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Landau-Lifschitz Magnets: Exact Thermodynamics and Transport
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The classical Landau-Lifshitz equation—the simplest model of a ferromagnet—provides an archetypal
example for studying transport phenomena. In one-spatial dimension, integrability enables the classi-
fication of linear and nonlinear mode spectrum. An exact characterization of finite-temperature
thermodynamics and transport has nonetheless remained elusive. We present an exact description of
thermodynamic equilibrium states in terms of interacting modes. This is achieved by retrieving the classical
Landau-Lifschitz model through the semiclassical limit of the integrable quantum spin-S anisotropic
Heisenberg chain at the level of the thermodynamic Bethe ansatz description. In the axial regime, the mode
spectrum comprises solitons with unconventional statistics, whereas in the planar regime we find two
additional types of modes of radiative and solitonic type. Our framework enables analytical study of
unconventional transport properties: as an example we study the finite-temperature spin Drude weight,
finding excellent agreement with Monte Carlo simulations.
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Introduction—A quantitative understanding of macro-
scopic phenomena in interacting many-body systems is a
central goal of theoretical and experimental physics.
However, strong interactions make perturbative calcula-
tions unreliable, and to make progress, one has to identify
appropriate collective degrees of freedom. An emblematic
example of this paradigm is solitons, referring to stable
particlelike coherent field excitations, found across various
domains of physics, including shallow water waves [1],
gravity [2], cold-atom gases [3-5], magnets [6,7] and
others [8—10]. Since the density of excited solitons is
highly suppressed at low temperature, it has been suggested
that thermodynamic quantities can be accessed by treating
the system as a dilute gas, assuming solitons behave as
well-separated quasiparticles [11,12]—giving birth to the
phenomenological soliton-gas approach [13—-18]. While
initially proposed only as an approximate technique for
capturing physics at low temperature, it has been argued in
subsequent works that in integrable models the soliton-gas
description should provide accurate results even at finite
temperature [13], i.e., far from the dilute gas regime.

The inverse scattering method (ISM) [19-21] constitutes
a general framework for studying classical integrable
partial differential equations. Within ISM, any field con-
figuration that decays to the classical vacuum at spatial
infinity can be uniquely decomposed in terms of delocal-
ized radiative modes (often called phonons) and localized
waves called solitons; see Fig. 1(a) for a pictorial repre-
sentation. A major downside of the ISM is that it cannot
directly account for configurations with finite energy
density that enter thermodynamic ensembles. Recent
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theoretical works [22-25] in the domain of soliton gases
either deal with special initial conditions or construct
multisoliton states with a prescribed set of parameters,
without explicitly relating them to thermodynamic state
functions. The conventional soliton-gas approach to
thermodynamics stipulates that the partition sum can be
evaluated exactly by performing a sum over the ISM
excitation spectrum. Interactions contribute solely by giv-
ing an effective length to quasiparticles, capturing the
center of mass displacement after a scattering event [26].
However, whether (i) the ISM modes truly provide an
(over)complete set of degrees of freedom, and (ii) the
nature of their statistical weights, both of which are pivotal
for exact computation of thermodynamic properties, have
remained open questions.

Most of the progress has so far been achieved in certain
special cases, including the models that only feature radi-
ative modes, such as the sinh-Gordon theory and defocusing
nonlinear Schrodinger equation [27], or modes with one
type of soliton mode with a single degree of freedom such as,
for example, the Toda chain [28-31], the KdV equation [32],
and the Ablowitz-Ladik model [33,34]. By contrast, generic
models that involve both radiation and solitons, and may
even comprise multiples species of nonlinear waves, are
much more difficult to describe. Despite intensive efforts,
the early attempts to obtain an exact soliton-gas description
for the sine-Gordon model [35-38] (which has been
achieved only recently in [39]) and the Landau-Lifschitz
equation [40,41] have not come to fruition. In fact, numerous
inconsistencies and controversies [42] hinted that such an
approach might suffer from a fundamental conceptual flaw.

© 2024 American Physical Society
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In the meantime, rapid advances in the manipulation of
quantum matter [43,44] have steered interest toward the
study of quantum integrable systems [45-50]. The power-
ful tools of thermodynamic Bethe ansatz (TBA) [51]
and generalized hydrodynamics [52-54] have delivered
a myriad of exact results in various equilibrium and
nonequilibrium settings, and led to important experimental
confirmations [55-59]. Crucially, the TBA formalism for
quantum systems—a quantum analog of the soliton-gas
approach—is free of nuances that one typically encounters
in classical integrable partial differential equations such as,
for example, the determination of correct excitation
statistics. This motivates the search for an alternative path
to thermodynamics of classical integrable systems: taking
the semiclassical limit directly at the level of TBA
equations [39,60-64] avoids most of the pitfalls of the
phenomenological soliton-gas approach.

In this Letter, we describe how to compute exact thermo-
dynamic properties of the classical Landau-Lifschitz (LL)
model—a prototypical model for a ferromagnet—and derive
hydrodynamic equations governing the evolution on the
ballistic scale. This is achieved by regarding the LL model
as the large-spin limit of the integrable quantum spin-S
chains [65-69]. While semiclassical limits of integrable
quantum magnets have in some capacity been addressed
previously in the literature [70-74], we here for the first
time manage to determine the complete set of modes,
alongside their associated statistical weights, relevant for
capturing exact thermodynamic properties. Specifically, our
description of thermal Gibbs states (or any generalized
Gibbs ensembles [75]) is embedded in the standard TBA
framework, thus providing the long sought soliton-gas
picture. Most remarkably, unlike radiation and solitons that
are conventionally associated with Rayleigh-Jeans and
Maxwell-Boltzmann statistics, respectively, the modes obey
unorthodox statistics.

Our results provide a direct access to many applications
in physics. Here, we wish to particularly highlight the
recent discovery of spin superdiffusion in integrable quan-
tum [74,76-81] and classical spin chains [82,83], anoma-
lous spin-current statistics [71,84—86], and anomalous types
of transport in nonintegrable classical chains [87-89], which
have also attracted significant interest in experimental
communities [90-93]. Our work offers a theoretical and
computational framework for a detailed investigation of
nonequilibrium phenomena, and anomalous transport in
particular for which, in spite of tremendous advancements, a
complete understanding is still lacking.

The model—The classical field theory of a one-
dimensional classical Landau-Lifschitz magnet is governed
by the Hamiltonian
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FIG. 1. Landau-Lifschitz excitations. (a) The inverse scattering
method decomposes a spin configuration in terms of delocalized
radiation (akin to spin waves) and localized solitons as the
fundamental excitations above the ferromagnetic vacuum. In the
thermodynamic limit in which the mode structure depends on
the regime, we focus on the lattice discretization (2). (b) The
easy-axis regime supports a continuous family of solitons whose
energy e,(4) is sharply peaked at (4,0) = (0,1) (see text for
details). (c) The easy-plane regime supports two additional types
of modes: radiation R with negative energy and a zero mode Z
with vanishing energy. Insets of panels (b),(c) show energy
contours in the two regimes.

where the spin field S(x) = [S'(x), $?(x), $*(x)], normal-
ized to unity S-S =1, obeys the Lie-Poisson brackets
{89(x),SP(y)} = E€upeS¢(x)8(x —y) and AER is the
anisotropy. Here, £ is a free parameter used to set the
timescale in the equation of motion dS/dr = {S,H}. We
pick £ =2, which will be justified later on. The third
component of total magnetization, M? = [dxS*(x), is
conserved in time. In the easy-axis regime A > 0O, the
lowest energy configuration is the ferromagnetic vacuum
with constant magnetization S°(x) = =41, while in the easy-
plane A < 0 regime all spins align in the orthogonal plane
with $3(x) = 0.

Hereafter, we consider grand-canonical equilibrium ensem-
bles with partition functions Z(f, ) = [ D[S]e #HH#M M)
(normalized to Z(0,0) = 1), where M3, denotes the
average of M3 in the ferromagnetic vacuum. To establish
the validity of our analytical description and to showcase its
predictive power, we perform several independent checks.
By imposing periodic boundary conditions for a system
of length L, we first compute the free energy density
f=-lim;_ L "log Z(B,u), encoding the charge aver-
ages (and their static correlation functions) such as, for
example, the average magnetization (S*). As a paradig-
matic probe of transport, we consider dynamical correlation
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functions of the spin current and compute the associated
Drude weight D = lim,_, [ dx(j(x,1)j(0,0))., where the
spin-current density j(x,?) is defined via 9,5%(x, 1) +
0.j(x,1) = 0. Recall that integrable models in general
feature finite nonzero Drude weights, attributed to ballistic
propagation of quasiparticle excitations [94]. Both probes,
namely average magnetization and spin Drude weight,
provide nontrivial checks for the completeness of the
derived classical TBA equations. Specifically, in the infin-
ite-temperature limit we analytically retrieve the magneti-
zation curve (S3) = —1/u + cothy from our TBA [95].
Additionally, we find excellent agreement with nume-
rical simulations at finite temperatures; see Fig. 2 and
Supplemental Material (SM) [95] for the Drude weight and
magnetization, respectively.

Conveniently, the LL model (1) admits an integrable
lattice discretization [20], the lattice Landau-Lifschitz
(LLL) model, Hyy; = =25 ,log®, .., with

o1 = V(SIT(S}, ) (SESEy, + 5257,1)

rumu (524520 ) - U(502-520). @)

with auxiliary functions U(y) = cosh (¢,y) and Y(y) =
\/(U(l) - U(y))/(l —y?), and the easy-axis anisotropy
parameter ¢, € R,. The easy-plane regime is reached by
analytic continuation Qe, — iQep, Qcp € [—7,7]. The con-
tinuum limit, yielding Eq. (1), is recovered at large wave-
lengths by introducing the lattice spacing a, expanding
S/11 = S(x) & a0, S(x) + O(a?), rescaling the interaction
as e, = aV/A, and letting a — 0. Since the field theory is

accessible as a limit of the lattice Hamiltonian (2), we
subsequently focus our considerations on the lattice model,

(s (Y

FIG. 2. Spin Drude weight. We consider the lattice Landau-
Lifschitz (2) and compare the result of the TBA equations
(circles, solid lines as a guide to the eye) with Monte Carlo data
(crosses, with shaded regions showing two standard deviation
confidence intervals). (a) Easy-axis regime with ¢, = 2.
(b) Easy-plane regime with ¢, = 7/3. Simulation parameters:
system size L = 2 x 10?, number of samples N = 2 x 103, time
step 7 = 0.03; see Ref. [71] for details.

which is also more convenient for performing numerical
simulations.

Since the final compact results can be discussed without
dwelling on the details of taking the semiclassical limit
(which follows previous, albeit simpler, derivations [39,63]),
we leave unessential details to the SM [95] and discuss their
general aspects and results.

Thermodynamics of integrable models—We first briefly
introduce the setting of TBA and define thermodynamic
state functions (for more details, see SM [95] or the
literature [51]). Individual modes (excitations) are assigned
a type (or specie) index “I.” The associated (bare) energy
and momentum are denoted by e;(4) and p;(4), respec-
tively, conveniently parametrized in terms of the rapidity
variable A. In spin chains, a type-/ excitation carries m;
quanta of magnetization (relative to the ferromagnetic
vacuum). In classical magnets, the two degrees of freedom
of classical solitons (e.g., magnetization and momenta) take
continuous values. For compactness, we introduce an
implicit notation for the scalar product a;ob; and con-
volution a;xb;, evaluated over the rapidity domain for any
two quantities a; and b; ascribed to specie I, while
simultaneously adopting the summation convention in
the case of repeated index / (i.e., integration in the case
of I having a continuous range; see SM [95] for details).

Gibbs ensembles, or more generally generalized Gibbs
ensembles [75], are uniquely identified by the rapidity
densities p;(4). The total densities of available states are
given by p! = (k;/2x)(0,p;)* with k; = sign[d,p,], and
represents the effective available phase space for each
mode. Owing to interactions, quantities g; associated to
mode / get renormalized. This effect is known as dressing,
gr > g, and amounts to solving a linear (Fredholm)
integral equation of the form ¢ + T ;% (k8¢"), = g;,
where T;, encode the effect of interaction among the
species of type I and I’ (related to the time delay [20,96,97]
induced by scattering), while the filling fractions are given
by the ratios 9; = p;/p}.

The mode densities p; of the Gibbs state can be inferred
by minimizing the free energy F = f(H) —u((M3) -
M3,) —S. Here, S denotes the thermodynamic entropy,
obtained by summing over all modes with appropriate
statistical weights s; = s;(9;). Writing the entropy den-
sity as s =1lim;_(S/L) = plos; yields the following
spectral resolution of the free energy density [95]
f=lim;_(F/L) = (1/2n)k;0;p;oF, with F;(9;) =
9;57(89;) — 5;(9;). On Gibbs ensembles, the occupations
9, satisfy the following nonlinear integral equations:

s7(87) = Pe; +pm; =Ty pxicp Fp(9y), (3)

where s7(9) = ds;(9)/d9. Once p; have been determined,
analytically or numerically, the average charge densities
can be simply computed by multiplying them with bare
charges and summing over the entire spectrum.
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For instance, the magnetization density is given by
(8%) = L™'"M . + myop;. On the other hand, the spin
Drude weight assumes the following mode resolution
[94,95,98,99]:

D= PIWIO(m?rU?ff)2v (4)

where w;(9;) = —1/[9;57(9;)] accounts for the mode
statistics and the effective velocity is 2§ = (d,e;)%/
(9,p;)". The latter identification is sensitive to the choice
of timescale in the equation of motion, and our choice
&€ = 2 ensures its validity; see SM [95].

The functional form of statistical factors s; discerns the
nature of quasiparticle modes: typically in quantum models
one finds the Fermi-Dirac statistics sgp(9) = —9log 9 —
(I —9)log(1 —9) [51]. By contrast, in classical systems
one usually encounters radiation sp,q(89) = logd [61,62]
with Rayleigh-Jeans statistics, or solitons sgu(9) = 9(1 —
log 9) [29,30,32] with the associated Boltzmann weight. As
detailed out in the remainder of the Letter, the LLL model
evades this simple description: we find solitons with
unorthodox (renormalized) statistical weights alongside
(depending on the regime of anisotropy) radiation and
exceptional nondynamical (zero-energy) solitons.

Easy-axis regime—We first inspect the easy-axis regime
of the Hamiltonian (2). More details, including the con-
tinuum limit (1), can be found in the SM [95]. In this regime,
rapidities occupy a compact domain A € [-7z/2, z/2], and
the mode spectrum comprises solely solitons with bare
energy e,(4), labeled by A and a continuous internal variable
o € R, associated with magnetization m, = 20, and with
positive parity k, = 1. A typical dispersion law is shown in
Fig. 1(b). Sectors with different magnetization signs are
disconnected, and the ferromagnetic vacuum reference state
must be chosen accordingly [95,100]. The power-law
singularity at (6,4) = (1,0) is a consequence of the loga-
rithmic interaction in Eq. (2). Solitons acquire renormalized
Boltzmann weights,

SO‘(190‘) = SSol(lgtr) —0~ ’96 10g o (5)

Although the form of s, affects the filling fraction (3), we
note that the additional terms (constant or linear in 9,;) do not
affect the function w; appearing in the Drude weight (4).
The kinematic data retrieved by taking the semiclassical
limit is compatible with expressions derived using the ISM
(see SM [95] for explicit expressions). In Fig. 2(a) we show
the Drude weight obtained by numerically solving the
classical TBA equations and independently by performing
Monte Carlo simulations [101,102]; see also SM [95]. The
divergence of the bare energy e,(4) at (6,4) = (1,0); see
Fig. 1(b), causes a singularity in the effective velocity v°'.
The singularity is balanced by a zero of the filling function
9,(4) x ePee¥) « [(6 = 1)%0%, + 44°]*, rendering the
Drude weight finite. However, this “damping” mechanism

diminishes with decreasing S, resulting in a logarithmic
divergence of the Drude weight at high temperatures,
D « log ! [95].

Easy-plane regime—Remarkably, in the easy-plane
regime there appear three distinct types of quasiparticles
(above the ferromagnetic vacuum): a continuum of mag-
netic solitons with renormalized statistics (analogous to
those in the easy-axis regime) and ¢ € [0, 7/¢.p), a single
radiative mode R with mg = 2 and renormalized entropy
SR(9R) = Sraa(Ir) + 1 +log(gep/7), and, finally, a spe-
cial type of soliton mode Z with no bare energy or
momentum, ez = d,pz = 0, characterized by finite mag-
netization my, = 27/g,, and renormalized entropy weight
57(87) = ss01(87) + 97 10g(0ep/ 7). Solitons have positive
parity x, = 1 and k; = 1, whereas the radiative mode has
kg = —1. In the planar regime, rapidities span the whole
real line, A€R, while the explicit expressions for
dispersion laws and scattering kernels are reported in
SM [95]. The dispersion laws of these modes are repre-
sented in Fig. 1(c), featuring the same type of singularity as
in the easy-axis regime, responsible for a logarithmic
divergence of the Drude weight in the high-temperature
limit. In Fig. 2(b) we compare the Drude weight (4) with
our Monte Carlo numerical data.

The spin-wave limit—Small fluctuations of the ferromag-
netic vacuum can be expanded in terms of noninteracting
delocalized spin waves, akin to phonons. Such spin waves
are not explicitly present in our thermodynamic description
and hence should somehow emerge out of the existing set of
excitations. The natural expectation is that very extended
solitons should be practically indistinguishable from delo-
calized modes. Indeed, a direct analytic calculation [95]
demonstrates that in the easy-axis regime spin waves are
retrieved as a cumulative effect of shallow solitons by
summing over all ¢ at fixed rapidity. The same applies for
the positive-energy radiation branch in the easy-plane
regime. By contrast, the radiative branch with negative
energy must be included in the TBA as an independent
mode in the easy-plane regime. Note that Z modes carry finite
magnetization and are effectively eliminated at low densities.

Discussion—By performing the semiclassical limit of the
integrable quantum spin-S chain within the framework of
the thermodynamic Bethe ansatz, we obtained the exact
thermodynamics and hydrodynamics of the classical
Landau-Lifshitz model. The obtained integral equations
encoding thermodynamics of the model are consistent with
a soliton-gas description, but they display several unex-
pected features. In the easy-axis regime we find a spectrum
of solitons with modified Boltzmann statistics, whereas
radiative modes (spin waves) do not appear as independent
modes; instead they can be seen as a condensate of wide
solitons with small amplitude. The easy-plane regime is
even more peculiar: apart from solitons, the spectrum of
modes includes localized zero-energy modes and only the
negative-energy branch of spin waves.
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This Letter brings to the front a number of important
questions. The most pressing one concerns the general
validity of the soliton-gas approach to thermodynamics,
which crucially relies on the stipulated form of statistical
weights associated with different types of excitations. Our
findings indicate that the anticipated Maxwell-Boltzmann or
Rayleigh-Jeans statistics are not always appropriate and thus
it is unsafe to a priori assume them. Presently we are only
able to corroborate this claim through a systematic semi-
classical analysis of quantum spectra, while an independent
purely classical justification using the tools of inverse
scattering [19,20] and finite-gap integration [103-105] is
still lacking.

Our results are expected to facilitate further progress in
understanding anomalous transport phenomena in integrable
magnets and help elucidate the elusive phenomenon of spin
superdiffusion at the isotropic point and its intimate con-
nection with the Kadar-Parisi-Zhang to the universality class:
while the dynamical exponent and scaling function are by
now firmly established, [77,78,80,82,83,106—108], the spin-
current fluctuations [85,86,109] reveal a discernibly distinct
behavior. Computing the full counting statistics of charge
transport [110-112] in the LL magnets using the derived
classical TBA equations might lead to important new
insights. There are many other interesting questions to
address, such as obtaining non-Abelian hydrodynamics that
governs the evolution of gauge modes associated to polari-
zation direction of the ferromagnetic vacuum at the isotropic
point [113], or the study of thermalization in the presence of
integrability breaking [114] with multiple quasiparticle
species. Addressing these questions requires both a fully
fledged analytical toolbox and extensive numerical bench-
marks. The results of our work thus make the classical
Landau-Lifschitz model an ideal playground for realizing
this program.
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