼ eTe; ðA3Þ
whose entry Cαβ counts the number of common nodes
between Eα and Eβ (Eα ∩ Eβ) and Cαα is the size of an
hyperlink Eα, or, equivalently, its order of interaction
plus one, jEαj ¼ Oα þ 1.
By means of C and e, we can construct the weight of the

transitionmatrix of the unbiased randomwalk, kHij , that reads,

kHij ¼
X
α

ðCαα − 1Þeiαejα ¼ ðeĈeTÞij − Aij; ðA4Þ

where its entries represent the sum of the orders of all the
common hyperlinks between i and j. Summing kHij over all
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neighbors of a node i, one obtains the order-weighted
hyperdegree,

kHi ¼
X
l

kHil ; ðA5Þ

namely, the sum of the orders of all the hyperlinks belonging
to i.
Therefore, the transition matrix of the unbiased random

walk on a hypergraph reads

Πij ¼
P

αðCαα − 1ÞeiαejαP
l

P
αðCαα − 1Þeiαelα

¼ kHijP
lk

H
il
¼ kHij

kHi
: ðA6Þ

Appendix B: Quenched Monte Carlo simulations—
Given a hypergraph of size N with a configuration of
higher-order interactions η sampled from the binomial
distribution in Eq. (1), we run simulations of length n.
The result of this is a histogram of values for the
observable Tn for a given hypergraph. We then calculate
the rate function [see Eq. (7)] for the observable Tn as

Isimη ðtÞ ¼ −
1

n
lnPhist

η ðtÞ; ðB1Þ

where superscript “sim” indicates that the function is
obtained from simulations and “hist” refers to the fact
that the distribution is approximated by the histogram
related to the simulations. We repeat the procedure for
many configurations of the hypergraph randomly
selected from the binomial distribution in Eq. (1) and
calculate the rate functions by averaging as follows:

Isimq ðtÞ ¼
XN△

η¼0

PhistðηÞIsimη ðtÞ; ðB2Þ

where PhistðηÞ is the probability distribution of
configurations η at a fixed p obtained with the random
generation of graphs [it converges to Eq. (1)]. Notice
that the cumulative statistics over different hypergraphs
come only after rescaling with 1=n ln each distribution
of Tn. These are the quenched simulations represented
as gray (p ¼ 0 and p ¼ 1) and orange (p ¼ 0.5) circular
dots in Fig. 3(a). They are used as a sanity check both
for the quenched limit of our annealed calculation for
p ¼ 0.5 in the middle and, in the case of the annealed
rate function, to check that the extrema of the zeros
plateau corresponds to the two opposite situations of a
graph with no triangular interactions for p ¼ 0 (on the
left) and a graph with N△ (the maximum possible)
triangular interactions for p ¼ 1 (on the right).

Appendix C: Annealed Monte Carlo simulations—In
order to carefully calculate the Legendre transform of
Eq. (14), which is the asymptotic leading behavior of
Eq. (12), and visualize the rate functions appearing in
Fig. 3(a) we generate many trajectories of the random
walk of length n (which in turn fixes the parameter
l ¼ n=N△ for a graph of N nodes) where each one is
initialized over a hypergraph with a number of triangular
interactions picked up at random from the binomial
distribution in Eq. (1). The graph is resampled over the
trajectory of the random walk at a fast rate. Once all the
trajectories are obtained we calculate the cumulative
statistic (the histogram) of the observable Tn and, only
after that, rescale the properly normalized histogram by
1=n ln. It is important to stress here that in the annealed
scenario the rescaling comes after obtaining the full
statistics over all hypergraphs for the observable Tn (notice
that this procedure is inverted in the quenched scenario),
which is the reason why at the saddle point of Eq. (13)
dynamics and disorder “interact.” This procedure already
generates a distribution Phist

a for the observable Tn and
from it we directly calculate the rate function

Isima ðtÞ ¼ −
1

n
lnPhist

a ðtÞ: ðB3Þ

This is the procedure followed to obtain the annealed
simulations plotted in Fig. 3(a).
The histograms of Phist

a for different values of n reveal
that there is no observable flattening across the simulations.
Instead, as n increases, the histograms converge, indicating
no true phase transition in the system, see Fig. 4. This
suggests that the flattening of the rate function observed in
the annealed scenario is caused by solely examining the
saddle point in the study of dynamics using large devia-
tions, neglecting subleading contributions.

FIG. 4. Histograms of observable Tn from annealed simulations
at different values of n (l ¼ n). The simulations are performed
considering N ¼ 21, and 105 different trajectories.
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