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Single-file diffusion is a paradigmatic model for the transport of Brownian colloidal particles in narrow
one-dimensional channels, such as those found in certain porous media, where the particles cannot cross
each other. We consider a system where a different external uniform potential is present to the right and left
of an origin. For example, this is the case when two channels meeting at the origin have different radii. In
equilibrium, the chemical potential of the particles are equal, the density is thus lower in the region with the
higher potential, and by definition there is no net current in the system. Remarkably, a single-file tracer
particle initially located at the origin, with position denoted by YðtÞ, exhibits an average uphill drift toward
the region of highest potential. This drift has the late time behavior hYðtÞi ¼ Ct1=4, where the prefactor
C depends on the initial particle arrangement. This surprising result is shown analytically by computing the
first two moments of YðtÞ through a simple and physically illuminating method, and also via extensive
numerical simulations.
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Single-file diffusion (SFD) is a model for the dynamics
of Brownian particles in a vast range of physical systems
where transport is effectively one dimensional. It describes
particles with hard-core repulsion that cannot bypass each
other, even in the pointlike limit. SFD has been extensively
studied from both theoretical [1–16] and experimental
[16–23] perspectives. This model plays a pivotal role in
characterizing transport in porous media [16] and along the
cytoskeleton [17], motion of colloids [18,19], drug delivery
devices [20], and even gene regulation [21].
From a theoretical point of view, SFD is an important

model for understanding the out-of-equilibrium dynamics
of interacting particle systems given its analytical tractabil-
ity. For a long time it has been known that a tracer particle
in SFD exhibits anomalous diffusion, having a mean-
squared displacement (MSD) which grows as t1=2 [1–3].
This dramatic slowing down of dispersion is due to the
dynamical caging effect by the surrounding particles. SFD
also exhibits other fascinating statistical phenomena.
It shows an everlasting dependence on the statistics of
the initial conditions [4,5], as well as a dependence on how
the two averages over thermal noise and initial conditions
are performed [6,7].
SFD has been extensively studied for homogeneous

environments. However, substrates like porous media
and DNA strands are inherently inhomogeneous due to
varying pore structures and codon sequences. This hetero-
geneity is exploited in applications, such as tailoring pore

sizes for controlled drug release [20] and influencing
“obstacle” protein binding rates to affect tracer sliding
speed [21]. Thus, investigating SFD in inhomogeneous
environments holds significant interest, as it may uncover
new useful phenomena.
Only a limited literature addresses SFD with space-

dependent external potentials and diffusivities. The few
techniques connect the tracer’s displacement to the statis-
tics of background particle crossings [7,24–26] or to the
distribution of an isolated particle [27–31] for systems that
are symmetric about the origin. In these cases, no new
SFD-related effects have been observed other than the
above, as at late times they either behave like SFD in an
homogeneous environment but with a rescaled diffusion
constant [7,26,28] or reach the boundaries of a confining
potential [28,29]. The surprising phenomenon we discover
in this Letter is facilitated by a single step potential arising
at the interface between two differing substrates.
To illustrate, shown in Fig. 1(a) is a sketch of an interface

between two porous media, where the pore size decreases
upon going from the medium on the left (L) to the right (R).
From entropic considerations, the equilibrium concentra-
tion of colloids per unit length will be higher in medium L.
Namely, in the dilute limit, the number of particles within a
channel is proportional to the free volume available for a
single particle, LπðRL=R − aÞ2, where L is the channels’
length and a and RR=L are the radii of the colloid and the
corresponding channel. Thus, the mean one-dimensional
particle densities in each bulk are ρ̄L=R ∼ ðRL=R − aÞ2,
which can be recast into a Boltzmann factor with the*Contact author: david.dean@u-bordeaux.fr
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effective potential ϕL=R ¼ −2β−1 lnðRL=R − aÞ, where
β ¼ 1=kBT is the inverse temperature. Therefore, in equi-
librium, the mean densities on either side are related via

ρ̄R
ρ̄L

¼ e−βðϕR−ϕLÞ; ð1Þ

as illustrated in Fig. 1(b). A variation in the composition of
the surrounding media will also lead to unequal effective
potentials, for example, via differences in the Van der
Waals interactions. The local diffusion constants, denoted
by DL=R, will also depend on the local environment, and in
particular on the pore radii. We will consider the case of
arbitrary values for ϕL=R and DL=R which are taken to be
uniform in each bulk [32], thus generating a steplike
difference in transport properties to the left and right.
The striking result of this Letter is that, for equilibrium

steplike initial condition, the position of the tracer particle
YðtÞ at late times still has an average drift. Moreover, this
drift is toward the region with the higher potential, and
scales as hYðtÞi ∼ t1=4 and occurs without a macroscopic
density current. We prove this result analytically and
confirm it by introducing a discrete simulation method
that is capable of capturing such late-time dynamics. We
also compute the MSD of the tracer and find the SFD
scaling hY2ðtÞic ∼ t1=2. The numerical prefactors for both
the drift and variance can be computed exactly; as in

previous studies on SFD in homogeneous systems, they
exhibit an everlasting dependence on initial conditions.
Theory—Theoretical approaches for the treatment of free

SFD (i.e., no interactions other than the hard-core repul-
sions) include, e.g., the macroscopic fluctuation theory
[7,33–35] and the Bethe ansatz for the full joint probability
density function [12,36]. Another, simpler approach
adopted here is based on a link between SFD and two
independent effusion problems [9,25]. This approach
precisely pinpoints the physical mechanism leading to
the uphill drift.
The key idea in the approach of Refs. [1,9] is that when

single-file particles cross, the hard-core constraint can be
imposed by relabeling the particles. This means that if all
the particles are assumed to be indistinct, the system
appears as if the particles do not interact with each other
but only with the externally applied potentials. Each
particle in the noninteracting system has a probability
density function pðx; tÞ which evolves according to the
Fokker-Planck equation

∂pðx; tÞ
∂t

¼ ∂

∂x

�
DðxÞ

�
∂pðx; tÞ

∂x
þ βpðx; tÞ dϕðxÞ

dx

��
: ð2Þ

Dðx < 0Þ ¼ DL, Dðx > 0Þ ¼ DR, ϕðx < 0Þ ¼ ϕL, and
ϕðx > 0Þ ¼ ϕR represents our model for diffusion of
noninteracting particles in two joined channels. Now, if
the single-file tracer particle is started at YðtÞ ¼ 0, then at
time t the number of particles to its left is conserved. This
can be shown to give the condition [7,25,26,37]

Z
YðtÞ

0

dxρðx; tÞ ¼
Z

0

−∞
dx½ρðx; 0Þ − ρðx; tÞ�: ð3Þ

Here, ρðx; tÞ ¼ P
N
n¼1 δ(x − XnðtÞ) is the stochastic density

field of the N background particles, positioned at fXnðtÞg.
We first simplify the right-hand side of Eq. (3). We

separate the number density field as ρðx; tÞ ¼ ρLðx; tÞ þ
ρRðx; tÞ where, by keeping track of the particle identities,
ρLðx; tÞ [ρRðx; tÞ] corresponds to the particles that start in
the left (right) medium at t ¼ 0. By definition, ρLðx >
0; 0Þ ¼ 0 [ρRðx < 0; 0Þ ¼ 0]. Therefore, NþðtÞ [N−ðtÞ],
the number of particle that started from the left (right) of the
interface at t ¼ 0 and appear in the right (left) medium at
time t, is given by NþðtÞ ¼

R
∞
0 dx ρLðx; tÞ [N−ðtÞ ¼R

0
−∞ dx ρRðx; tÞ]. Notice that

R
∞
0 ρLðx; tÞ þ

R
0
−∞ ρLðx; tÞ ¼R

0
−∞ ρLðx; 0Þ, with which we relate the right-hand side of
Eq. (3) to the number of crossings [37],Z

0

−∞
dx½ρðx; 0Þ − ρðx; tÞ� ¼ NþðtÞ − N−ðtÞ: ð4Þ

We now consider the left-hand side of Eq. (3) and make
the assumption that jYðtÞj becomes large with time. This
means that we can apply the law of large numbers to the

(a)

(b)

FIG. 1. (a) Illustration of an interface between two particle-
laden porous media at steplike equilibrium conditions. The pores
are so narrow that particles cannot overtake one another [16]. The
pores within medium L (left) are wider than in medium R (right).
(b) The average one-dimensional concentration profile ρ̄ðxÞ
across the interface. In equilibrium, the medium with the larger
pores has the larger particle concentration according to
e−βðϕR−ϕLÞ ¼ ðRR − aÞ2=ðRL − aÞ2, where RL=R and a are the
pores’ and the tracer’s radii. The average number of particles
crossings from left to right, hNþi, and from right to left, hN−i, are
equal in equilibrium.
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left-hand side of Eq. (3) and replace it with its average for a
fixed big YðtÞ [9,25]. Since the average densities start with
their equilibrium values, the average value of ρðx; tÞ does
not evolve in time and we can write

Z
YðtÞ

0

dx ρðx; tÞ ≃ ρ̄RYðtÞΘ½YðtÞ� þ ρ̄LYðtÞΘ½−YðtÞ�; ð5Þ

where Θ is the Heaviside step function. According to the
central-limit theorem (CLT), the corrections are
O½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̄RYðtÞ
p � for YðtÞ > 0 and O½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ρ̄LYðtÞ
p � for YðtÞ < 0.

Inserting Eqs. (4) and (5) into Eq. (3), we find the late-
time relation between the motion of the single-file tracer
and the number of crossings,

ρ̄RYðtÞΘ½YðtÞ� þ ρ̄LYðtÞΘ½−YðtÞ� ¼ NþðtÞ − N−ðtÞ: ð6Þ

Equation (6) implies that a positive displacement, YðtÞ > 0,
arises from more crossing rightward than leftward,
NþðtÞ > N−ðtÞ, and vice versa. We use this to rearrange
Eq. (6) so as to express YðtÞ explicitly in terms of the
number of crossings,

YðtÞ ¼ ½NþðtÞ − N−ðtÞ�
ρ̄R

Θ½NþðtÞ − N−ðtÞ�

−
½N−ðtÞ − NþðtÞ�

ρ̄L
Θ½N−ðtÞ − NþðtÞ�: ð7Þ

This simple equation elucidates all the phenomena we will
discuss in the following. From Eq. (7), we will see that
hsign½YðtÞ�i ¼ 0, corresponding to zero current (the tracer
is equally likely to go to the left or right) while the
difference in ρ̄R and ρ̄L (and the appearance of the functions
Θ½NþðtÞ − N−ðtÞ� and Θ½N−ðtÞ − NþðtÞ�) leads to a non-
zero drift. In other words, while the crossings to either
right [NþðtÞ > N−ðtÞ] or left [NþðtÞ < N−ðtÞ] occur with
the same probabilities at equilibrium, the distance that
the tracer moves into each bulk per crossing is bigger in the
more dilute region. This point succinctly explains the
physical mechanism behind the surprising nonzero tracer
uphill drift without current that we report here. The rest of
the analysis relies on obtaining the statistics of YðtÞ in terms
of the two, known, independent statistics of N�ðtÞ [25].
In what follows, we will consider two types of initial

conditions. The first is ideal-gas initial conditions, where
the system is in perfect equilibrium having identical and
independent uniform distribution for all the particles
according to each bulk’s density [41]. The average over
the full statistics of the equilibrium initial configuration in
this case will be denoted by hiid. The second is perfect
crystalline initial conditions, where the particles are set up
with the equilibrium densities to the left and right of the
origin but are equally spaced in a lattice, whose averages
we will denote as hicr. In both cases we write the average

initial densities to the left and right in the equilibrium
form ρ̄L=R ¼ ρ̄0e−βϕL=R .
We shall compute the first two moments, hYðtÞi and

hY2ðtÞic ¼ hY2ðtÞi − hYðtÞi2 of the single-file tracer’s
motion. For the ideal-gas initial conditions, we find [37]

hYðtÞiid ¼ ½eβðϕR−ϕLÞ − 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ρ̄0

ffiffiffiffiffiffi
D1

π

rs
t1=4; ð8Þ

hY2ðtÞic;id ¼
2

ρ̄0

ffiffiffiffiffiffi
D2

π

r
t1=2; ð9Þ

where

D1 ¼
DRDL

π2½eβðϕR−ϕLÞ ffiffiffiffiffiffiffi
DL

p þ ffiffiffiffiffiffiffi
DR

p �2 ; ð10Þ

D2 ¼ D1

�½e2βðϕR−ϕLÞ þ 1�ðπ − 1Þ þ 2eβðϕR−ϕLÞ�2: ð11Þ

On the other hand, for the crystalline initial conditions (and
the quenched statistics [37]) we find the simple relations

hYðtÞicr ¼ hYðtÞiid=21=4; ð12Þ

hY2ðtÞic;cr ¼ hY2ðtÞic;id=21=2; ð13Þ

which generically appear in SFD problems [4–7]. We see
that the drift in both cases is in the direction of the higher
potential, thus confirming the phenomenon of uphill drift
for preequilibriated SFD in the model of connected pores
presented here. One should note that according to Eq. (7),
in both ideal gas and crystalline cases, hsign½YðtÞ�i ¼ 0,
that is to say the tracer is equally likely to move to the left or
right. The effective drift seen is solely due to the lesser
crowding in the region of higher potential and thus
excursions of the tracer into this region typically go further.
This crowding was shown to play a crucial role in the gene
expression mechanism [21].
Before proceeding to the simulation, we briefly examine

the case of a single isolated particle placed at the origin.
The Fokker-Planck equation (2) can be solved [37,42] and
the first two moments computed,

hXðtÞi ¼ 2
DR=DL − eβðϕR−ϕLÞ

ðDR=DLÞ1=2 þ eβðϕR−ϕLÞ

ffiffiffiffiffiffiffiffi
DLt
π

r
; ð14Þ

hX2ðtÞic ¼ 2

�ðDR=DLÞ3=2 þ eβðϕR−ϕLÞ

ðDR=DLÞ1=2 þ eβðϕR−ϕLÞ

−
2

π

�
DR=DL − eβðϕR−ϕLÞ

ðDR=DLÞ1=2 þ eβðϕR−ϕLÞ

�
2
�
DLt: ð15Þ

Equation (14) shows that a free particle in an infinite system
can also drift to the right if DR=DL − eβðϕR−ϕLÞ > 0, that is,
if DR is sufficiently large. However, a single-file tracer will
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always drift toward the region of higher potential at late
times, regardless of the values of the diffusivities (assuming
both diffusivities are nonzero).
Simulation—Given the rather surprising nature of our

analytical predictions, we have performed numerical simu-
lations of both the ideal-gas and crystalline initial conditions.
First, note that the relative error due to the CLT decays rather
slowly (as t−1=4), implying that the finite-time effects are
significant [30]. In addition, the discontinuities in DðxÞ and
ϕðxÞ renders the numerical simulation rather subtle [42]. This
pair of challenges is particularly tricky, since we need both
extensive numerical simulations to attain the late-time regime
as well as a reliable short-ranged smoothing of ϕðxÞ.
To address these issues, we devised an alternative

method based on a discrete random walk model that
converges to Eq. (2) for small lattice spacing ϵ. (See details
in Supplemental Material [37]. There we confirm that the
simulation accurately reproduces the isolated particle and
particle-crossing statistics.) It has two key advantages. As a
lattice model, the discontinuity is just a finite change in

ϕðxÞ and DðxÞ over a small ϵ. Second, due to the self-
similarity of Eq. (2), the spacing can be increased as
ϵ ∼ t1=2f for an arbitrarily long run-time tf without sacri-
ficing accuracy. Upon simulating many isolated random
walkers, the SFD constraint is then simply imposed by
sorting their positions [9,25]. To avoid finite sized effects in
SFD, the number of background particles must be increased
as t1=2f , which is thus the only added cost of a longer
simulation. To our knowledge, the simulation used here has
not been implemented before. It proves to be considerably
faster than the underdamped method of Ref. [42].
Shown in Fig. 2 is the late-time drift and MSD for a

single-file tracer for both the ideal-gas and crystalline initial

(a)

(b)

FIG. 2. (a) Drift hYi and (b) mean-squared displacement hY2ic
for the single-file tracer in the longest simulation, with ideal-gas
(“id,” blue circles) and crystalline (“cr,” empty green circles)
initial conditions. The simulation results are depicted by the
labels indicated in panel (a), while the immediately adjacent lines
are the theoretical predictions [Eqs. (8), (12), (9), and (13)].
Parameter values: DL ¼ 1, βϕL ¼ 0, ρ̄L ¼ 1.59, and DR ¼ 2,
βϕR ¼ 1, and ρR ¼ 0.584. Each data point is obtained from
4 × 104 samples.

(a)

(b)

FIG. 3. (a) Drift hYiid and (b) mean-squared displacement
hY2ic;id for single-file tracer with ideal-gas initial conditions
across many timescales. The transition from the independent
normal diffusion to SFD is clearly seen in the drift turning
positive after starting with a negative value. The blue points are
given by the simulations, while the black lines are the theoretical
predictions for the asymptotic single-file motion [Eqs. (8) and
(9)] and the black dashed lines are the theoretical predictions for
the diffusion of an isolated particle [Eqs. (14) and (15)].
Parameter values: DL ¼ 1, βϕL ¼ 0, ρ̄L ¼ 2.515, and DR ¼ 3,
βϕR ¼ 3, and ρR ¼ 0.125. Each data point is obtained from
2 × 104 samples.
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conditions with DR=DL ¼ 2 and βðϕR − ϕLÞ ¼ 1. The
results of the simulation are shown by points, while the
analytical late-time predictions, Eqs. (8), (12), (9), and (13),
are shown with lines. We see a good agreement with the
analytical results in both cases. Most importantly, Fig. 2(a)
unequivocally shows the existence of a mean uphill drift.
In Fig. 3 we show the drift and MSD from simulations

of ideal-gas initial conditions with DR=DL ¼ 3 and
βðϕR − ϕLÞ ¼ 3, over a large range of timescales. At late
times, it also demonstrates the convergence to the asymp-
totic analytical predictions [Eqs. (8) and (9)]. Note that our
choices for DR=DL and βðϕR − ϕLÞ are a “worse-case
scenario” for the uphill (rightward) single-file drift, as an
isolated tracer starting at the origin would move downhill
(or leftward) according to Eq. (14). Strikingly, indeed the
short-time (free-particle-like) drift is negative as shown in
Fig. 3(a) along with the theoretical prediction [Eq. (14)],
the two being in excellent agreement. Reassuringly,
Fig. 3(b) also shows a short-time normal-diffusive regime
[which agrees perfectly with Eq. (15), the free-particle
MSD]. Thus, the tracer behaves as if it is isolated at short
times, and has a downhill bias for these “worse-case
scenario” parameters. It is only later that the single-file
nature of the problem becomes dominant, at which point
the uphill bias kicks in.
Conclusions—We showed that a single-file tracer at the

junction between two channels having different potentials
and diffusion constants will exhibit an effective late-time
drift toward the channel of higher potential. This drift
occurs without any associated density current as the
probability that the particle moves in either direction is
1=2. This effect has been shown from both an illuminating
theoretical construction as well as a late-time simulation
which is particularly useful for SFD on inhomogeneous
substrates. Thus, we achieve a situation where, on average,
a desired tracer penetrates deeper into the higher-energy
bulk without particles accumulating in that medium.
In previous studies spontaneous local drift without flux

has been seen for individual Brownian particles with a
spatially varying diffusion coefficient, where the so-called
spurious drift acts as a real force [43–45]. A phenomenon
also referred to as “uphill diffusion” can occur in interact-
ing particle systems when there is a net current toward the
region of higher density [46]. The effect seen here is the
opposite—motion of particles toward dilute regions
(namely, “uphill” here refers to the hill given by the
potential). We also note that for SFD in a periodic potential
but driven by a constant applied force, a constant drift
against the direction of the applied force has been observed
in simulations [47,48]. However, the drift reported in this
Letter is a purely equilibrium one with a very different
temporal dependence.
There are potentially several situations where uphill drift

may play a central role, for instance protein crowding may
lead to sliding toward target regions on the DNA [21].

In our treatment, we ignored the finite size of the particles,
hydrodynamic effects [10,19], and the finite-time correc-
tions [24], which are interesting questions for further
theoretical study. Finally, it should be feasible to study
such systems experimentally, for instance at the junction of
two microfluidic channels.
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