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We consider Markov jump processes on a graph described by a rate matrix that depends on various
control parameters. We derive explicit expressions for the static responses of edge currents and steady-state
probabilities. We show that they are constrained by the graph topology (i.e., the incidence matrix) by
deriving response relations (i.e., linear constraints linking the different responses) and topology-dependent
bounds. For unicyclic networks, all scaled current responses are between zero and one and must sum to
one. Applying these results to stochastic thermodynamics, we derive explicit expressions for the static
response of fundamental currents (which carry the full dissipation) to fundamental thermodynamic forces
(which drive the system away from equilibrium).
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Introduction—Nonequilibrium steady state (NESS) of
Markov jump processes describe a plethora of phenom-
ena [1] and understanding their response to external
perturbations has crucial implications [2] across fields,
such as biology [3–6], nanoelectronics [7,8], and deep
learning [9]. When the Markov jump process is produced
by thermal noise, near equilibrium, the response is simple
and characterized by the dissipation-fluctuation relation
(DFR) [10,11]. But far-from-equilibrium or for nonthermal
processes, the response is significantly more involved; see
Refs. [12–24]. Recently, for the static response, exact
results [25–27] and tight bounds [28,29] have been derived
assuming Arrhenius-like rates. Moreover, the bounds [25]
only hold for local responses, i.e., when the perturbation
and the observable are assigned to the same transition.
In this Letter, we build a general static response theory for

anyMarkov jump processes, which describes both local and
nonlocal responses for arbitrary parameterizations of the rate
matrix. We identify a broad class of parametrizations that
produce two types of linear constraints, which we call the
summation response relation (SRR) and cycle response
relation (CRR). The SRR restricts the responses of the edge
flux and probability. The form of such constraints does not
depend on the topology of the incidence matrix, but the
values of the responses involved strongly depend on it. The
CRR limits the sum of local responses by the number of
fundamental (Schnakenberg [30]) cycles, which are essen-
tial topological characteristics. Moreover, the topology
defines which static responses among all combinatorial
configurations have universal (remarkably simple) bounds.
In unicyclic networks, all responses are bounded; for
multicyclic systems, our approach identifies bounded and

unbounded responses. In concrete examples considered, the
sizes of bounded and unbounded sets are comparable.
Finally, for Markov jump processes describing a system
in contact with thermal reservoirs (i.e., stochastic thermo-
dynamics), we derive an explicit expression for the static
response of fundamental currents to fundamental thermo-
dynamic forces. The former characterize the full dissipation
and the latter drive the system out of equilibrium.
Setup—We consider a directed graph GwithN nodes and

Ne edges and a Markov jump process over the discrete set
S of the N states corresponding to the nodes. Then, the
edges e∈ E of G define possible transitions with the
probability rates encoded in the rate matrix W=τ. In this
description, the jump from n to m is the edge (arrow) þe
with the source sðþeÞ ¼ n and the tip tðþeÞ ¼ m. For the
reverse transition, we have −e with sð−eÞ ¼ m and
tð−eÞ ¼ n. Choosing τ ¼ 1 the nondiagonal elements
Wnm ¼ We ≥ 0 become the probabilities per unit of time
assigned to the edges e. We assume that the matrix W is
irreducible [31] and that all transitions are reversible, i.e.,
We ≠ 0 only if W−e ≠ 0. With the property of diagonal
elements Wii ¼ −

P
j≠i Wij the described system always

exhibits a unique steady-state probability π ¼ ðπ1;…; πNÞ⊺
that satisfies

W · π ¼ 0; ð1Þ

with the normalization
P

N
i¼1 πi ¼ 1. We define the tran-

sition current along the edge e as je ≡WþeπsðþeÞ −
W−eπsð−eÞ. This definition has a matrix form j ¼ ℾπ, where
the matrix ℾ has elements Γei ≡WþeδisðþeÞ −W−eδisð−eÞ
with the Kronecker symbol δ. In analogy to linear chemical
reaction networks [32–34], the rate matrix can be decom-
posed as W ¼ Sℾ , where S is the incidence matrix of the
directed graph G with the elements Sie ≡ δisð−eÞ − δisðþeÞ.
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We introduce a parametrization WðpÞ using the vector
p ¼ ð…; p;…Þ⊺ made of Np control parameters p∈ p.
Thus, the steady-state condition (1) can be written as

S · jðpÞ ¼ 0; ð2Þ

where jðpÞ≡ j½p;πðpÞ� depends on p both explicitly due to
ℾðpÞ and implicitly due to πðpÞ. The central objects of
this work are the static responses of a quantity qðpÞ
(e.g., a probability π or a current j) to perturbations of
the parameters p, i.e., the elements of the vector
∇pqðpÞ ¼ ð…; dpq;…Þ⊺. Our goal will be to obtain
explicit relations for these responses enabling us to find
relations among them. Many recent works considered edge
perturbations where each element of p acts on a rate
associated with a given edge [25–27,35,36]. But often,
perturbing physical quantities implies acting on rates
associated with many edges. In this Letter, after an
example, we go from generic perturbations to more specific
ones, illustrating our findings at every stage using a
physical model.
Homogeneous parametrization—We first provide a sim-

ple illustration of how a given parametrization can give rise
to nontrivial relations among static responses: let us
consider the parametrization h ¼ ð…; hp;…Þ⊺ of WðhÞ
such that

WðαhÞ ¼ αkWðhÞ; ð3Þ

where k is the positive order of the homogeneous function.
The fact that WðαhÞπðαhÞ ¼ αkWðhÞπðαhÞ ¼ 0 implies
that πðhÞ ¼ πðαhÞ since the solution of Eq. (1) is unique;
πðhÞ is therefore an homogeneous function of order zero of
h which implies the linear relation (Euler’s theorem for
k ¼ 0)

X
p

hp
dπ
dhp

¼ 0: ð4Þ

This in turn implies that the current is a homogeneous
function j½αh; πðαhÞ� ¼ αkj½h; πðhÞ�, which is equivalent to

X
p

hp
dj
dhp

¼ kj: ð5Þ

Equations (4) and (5) are known in metabolic control
analysis as summation theorems [37–40]. In that context,
enzyme concentrations play the role of the homogeneous
parameters.
Matrix approach to static response—We now turn to

arbitrary parametrizations. Our strategy is to useP
N
i¼1 πi ¼ 1, and thus dpπN ¼ −

P
N−1
k¼1 dpπk, to arrive at

N − 1 independent equations for others dpπk with

k∈ Ŝ ≡ SnfNg. To solve this linear problem, we introduce

the matrix K≡ Ŝ ℾ̂ , where Ŝ≡ ½Ske�fk;eg and ℾ̂ ≡ ½Γek −
ΓeN�fe;kg are reduced matrices with k∈ Ŝ and e∈ E. In
Sec. A of the Supplemental Material [41] we prove that the
matrix K is invertible [see Eq. (A5)], and that the
probability and current response matrices read

Rπ ≡ ½dpπi�fi;pg ¼ −

 
K−1ŜJ

−
P

kðK−1ŜJÞ⊺k

!
; ð6aÞ

Rj ≡ ½dpje�fe;pg ¼ PJ: ð6bÞ

Here,
P

kðK−1ŜJÞ⊺k denotes the row that is the sum of all
rows of the matrix K−1ŜJ; fi; pg (fe; pg) denote the sets
of indexes i∈S (e∈ E) for rows and p∈ p for columns;
J≡ ½∂pje�fe;pg is the steady state Jacobian

J ¼ ½πsðþeÞ∂pWeðpÞ − πsð−eÞ∂pW−eðpÞ�fe;pg; ð7Þ

and the matrix P ¼ ½Pee0 �fe;e0g is defined as

P≡
"
δee0 −

X
x;x0∈ Ŝ

Γ̂exðK−1Þxx0Sx0e0
#
fe;e0g

¼ I− ℾ̂ðŜ ℾ̂Þ−1Ŝ;

ð8Þ

with I denoting the identity matrix. Matrix P is idempotent
[P2 ¼ P] and is known as an oblique projection matrix [44].
Since ŜP ¼ 0, we define B via

P≡
"X
γ ∈ C

cγeBγe0

#
fe;e0g

¼ CB; ð9Þ

where C ¼ ð…; cγ;…Þ is the matrix of the fundamental
cycles cγ defined as the right null vectors of the incidence
matrix Scγ ¼ 0 (S and Ŝ share the same Nc cycles).
Equation (6) is crucial in what follows. It contains explicit
expressions for the responses of all edges to arbitrary
perturbations and contains information on how they are
related to each other.
Response relations—For a vector p such that the matrix J

in Eq. (7) is full row rank (rkJ ¼ Ne, i.e., Np ≥ Ne), we
can always find a right invertible matrix Jþ such that
JJþ ¼ I:

Jþ ≡ J⊺ðJJ⊺Þ−1: ð10Þ

Multiplying both sides of Eqs. (6a) and (6b) by the vector
Jþj, we arrive at RπJþj ¼ 0 and RjJþj ¼ Pj ¼ Ij. In
coordinate form, these relations give rise to the SRRs:X

p∈ p

ϕpdpπi ¼ 0;
X
p∈ p

ϕpdpje ¼ je; ð11Þ
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where ϕp are elements of the vector

ϕ≡ Jþ · j: ð12Þ

Equations (11) generalize Eq. (4) and (5) beyond homo-
geneous parameters with the only difference that the hp’s
are now replaced by the coefficients ϕp. The structure of
Eq. (11) is universal, and the parametrization as well as the
topology of the graph are encoded only in the vector
Eq. (12), which can be easily calculated explicitly using
Eq. (7). The SRR for the current in Eq. (11) constrains the
response of the edge fluxes. It implies that all flux responses
of a given edge e vanish (dpje ¼ 0 for all p∈ p) only when
that edge is at equilibrium, i.e., when je ¼ 0.
Physical example: We consider the double quantum

dots (QDs) model shown in Fig. 1(a) [45–48]. Each QD
consists of a single electronic level with energy ϵu, (ϵd), that
can be solid or empty due to electron exchanges with the
reservoirs. Electrons cannot be transferred between the two
QDs, but when the two QDs are occupied, they interact
with each other via a Coulomb repulsion energy UC. The
four many-body states of the system and their correspond-
ing energy are shown in Fig. 1(b). In this case, the general
explicit expressions for responses, Eq. (6), hold for any
parametrization. But to satisfy the SRRs, we must have at
least 6 independent model parameters (Np ≥ Ne ¼ 6 and J
must be full row rank): The set fϵu; ϵd; UCg is not large
enough [Eq. (B2) in [41] ], the set fϵu; ϵd; UC; μ1; μ2; μ3g is
not independent as detJ ¼ 0 [Eq. (B3) in [41] ], but the set
fϵu; ϵd; UC; β1; β2; β3g would work as detJ ≠ 0 [Eq. (B4)
in [41] ].

Independent edge perturbations—We now restrict our
theory to systems with independent parameters at every
edge, namely, rkJ ¼ Np ¼ Ne. In this case, every element
pe of the vector p is assigned to its own edge e, which
implies that the matrix JðpÞ ¼ diagð…; ∂pe

je;…Þ is diago-
nal and Jþ ¼ J−1. Using Eq. (12), the coefficients ϕe take
the explicit form

ϕe ¼
�
∂je
∂pe

�
−1
je: ð13Þ

Since the matrix J is diagonal, we can rewrite Eq. (6b) as

Pee0 ¼
�
∂je0

∂pe0

�
−1 dje

dpe0
: ð14Þ

This shows that the elements Pee0 are scaled responses
where the scaling factor ∂pe0 je0 is controlled by the explicit
dependence W�eðpÞ and can be interpreted as the instanta-
neous response, as the edge probabilities πsð�e0Þ had no time
to change. This means that Pee0 can be seen as the ratio
between the complete and instantaneous response.
Physical example: For the QDs of Fig. 1, edge per-

turbation can be realized using the set Γ ¼ ð…;Γe;…Þ⊺.
The set fϵu; ϵd; UC; β1; β2; β3g also works if controlled in
such a way that the edge parameters Ψ ¼ ð…;Ψe;…Þ⊺ are
changed independently, see Sec. B of [41].
For edge parametrization, we call the responses dpe0 je

and Pee0 local (nonlocal) if the perturbation edge e0 does
(does not) coincide with the observation edge e. In Sec. C
of [41] we prove that the diagonal elements of P are
bounded,

0 ≤ Pee ≤ 1; ð15Þ

which implies the bounds for the local scaled responses

0 ≤
�
∂je
∂pe

�
−1 dje

dpe
≤ 1: ð16Þ

This result extends a previous bounds obtained in Ref. [25]
for specific parametrizations and perturbations of the rates.
Using the property of idempotent matrices trP ¼

rkP ¼ Nc, we can further derive the following CRRs:

XNe

e¼1

�
∂je
∂pe

�
−1 dje

dpe
¼ Nc: ð17Þ

Since the lhs is the sum of local scaled responses that are
bounded by Eq. (16), Eq. (17) show that if exactly Nc local
sensitives are saturated, then the other ones must be zero.
This will be illustrated in Fig. 3.
Unicyclic networks—We further restrict our theory to

systems with a single cycle. Unicyclic systems play an

(a) (b)

FIG. 1. (a) Double QDs u and d coupled with three reservoirs
(purple, blue, green). The reservoirs have different temperatures
Ti (βi ¼ 1=Ti) and chemical potentials μi, where i ¼ 1, 2, 3.
(b) Graph representation: Four states 00, 01, 10, and 11 have
energies 0, ϵu, ϵd, and ϵd þ ϵu þUC, respectively, where UC is
the Coulomb repulsion energy arising when the two dots are
filled. The colored arrows show the transitions assigned to the
corresponding reservoir. The transition rates read W�e ¼
Γe½1þ expð�ΨeÞ�−1, where Γe are the tunneling rates and Ψe
are the edge parameters (the potential assigned to the transition
þe): Ψ1 ¼ β1ðϵu−μ1Þ, Ψ2 ¼ β2ðϵd−μ2Þ, Ψ3 ¼ β2ðϵdþUC−μ2Þ,
Ψ4 ¼ β1ðϵu þ UC − μ1Þ, Ψ5 ¼ β3ðϵd − μ3Þ, and Ψ6 ¼
β3ðϵd þ UC − μ3Þ.
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important role in understanding molecular motors and
metabolic networks; see, e.g., the dynein model in [49]
and the biochemical switch in [28]. Choosing an edge
orientation such that c consists only of 1s and 0s and using
Eqs. (2) and (9) for the unicyclic system, we have Pee0 ¼
ceB1e0 and je ¼ J ce, where J is the flux and ce are
the elements of the single cycle c, that result in Pee0 ¼
ce=ce0Pe0e0 ¼je=je0Pe0e0 Using Eq. (14) and that if je;je0≠0

then je ¼ je0 , we find Pe0e0 ¼ Pee0 ¼ ð∂pe0 je0 Þ−1dpe
je

which results in the following bounds [see Eq. (15)]:

0 ≤
�
∂je0

∂pe0

�
−1 dje

dpe0
≤ 1 ð18Þ

for any combinations of the perturbing e0 and observing e
edges. In addition, the SRR (11) for the unicyclic network
becomes

XNe

e¼1

�
∂je
∂pe

�
−1 dje0

dpe
¼ 1: ð19Þ

Since scaled responses are non-negative and add up to one,
the saturation of one automatically suppresses all the
others.
Physical example: By removing the third reservoir

(edge 5 and 6) and changing the orientation of the edges
2 and 4 in Fig. 1, the model becomes a four-state unicyclic

network, see Fig. 2(a). The histogram in Fig. 2(b) illustrates
that the scaled responses to edge parameters Ψ are
nonnegative and sum up to one as predicted by
Eqs. (18) and (19). One also sees that they are typically
shared between all edges, whereas when one tends to
saturate, the other ones are suppressed. In Sec. D of [41] we
derive the following tight bounds for the responses of any
edge current je to the energy levels ϵu and ϵd: −j∂Ψ1

j1j ≤
T1dϵuje ≤ j∂Ψ4

j4j and −j∂Ψ3
j3j ≤ T2dϵdje ≤ j∂Ψ2

j2j, which
are illustrated for different values of the thermodynamic
force UCðβ1 − β2Þ in Figs. 2(c) and 2(d).
Multicycle systems—Since the elements of C can always

be written using f0; 1g, the parametric dependence of the
matrixP is defined by theNcNe elements of the matrix B in
Eq. (9), which satisfies CBC ¼ C due to Eq. (8). Matrix C
is full column rank and BC ¼ Ic is the identity matrix of
size Nc. Defining C̄ as the invertible submatrix of C and
noting that it is always possible to define cycles such that
C̄ ¼ Ic,

BC¼B

�
Ic
C̃

�
¼ðB̄; B̃Þ

�
Ic
C̃

�
¼ Ic; B̄¼ Ic− B̃C̃; ð20Þ

which reduces the number of unknown elements of P to
#var ¼ NcNe − N2

c ¼ NcðN − 1Þ elements of B̃.
For edge parametrization, the fact that the scaled

responses are bounded [Eq. (16)] can be used to find the
set of bounded nonlocal responses. For edge currents, it is
equivalent to finding nondiagonal elements Pee0 that can be
written in terms of only diagonal ones Pee and thus be
bounded. To do so, we define the number of independent
diagonal elements as #ide, which reduces the free variables
of P to #var − #ide. Since there is always at least one
constraint on diagonal elements because trP ¼ rkP, we
have #ide ≤ Ne − 1. A greater number of constraints arise
in systems with disjoint cycles (i.e., cycles that do not share
edges), see Sec. E of [41] with an illustration for proof-
reading networks [6]. All nondiagonal elements are
bounded when

#var−#ide¼ðNc−1ÞðN−2ÞþðNe−1−#ideÞ¼0; ð21Þ

which is only possible if #ide ¼ Ne − 1, and thus if Nc ¼ 1
(unicyclic models) or if N ¼ 2 (two states models).
Beyond unicyclic and two-state models, only part of the

possible responses are bounded by a linear combination of
the local responses. To identify which ones, using Eqs. (9)
and (20), we write

ðIc − B̃ C̃Þee ¼ Pee; e ≤ Nc; ð22aÞ

ðC̃ B̃Þee ¼ Pee; e > Nc: ð22bÞ

This system of #ide equations allows us to express #ide
elements fBlin

γeg as a linear combination of the bounded

(a) (b)

(c) (d)

FIG. 2. (a) Unicyclic network obtained by removing the third
reservoir from Fig. 1. (b) The heights of the purple, blue, green,
and yellow bins correspond to the scaled responses of j1 to
perturbation of Ψ1;…;Ψ4 for Γe, β1, β2 randomly and homo-
geneously distributed in 0 ≤ Γe ≤ 100 and 0 ≤ β1, β2 ≤ 2, with
UC ¼ 1, μ1 ¼ μ2 ¼ 1. In (c), respectively, (d), ðT1dϵu j1 þ
j∂Ψ1

j1jÞ=ðj∂Ψ1
j1j þ j∂Ψ4

j4jÞ, respectively, ðT2dϵd j1 þ j∂Ψ3
j3jÞ=

ðj∂Ψ2
j2j þ j∂Ψ3

j3jÞ, bounded between 0 and 1.
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diagonal elements fPeeg. The other elements fBγegnfBlin
γeg

are not restricted by the bounds in Eq. (15). Thus, the
elements Pee0 ¼

P
γ CeγBγe0 are therefore bounded if they

contain only terms from the set fBlin
γeg. This will be

illustrated in Fig. 3.
Thermodynamic responses—The rates can be expressed

in terms of their symmetric ve ≡ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WþeW−e

p ¼ v−e and
antisymmetric we ≡ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wþe=W−e

p ¼ −w−e parts as
W�e ¼ expðve � weÞ. For the QDs of Fig. 1, ve ¼ lnΓe
and we ¼ − ln½1þ expðΨeÞ�. This decomposition is
used in stochastic thermodynamics (i.e., for open systems
undergoing transitions caused by thermal reservoirs)
because the antisymmetric part defines the energetics of
the system [46,50]:

ln
Wþe

W−e
¼
X
i∈S

EiSieþF e; F e ¼
X
α∈R

Xeαfα: ð23Þ

The lhs of Eq. (23) is the entropy change in the reservoirs
caused by a transition e. It can always be split, in the rhs,
as a change in the Massieu potential Ei of the state i and
as a nonconservative contribution F e ¼ −F−e. The latter
can be expressed, in Eq. (23), as a sum over a subset of
reservoirs R, where each term consists of an amount of
conserved quantities exchanged with the reservoirs during

a transition e, Xeα, multiplied by a conjugated (funda-
mental [46]) thermodynamic force, fα made of differences
of intensive fields of the reservoirs such as inverse temper-
atures or chemical potentials [46]. Using Eqs. (23) and (14),
we find

dfαje ¼
X
ρ∈ E

dfαF ρdF ρ
je ¼

X
ρ∈ E

XραPeρ∂F ρ
jρ; ð24Þ

which can be obtained analytically for known ∂F ρ
jρ. Since

the (fundamental [46]) currents exchangedwith the different
reservoirs are the elements of the vector I ¼ X⊺j, their
response to the thermodynamic forces read

RI ≡ ½dfα0 Iα�fα;α0g ¼ X⊺PJðF ÞX ¼ X⊺RjX; ð25Þ

where α; α0 ∈R and JðF Þ ¼ diagð…; ∂F e
je;…Þ. Close to

equilibrium,RI reduces to the semipositive definite Onsager
matrix (Sec. F of [41]). The lack of symmetry ofRI can thus
be measured experimentally as jRI

αα0 − RI
α0αj and used to

determine if the system is far from equilibrium.
Let us now assume that we is independent of ve. This is

relevant, for example, for Arrhenius-like rates [25], as well
as for electron transfer rates in CMOS transistors [51] or
single electron tunneling rates in the wide-band approxi-
mation [48]. Equation (23) shows that we depends only on
the perturbation of the energy and forces, but does not
depend on the perturbation of the kinetic parameters. Such
kinetic ve and energy (thermodynamic forces) we pertur-
bations will be constrained by Eq. (11). Calculating the
partial derivatives ∂we

je ¼ τe and ∂veje ¼ je, we find ϕe ¼
je=τe (respectively, ϕe ¼ 1) for we (respectively, ve), where
τe ≡WeπsðþeÞ þW−eπsð−eÞ is the edge traffic. Inserting ϕe

into Eq. (11), we arrive at the symmetric and antisymmetric
SRRs

X
e

je
τe
dwe

π ¼ 0;
X
e

dveπ ¼ 0; ð26aÞ

X
e

je
τe
dwe

ln j ¼ 1;
X
e

dve ln j ¼ 1: ð26bÞ

We note that unlike the antisymmetric parametrization, the
symmetric one is homogeneous h ¼ ð…; ve;…Þ⊺ as the
symmetric RSSs in Eq. (26) coincide with Eqs. (4) and (5).
Physical example: For the QDs in Fig. 1, we use

Eq. (22) to find all the elements Pee0 that are linear
combinations of diagonal elements and are thus bounded,
see Sec. G of [41] and Fig. 3(a). The 6 local scaled
responses, Pee, sum to Nc ¼ 3 as predicted by the CRR
[Eq. (17)], see Fig. 3(b). The nonlocal scaled responses
can be negative, but those marked as disks in Fig. 3(a)
are bounded as −1 ≤ Pee0 ≤ 1, see Eq. (G4) in [41] and
Fig. 3(c). We use the properties of the matrixP to bound the
responses of the current to physical parameters in Sec. H

(a) (b)

(c) (d)

FIG. 3. For the model in Fig. 1: (a) The disks indicate the 20
bounded Pee0 ’s out of 36. (b) Validity of the CRR [Eq. (17)] with
Nc ¼ 3. The heights of the color bins (from black to yellow)
correspond to Pee for e ¼ 1;…; 6 and to randomly and homo-
geneously distributed 0 ≤ ϵu; ϵd; UC ≤ 5, 0 < Γe ≤ 1000 and
−10 ≤ μ2; μ3 ≤ 10, with Ti ¼ 1, μ1 ¼ 0. (c) Pee0 corresponding
to the red disks in (a), as a function of the thermodynamic force
βðμ3 − μ2Þ. (d) Physical responses jdϵd j1j in units of
R ¼Pe≠1;4 j∂Ψe

jej. Dashed lines denote our bounds.
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of [41]. We find that dpjα ¼
P

e Pαe∂pΨe for α ¼ 1, 4,
where −1 ≤ Pαe ≤ 1. We also find jdϵdjαj ≤ R, where
R ¼ j∂Ψ2

j2j þ j∂Ψ3
j3j þ j∂Ψ5

j5j þ j∂Ψ6
j6j. This is illus-

trated numerically in Fig. 3(d) for different values of the
thermodynamic force βðμ3 − μ2Þ, where we see that large
responses arise far from equilibrium.
Future studies—Our approach provides powerful tools to

identify networks that are highly sensitive or extremely
resilient to perturbations. It is also ideally suited to study
the responses of enzymatic changes (proofreading, sensing)
in chemical reaction networks, in particular in conjunction
with recently developed circuit theory [52]. Extending our
approach to non-stationary response theory of Markov
processes as in Refs. [35,36,53,54] is also an interesting
perspective.
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