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We present a data-driven pipeline for model building that combines interpretable machine learning,
hydrodynamic theories, and microscopic models. The goal is to uncover the underlying processes
governing nonlinear dynamics experiments. We exemplify our method with data from microfluidic
experiments where crystals of streaming droplets support the propagation of nonlinear waves absent in
passive crystals. By combining physics-inspired neural networks, known as neural operators, with
symbolic regression tools, we infer the solution, as well as the mathematical form, of a nonlinear dynamical
system that accurately models the experimental data. Finally, we interpret this continuum model from
fundamental physics principles. Informed by machine learning, we coarse grain a microscopic model of
interacting droplets and discover that nonreciprocal hydrodynamic interactions stabilize and promote
nonlinear wave propagation.
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Introduction—The goal of physical modeling is to build
a set of rules which can predict and explain behaviors
observed in experiments. In continuum theories, these rules
are typically grounded in symmetries and conservation
laws, which determine the relevant degrees of freedom and
the equations they must satisfy. This approach faces
challenges when applied to experiments that only reveal
the dynamics of a finite subset of all the interacting degrees
of freedom. This situation is not exceptional; in particular it
is the norm when soft matter is driven out of equilibrium
[1,2]. In these systems, the particles, such as colloids,
droplets, or bubbles continuously exchange energy and
momentum with a solvent. As a result they exhibit a variety
of behaviors, driven by effective interactions that violate
microscopic reversibility constraints such as detailed bal-
ance [3,4] or Newton’s third law [5–15]. Such complica-
tions require new approaches to model building that can
identify and predict the effects of these microscopic
interactions in experiments [16–19].
Data-driven methods, which have shown much promise

in learning physical models from observation data, have the
potential to overcome these challenges. Deep neural net-
works [20,21] can learn to accurately predict behavior for a
variety of physical [22–30] and biological [31–35] systems.
More recently, neural operators have been introduced to
directly learn the solution operator for partial differential

equations (PDEs) [36]. When incorporated within deep
neural networks, they are capable of forecasting the
behavior of complex dynamical systems such as the
weather [36,37]. While these methods are invaluable for
efficiently and accurately forecasting dynamics from data,
less is known about how to interpret what they have learned
about a physical system.
In this case study, we demonstrate how interpreting

neural operators can lead to data-driven model discovery by
focusing on a paradigmatic out-of-equilibrium hydrody-
namic problem: particles driven in a surrounding fluid [38].
Such systems exhibit a variety of phenomena: phonons in
overdamped systems [39,40], shock formation [41,42], and
symmetry-dependent melting of crystal phases [43]. We
build on an experimental setup in which water droplets
advected inside a microfluidic channel form a propagating
shock due to hydrodynamic interactions. Using a neural
network with an internal neural operator layer [36], we
transform the experimental movie into a set of variables
whose dynamics are solved by an unknown partial differ-
ential equation. Using sparse regression [44–46], we then
discover the equation that these machine-learned variables
satisfy. We find that the discovered continuum model
contains an essential term that had remained overlooked.
Informed by our data-driven method, we then trace this
term to the nonreciprocal nature of hydrodynamic inter-
actions by solving suitable microscopic models. Beyond
the specifics of our microfluidic experiments, we show how
microscopic nonreciprocity generically results in the pro-
pagation of macroscopic solitons through nonequilibrium
crystals. Our approach demonstrates how combining

*Contact author: denis.bartolo@ens-lyon.fr
†Contact author: vitelli@uchicago.edu
‡These authors contributed equally to this work.

PHYSICAL REVIEW LETTERS 133, 107301 (2024)
Editors' Suggestion Featured in Physics

0031-9007=24=133(10)=107301(7) 107301-1 © 2024 American Physical Society

https://orcid.org/0000-0003-4162-0276
https://orcid.org/0000-0002-9732-8875
https://orcid.org/0000-0001-5035-6898
https://orcid.org/0000-0001-6328-8783
https://ror.org/024mw5h28
https://ror.org/024mw5h28
https://ror.org/04zjtrb98
https://ror.org/04zmssz18
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.107301&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1103/PhysRevLett.133.107301
https://doi.org/10.1103/PhysRevLett.133.107301
https://doi.org/10.1103/PhysRevLett.133.107301
https://doi.org/10.1103/PhysRevLett.133.107301


interpretable neural operators with theoretical modeling
can provide previously unknown insights into the physics
governing complex nonlinear systems.
Learning experimental dynamics—To learn macroscopic

physics from microscopic data, we consider an experimen-
tal movie [42] in which a one-dimensional stream of water
droplets (diameter 140 μm) are advected by an organic
solvent inside a microfluidic channel; see Ref. [42] for
details. The droplet stream develops a shock in response to
a jam induced at t ¼ 0 [Fig. 1(a)].
Coarse graining the droplet positions yields a density

field ρðx; tÞ which shows the shock deforming and propa-
gating through space and time (Fig. 1). The system
behavior is driven by microscopic interactions between
the droplets, which may include a simple nearest-neighbor
repulsive interaction as well as hydrodynamic backflows.
Previous studies modeled this experiment at the continuum
level to leading order in derivatives and nonlinearities. The
resulting model reduced to a Burgers’ equation obeyed by
the droplet density ρðx; tÞ [42],

∂tρþ ðc − αρÞ∂xρ ¼ 0; ð1Þ
where c is a basic advection speed, and α is a nonlinearity
that creates shocks. Here, without making any assumption
about the relevant interactions, we learn to predict the
dynamics of this movie using a deep neural network. To
train the network, we segmented the experimental movie
into overlapping 3 s × 9 mm training examples. For each
example, the network receives the one-dimensional slice
ρðxÞ ¼ ρ0ðxÞ and predicts the full ρðx; tÞ response to that
initial condition [Fig. 2(a)]. The network architecture has
three components: (i) an input convolutional block which
transforms the experimental density field ρ0ðxÞ into a
latent variable ϕ0ðxÞ, (ii) a single-layer Fourier neural
operator which evolves ϕ in time according to an unknown
linear partial differential equation, and (iii) an output
convolutional block which transforms the predicted
ϕðx; tÞ field into a predicted density field ρðx; tÞ. Both
the input and output blocks used 1D convolutional layers
which only use spatial information to construct features.

The full architecture is shown in Fig. 2(a). We note that the
dynamics were solely predicted by the central neural
operator layer. However, while the neural operator itself
is linear, the input and output transformations enable the
network to predict nonlinear dynamics [47]. Once trained,
the neural network is capable of predicting experimental
dynamics including the propagation of the initial jam in
space and time from past to present [Figs. 2(a)–2(c)] [48].
Interpreting the neural operator—The single-layer lin-

ear Fourier neural operator can be interpreted as a Green’s
function for the internal variable ϕ. This learned Green’s
function predicts how the response to an initial perturbation
will propagate in space over time [Figs. 2(a) and 2(b)].
In the comoving frame, defined by the spatial coordinate
x − ct where c is the speed of the wave, we observe that the
response decreases in magnitude while the width stays
nearly constant [Figs. 2(c)–2(e)]. The encoder-decoder
architecture transforms the nonlinear dynamics of the
density ρ into a linear problem that can be solved using
this Green’s function [47].
A similar approach can exactly solve the Burgers’

equation (1) previously proposed for this system. Upon
adding a small diffusion term D∂

2
xρ and effecting a Cole-

Hopf transformation, we obtain a linear partial differential
equation whose Green’s function is that of the standard
diffusion equation (see the Supplemental Material [49]). In
Figs. 2(f)–2(h), we plot the dynamics predicted by Burgers’
equation from experimental initial conditions. As a bench-
mark for our machine-learned solution, we trained an
identical neural network on a synthetic movie of an exact
solution to Burgers’ equation (Supplemental Material,
Fig. S3). While this model learned an internal variable
transformation that was distinct from Cole-Hopf, the
Green’s function is qualitatively similar to the diffusion
kernel with a response whose amplitude decays and width
grows over time.
The neural network [Figs. 2(c)–2(e)] more accurately

predicts the experimental movie than an exact solution to
Burgers’ equation [Figs. 2(f)–2(h)] and uses a qualitatively
distinct Green’s function to do so. We stress that while both

(c)

(b)

(a)

t = 0 s t = 3 s

Experimental picture Density field

Density profiles

1 mm

FIG. 1. Coarse-graining microfluidic particle experiments. (a) Experimental picture of a microfluidic particle stream [42].
(b) Experimental pictures are coarse-grained into a density profile and normalized by the maximum density ρmax. (c) Spatiotemporal
evolution of the density field shows formation of a shock front in response to an initial jam.
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Green’s functions decay in amplitude over time, the
diffusion kernel has a response width that grows over
time while the neural operator solution remains constant
[Figs. 2(e)–2(h)]. As a result, the neural network shock
remains sharp unlike the Burgers’ shock that disperses
[Figs. 2(a), 2(c), and 2(f)]. The distinct behavior of the
neural operator trained on experiments from both the exact
and benchmark solutions to Burgers’ equation suggests that
the nonlinear waves seen in experiments obey physics
beyond Burgers’ equation.
To learn an equation governing the internal variable

ϕðx; tÞ [Fig. 3(a)], we resort to the SINDy method (sparse
identification of nonlinear dynamics [44]), which has
proven to effectively learn nonlinear dynamical equations
from experimental data [19,28]. As the linear neural
operator ensures ϕ obeys a linear PDE, we used a library
of ϕ and its derivatives and found the following equation:

∂tϕ − 1.86∂xϕ ¼ −0.31ϕþ 0.003∂2xϕ − 0.008∂3xϕ: ð2Þ

Simulating this equation for ϕðx; tÞ yields excellent corre-
spondence with the neural network solution [Fig. 3(a),

R2 ¼ 0.96], indicating that it is indeed an excellent model
for the dynamics solved by the neural operator. We applied
the neural network’s output CNN to this predicted ϕ field to
achieve an accurate prediction of the density dynamics
(Supplemental Material, Fig. S2). This approach of learn-
ing the dynamics of the internal variable predicted by the
neural operator yielded better predictions than applying
SINDy directly to the density field.
The learned equation (2) resembles a linearized KdV-

Burgers’ equation, containing a dispersive ∂
3
xϕ term char-

acteristic of the Korteweg de-Vries equation. The ∂xϕ term
captures both the basic advection term and a linearization of
the ρ∂xρ term in (1). We do note that the model has learned
a damping term whose importance to the learned dynamics
is weaker than the dispersive ∂3xϕ term but stronger than the
diffusive ∂2xϕ term (Supplemental Material, Table S1). The
new KdV term in the dynamics of ϕ, as well as the
qualitatively distinct Green’s function learned by the neural
operator, corroborates our conclusion that the dynamics of
the experimental density field is governed by physics
beyond Burgers’ equation. Hence, we consider the more
general nonlinear KdV-Burgers’ equation:
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FIG. 2. Learning the dynamics of shocks in microfluidic particles experiments. (a) A neural network forecasts the particle density field
ρðxÞ from initial conditions. The network uses a 1D convolutional neural network (CNN) block to map the density field to an internal
variable ϕðxÞ. A single-layer linear Fourier neural operator forecasts the evolution of ϕ. A second 1D convolutional block converts
ϕðx; tÞ into a predicted density field ρðx; tÞ. (b) The neural operator is interpretable as a Green’s function for an unknown linear PDE
which defines the response to a perturbation. The learned Green’s function predicts a response which propagates in space and attenuates
over time. (c) Neural network predictions for the density field ρðx; tÞ. (d) Plot of the machine-learned Green’s function in the comoving
frame. (e) Comparing the magnitude and width of the kernelGðx; tÞ shows that the response to a perturbation will decrease in magnitude
over time, but not disperse. (f)–(h) Exact solution to Burgers’ equation from experimental initial conditions. Gðx; tÞ is a diffusion kernel
applied after a Cole-Hopf transformation of the density ρ. The neural network learns distinct physics from Burgers’, which exhibits
spreading due to viscous dissipation.
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∂tρþ ðc − αρÞ∂xρ ¼ D∂
2
xρþ β∂3xρ: ð3Þ

We used the experimental movie to directly fit coefficients
to a Burgers’ equation (β ¼ 0), a KdV equation (D ¼ 0),
and a KdV-Burgers’ equation (3). We plot the predictions

and compare accuracy in Figs. 3(b) and 3(c). Both Burgers’
and KdV-Burgers’ achieve similar error rates on the entire
field, although neither matches the performance of the
neural network. The difference between the two is more
apparent near the shock front. The KdV-Burgers’ solution
maintains a more pronounced shock over time [Fig. 3(b)]
and achieves a lower error rate than Burgers’ in the vicinity
of this shock front [Fig. 3(c)].
Interpretation of learned nonlinear dynamics from

microscopics—The neural operator discovered KdV-
Burgers dynamics but provided no first-principles inter-
pretation for it. We now seek to understand its physical
origin. To make progress, we build a minimal model where
the dynamics of the droplets is determined by the com-
petition between contact and hydrodynamic interactions.
The equations of motion for the droplet positions Rn are

ζð∂tRn − v0Þ ¼
X

m≠n
ðfHm→n þ fEm→nÞ; ð4Þ

where ζ is a friction coefficient and v0 is the advection
speed of an isolated droplet. fE is an elastic force that
models the repulsion between the soft droplets which we
approximate by linear springs fEnþ1→n ¼ kðRnþ1 − Rn − aÞ
(a is the lattice spacing and k the elastic stiffness). fH

models the hydrodynamic force experienced by a droplet in
response to the backflows induced by the motion of its
neighbors; see Fig. 4(a). Unlike fE, hydrodynamic forces
do not obey Newton’s third law [6]. They are nonrecipro-
cal: fHm→n ¼ fHm→n ¼ fHðRn − RmÞ. In practice, we use the
standard form fHðrÞ ¼ Acsch2ðπr=WÞ, where W is the
channel width [39].
We perform numerical simulations of Eq. (4) with

periodic boundary conditions, ζ ¼ a ¼ 1, W ¼ 2, and
A ¼ −ðπ=WÞ2. To probe the relevance of KdV-Burgers
physics, we choose initial conditions that correspond to a
two-soliton solution of the KdV equation [Figs. 4(b)–4(e);
see also the Supplemental Material for different initial
conditions]. When ignoring the soft contact interactions
(k ¼ 0), the particle dynamics is perfectly captured by a
continuum model having the form of a KdVequation. Two
solitons cross each other and propagate freely [Fig. 4(c)]. In
the limit of strong elastic forces (k ¼ 0.2), the initial shape
is not preserved, shocks develop, and their dynamics is well
described by a Burgers equation [Fig. 4(e)]. In the
intermediate regime, where both contact and hydrodynamic
forces compete on equal footing (k ¼ 0.02), we find that
the propagation of the initial density fluctuation is quanti-
tatively predicted by the KdV-Burgers equation, Eq. (3)
[Fig. 4(d)].
We are now equipped to interpret the KdV-Burgers

dynamics revealed by our neural operator. We focus on
large distances [x̃ ¼ ϵðn − ctÞ with ϵ → 0] and large times
(t̃ ¼ ϵ3t); we then can recast Eq. (4) into a PDE obeyed by
the density field ρðx; tÞ. Informed by our neural operator,

(a)

(b)

(c)

FIG. 3. Interpreting the neural operator. (a) The neural operator
evolves the internal variable ϕðx; tÞ according to a partial
differential equation. Using SINDy, we learn the PDE governing
ϕðx; tÞ. The resulting equation (2) includes a novel ∂3x KdV term
[42]. (b) Simulations of Burgers’ equation (first row), KdV
equation (second row), and KdV-Burgers’ equation (third row)
from experimental initial conditions. For each equation, we plot
the density field (left) and traces at fixed time points (middle). To
characterize the shock front, we plot the height vs width at
different time points (right). KdV-Burgers’ preserves the sharp-
ness of the shock and shows less spreading over time compared to
Burgers’. (c) Error rates for neural network (Fig. 2) and analytic
solutions (Fig. 3). Blue bars are the mean absolute error hjρ − ρ0ji
for the full field, while red is the error within 1 mm of the shock
front. Numerical values are in the Supplemental Material,
Table S2.
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we do not restrain our expansion to leading order in
gradients and find that the dynamics of ρðx; tÞ is ruled
by a KdV-Burgers equation (3). We provide a detailed
derivation of our continuum model in the Supplemental
Material and generalize it beyond the specifics of hydro-
dynamic interactions [49].
This procedure makes it possible to understand the

physical origin of all terms in Eq. (3). The damping (D)
is solely controlled by the elastic interactions fE.
Conversely, the advection, the nonlinear, and the dispersive
terms (c, α, and β) originate from the hydrodynamic forces
[c ¼ v0 − 2

P∞
m¼1mf0HðmaÞ, α ¼ −2

P∞
m¼1 m

2f00HðmaÞ,
and β ¼ P∞

m¼1mf0HðmaÞ=3]. Unlike in [61], the dispersive
and nonlinear terms rooted in hydrodynamic interactions
conspire to stabilize and propel solitary waves without
relying on inertia.
In this case study, we used interpretable machine learn-

ing and microscopic modeling to learn rules governing a
microfluidic experiment. Using an interpretable neural
network architecture built around a linear neural operator,
we learned to predict experimental behavior from data.
Next, we examined the behavior of the neural operator and
extracted a dynamical rule for our machine learned variable
which contained a previously overlooked KdV term. By
considering suitable microscopic models, we traced the
origin of this novel term to the nonreciprocal nature of
hydrodynamic interactions between the droplets.
Our first principles modeling and machine learning

algorithms play a mutually beneficial role. While the neural
operator can suggest the presence of a KdV term, it could
not provide a mechanism justifying its existence. Our
simulations and theoretical argument help rationalize these
findings which had been hitherto overlooked. They provide
insight on the origin of the KdV-like physics: beyond
the specifics of our driven emulsions, nonreciprocal

interactions generically stabilize and propagate solitary
waves in overdamped one-dimensional systems. Neural
networks’ role as universal approximators provides an
alternative route to characterizing experiments. In learning
to predict dynamics, they build a “maximal model” which
can then serve as a target for more principled theoretical
investigations.
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Chaté, and H. P. Zhang, Proc. Natl. Acad. Sci. U.S.A. 116,
777 (2019).

[17] W. Van Saarloos, V. Vitelli, and Z. Zeravcic, Soft Matter:
Concepts, Phenomena, and Applications (Princeton
University Press, Princeton, NJ, 2024).

[18] D. S. Seara, J. Colen, M. Fruchart, Y. Avni, D. Martin, and
V. Vitelli, arXiv:2312.17627.

[19] R. Supekar, B. Song, A. Hastewell, G. P. T. Choi, A. Mietke,
and J. Dunkel, Proc. Natl. Acad. Sci. U.S.A. 120,
e2206994120 (2023).

[20] Y. Lecun, Y. Bengio, and G. Hinton, Nature (London) 521,
436 (2015).

[21] J. Schmidhuber, Neural Netw. 61, 85 (2015).
[22] M. Raissi, P. Perdikaris, and G. E. Karniadakis, J. Comput.

Phys. 378, 686 (2019).
[23] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.

Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod.
Phys. 91, 045002 (2019).

[24] F. Cichos, K. Gustavsson, B. Mehlig, and G. Volpe, Nat.
Mach. Intell. 2, 94 (2020).

[25] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, Nat. Rev. Phys. 3, 422 (2021).

[26] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[27] V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner,

E. D. Cubuk, S. Schoenholz, A. Obika, A. Nelson, T.
Back, D. Hassabis, and P. Kohli, Nat. Phys. 16, 448
(2020).

[28] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Annu.
Rev. Fluid Mech. 52, 477 (2020).

[29] Z. Zhou, C. Joshi, R. Liu, M. M. Norton, L. Lemma, Z.
Dogic, M. F. Hagan, S. Fraden, and P. Hong, Soft Matter 17,
738 (2021).

[30] J. Colen, M. Han, R. Zhang, S. A. Redford, L. M. Lemma,
L. Morgan, P. V. Ruijgrok, R. Adkins, Z. Bryant, Z. Dogic,

M. L. Gardel, J. J. de Pablo, and V. Vitelli, Proc. Natl. Acad.
Sci. U.S.A. 118, e2016708118 (2021).

[31] J. Jumper et al., Nature (London) 596, 583 (2021).
[32] C. J. Soelistyo, G. Vallardi, G. Charras, and A. R. Lowe,

Nat. Mach. Intell. 4, 636 (2022).
[33] A. Zaritsky, A. R. Jamieson, E. S. Welf, A. Nevarez, J.

Cillay, U. Eskiocak, B. L. Cantarel, and G. Danuser, Cell
Syst. 12, 733 (2021).

[34] M. S. Schmitt, J. Colen, S. Sala, J. Devany, S. Seetharaman,
A. Caillier, M. L. Gardel, P. W. Oakes, and V. Vitelli, Cell
187, 481 (2024).

[35] M. Lefebvre, J. Colen, N. Claussen, F. Brauns, M. Raich, N.
Mitchell, M. Fruchart, V. Vitelli, and S. J. Streichan,
Learning a conserved mechanism for early neuroecto-
derm morphogenesis (2023), bioRxiv, 10.1101/2023.12.22
.573058.

[36] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K.
Bhattacharya, A. Stuart, and A. Anandkumar, arXiv:2010
.08895.

[37] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A.
Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li,
K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath, and
A. Anandkumar, arXiv:2202.11214.

[38] T. Beatus, R. H. Bar-Ziv, and T. Tlusty, Phys. Rep. 516, 103
(2012).

[39] T. Beatus, R. Bar-Ziv, and T. Tlusty, Phys. Rev. Lett. 99,
124502 (2007).

[40] N. Desreumaux, J.-B. Caussin, R. Jeanneret, E. Lauga, and
D. Bartolo, Phys. Rev. Lett. 111, 118301 (2013).

[41] T. Beatus, T. Tlusty, and R. Bar-Ziv, Phys. Rev. Lett. 103,
114502 (2009).

[42] N. Champagne, E. Lauga, and D. Bartolo, Soft Matter 7,
11082 (2011).

[43] I. Saeed, H. K. Pak, and T. Tlusty, Nat. Phys. 19, 536
(2023).

[44] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proc. Natl.
Acad. Sci. U.S.A. 113, 3932 (2016).

[45] K. Kaheman, J. N. Kutz, and S. L. Brunton, Proc. R. Soc. A
476, 20200279 (2020).

[46] K. Champion, P. Zheng, A. Y. Aravkin, S. L. Brunton, and
J. N. Kutz, IEEE Access 8, 169259 (2020).

[47] C. R. Gin, D. E. Shea, S. L. Brunton, and J. N. Kutz, Sci.
Rep. 11, 21614 (2021).

[48] Neural network and simulation code is available at https://
github.com/jcolen/microfluidics_neural_operators.

[49] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.133.107301 for addi-
tional information on neural network training and analysis,
simulation details, and the derivation of our continuum
model. The Supplemental Material includes Refs. [50–60].

[50] A. Paszke et al., arXiv:1912.01703.
[51] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and

S. Xie, in 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2022), pp. 11966–11976,
10.1109/CVPR52688.2022.01167.

[52] O. Ronneberger, P. Fischer, and T. Brox, in Medical Image
Computing and Computer-Assisted Intervention—MICCAI
2015, edited by N. Navab, J. Hornegger, W.M. Wells, and
A. F. Frangi (Springer International Publishing, Cham,
2015), pp. 234–241.

PHYSICAL REVIEW LETTERS 133, 107301 (2024)

107301-6

https://doi.org/10.1146/annurev-conmatphys-040821-125506
https://doi.org/10.1146/annurev-conmatphys-040821-125506
https://doi.org/10.1038/s41567-020-0795-y
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1103/PhysRevLett.128.048002
https://doi.org/10.1103/PhysRevLett.128.048002
https://doi.org/10.1103/PhysRevX.14.021014
https://doi.org/10.1103/PhysRevX.14.021014
https://arXiv.org/abs/2208.14985
https://doi.org/10.1103/PhysRevX.10.041009
https://doi.org/10.1103/PhysRevX.10.041009
https://doi.org/10.1073/pnas.2010318117
https://doi.org/10.1073/pnas.2010318117
https://doi.org/10.1103/PhysRevE.109.L062602
https://doi.org/10.1103/PhysRevE.109.L062602
https://arXiv.org/abs/2311.05471
https://arXiv.org/abs/2207.11667
https://arXiv.org/abs/2307.08251
https://doi.org/10.1038/s41586-021-03375-9
https://doi.org/10.1073/pnas.1812570116
https://doi.org/10.1073/pnas.1812570116
https://arXiv.org/abs/2312.17627
https://doi.org/10.1073/pnas.2206994120
https://doi.org/10.1073/pnas.2206994120
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1038/s42256-020-0146-9
https://doi.org/10.1038/s42256-020-0146-9
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/s41567-020-0842-8
https://doi.org/10.1038/s41567-020-0842-8
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1039/D0SM01316A
https://doi.org/10.1039/D0SM01316A
https://doi.org/10.1073/pnas.2016708118
https://doi.org/10.1073/pnas.2016708118
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s42256-022-00503-6
https://doi.org/10.1016/j.cels.2021.05.003
https://doi.org/10.1016/j.cels.2021.05.003
https://doi.org/10.1016/j.cell.2023.11.041
https://doi.org/10.1016/j.cell.2023.11.041
https://doi.org/10.1101/2023.12.22.573058
https://doi.org/10.1101/2023.12.22.573058
https://arXiv.org/abs/2010.08895
https://arXiv.org/abs/2010.08895
https://arXiv.org/abs/2202.11214
https://doi.org/10.1016/j.physrep.2012.02.003
https://doi.org/10.1016/j.physrep.2012.02.003
https://doi.org/10.1103/PhysRevLett.99.124502
https://doi.org/10.1103/PhysRevLett.99.124502
https://doi.org/10.1103/PhysRevLett.111.118301
https://doi.org/10.1103/PhysRevLett.103.114502
https://doi.org/10.1103/PhysRevLett.103.114502
https://doi.org/10.1039/c1sm06226c
https://doi.org/10.1039/c1sm06226c
https://doi.org/10.1038/s41567-022-01893-5
https://doi.org/10.1038/s41567-022-01893-5
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1109/ACCESS.2020.3023625
https://doi.org/10.1038/s41598-021-00773-x
https://doi.org/10.1038/s41598-021-00773-x
https://github.com/jcolen/microfluidics_neural_operators
https://github.com/jcolen/microfluidics_neural_operators
https://github.com/jcolen/microfluidics_neural_operators
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.107301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.107301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.107301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.107301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.107301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.107301
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.107301
https://arXiv.org/abs/1912.01703
https://doi.org/10.1109/CVPR52688.2022.01167


[53] B. d. Silva, K. Champion, M. Quade, J.-C. Loiseau,
J. Kutz, and S. Brunton, J. Open Source Software 5,
2104 (2020).

[54] A. A. Kaptanoglu, B. M. d. Silva, U. Fasel, K. Kaheman,
A. J. Goldschmidt, J. Callaham, C. B. Delahunt,
Z. G. Nicolaou, K. Champion, J.-C. Loiseau, J. N. Kutz,
and S. L. Brunton, J. Open Source Software 7, 3994
(2022).

[55] T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge
University Press, Cambridge, England, 2006).

[56] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear
Partial Differential Equations: Exact Solutions, Methods,

and Problems (Chapman and Hall/CRC, Boca Raton,
2003).

[57] V. E. Adler and A. B. Shabat, Theor. Math. Phys. 201, 1442
(2019).

[58] M. Toda, J. Phys. Soc. Jpn. 22, 431 (1967).
[59] C. Rackauckas and Q. Nie, J. Open Res. Software 5, 15

(2017).
[60] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P.

Brown, Phys. Rev. Res. 2, 023068 (2020).
[61] J. Veenstra, O. Gamayun, X. Guo, A. Sarvi, C. V.

Meinersen, and C. Coulais, Nature (London) 627, 528
(2024).

PHYSICAL REVIEW LETTERS 133, 107301 (2024)

107301-7

https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.03994
https://doi.org/10.21105/joss.03994
https://doi.org/10.1134/S0040577919100039
https://doi.org/10.1134/S0040577919100039
https://doi.org/10.1143/JPSJ.22.431
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.1038/s41586-024-07097-6
https://doi.org/10.1038/s41586-024-07097-6

