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Confinement is a pivotal phenomenon in numerous models of high-energy and statistical physics. In this
study, we investigate the emergence of confined meson excitations within a one-dimensional system,
comprising Rydberg-dressed atoms trapped and coupled to a cavity field. This system can be effectively
represented by an Ising-Dicke Hamiltonian model. The observed ground-state phase diagram reveals a
first-order transition from a ferromagnetic-subradiant phase to a paramagnetic-superradiant phase. Notably,
a quench near the transition point within the ferromagnetic-subradiant phase induces meson oscillations in
the spins and leads to the creation of squeezed-vacuum light states. We suggest a method for the photonic
characterization of these confined excitations, utilizing homodyne detection and single-site imaging
techniques to observe the localized particles. The methodologies and results detailed in this Letter are
feasible for implementation on existing cavity-QED platforms, employing Rydberg-atom arrays in deep
optical lattices or optical tweezers.
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Introduction—The strong nuclear force bounds elemen-
tary particles with increasing strength with distance and
appears between quarks to form, e.g., protons, neutrons,
mesons, etc. Because of that, quarks are not found in
isolation, a phenomenon called confinement. In con-
densed matter systems the confinement effect exists in
low-dimensional-spin excitations [1–5], also referred to as
meson excitations [2], and their presence are known to
change qualitatively the spreading of correlations.
Interestingly, such an effect was experimentally observed
in the CaCu2O3 crystals probed by neutron scattering
measurements and mathematically modeled by a weakly
coupled spin ladder [6]. Neutron scattering was later used
to observe confinement in the quasi-one-dimensional
ferromagnet CoNb2O6, and that could be well described
by a transverse-field Ising model in the presence of a
weak-longitudinal field [7]. More recently, advances in
quantum technology allowed the creation and manipula-
tion of confined spin excitations in a trapped-ion quantum
simulator [8,9]. Recent studies have extended this under-
standing to include scattering events and dynamical
formation of novel hadronic states in quantum spin chains
with long-range interactions, opening new avenues in the
simulation of quantum chromodynamics using trapped-
ion or Rydberg-atom setups [10,11].
Our study introduces a novel approach to investigate

confinement, employing a hybrid quantum device that
utilizes a finite-range interacting spin chain coupled to a
cavity field after a quantum quench. This method offers a
fresh perspective on confinement dynamics, distinct from

previous studies. The experimental realization of the model
involves neutral atoms, which are excited to Rydberg
states via far-off-resonant processes [12–15]. This specific
experimental setup has been proposed to explore and
elucidate exotic many-body quantum phases [12,16–19].
Furthermore, this arrangement has shown promise for the
generation of states with significant metrological applica-
tions [20–26]. The confinement of these Rydberg atoms is
achieved through their localization in optical lattices [27]
or within tweezer arrays with programmable geometries
[28,29]. A pivotal aspect of this configuration is the
interaction between the Rydberg atom arrays and a single
mode of a cavity field which represents a significant
advancement in understanding and controlling confined
spin and photon excitations, a core novelty of our research.
Model and symmetries—The quantized transverse

field Ising model (QTFIM) [30] combines two well-known
models: the Ising and the Dicke model, HQTFIM ¼
HIsing þHDicke. The one-dimensional (1D) Ising model
describes the exchange interaction between spins positioned
along a chain

HIsing ¼ −Jz
X
n

σznσ
z
nþ1; ð1Þ

where Jz > 0 denotes the strength of the ferromagnetic
interaction, and σzn represents the z-spin projection of the nth
spin. The Dicke model describes the light-matter interaction,
specifically a single photon mode interacting uniformly with
the spin chain as
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HDicke ¼ ωzSz þ
gffiffiffiffiffiffi
Ns

p ða† þ aÞSx þ ωaa†a; ð2Þ

where Sα ≡P
i σ

α
i =2 and Ns represents the total number of

spins. The frequency splitting between atomic levels and the
photon frequency are characterized by ωz and ωa, respec-
tively. Note that, when combined, the ωzSz term acts as a
longitudinal-magnetic field for the Ising model, whereas g
represents the strength of a transverse-magnetic field for the
spins. The cavity field is characterized by the quantized term
ða† þ aÞ, which distinctively differentiates this from the
well-known transverse-field Ising model (TFIM). A similar
model for light-matter interaction was studied in Ref. [31],
where, instead, the coupling acts as an effective longitudinal-
magnetic field for the spins.
The TFIM exhibits a Z2 symmetry, σzn → −σzn, leaving

the Hamiltonian invariant. This symmetry is explicitly
broken in the presence of the longitudinal field ωzSz.
The Dicke model is invariant under the simultaneous
transformation a → −a and Sx → −Sx. This symmetry
results in vanishing magnetization along the x direction.

Phase diagram—The TFIM undergoes a second-order
phase transition, induced by the transverse field, where
the Z2 symmetry is spontaneously broken leading to a
ferromagnetic phase [32]. For vanishing ωz, the QTFIM
resembles the TFIM, with the transverse field being
quantized via the operators ða† þ aÞ. However, the
QTFIM exhibits a first-order phase transition, whereby
the increasing coupling strength g causes the system
to transition from a ferromagnetic-subradiant phase
(characterized by the absence of photon creation) to a
paramagnetic-superradiant phase (where photons are col-
lectively created by all spins) [30,33]. The complexity of
the model increases substantially in the presence of an
additional longitudinal field [34,35], with a well-defined
phase diagram only known for a random distribution of
the field [36–38]. Contrastingly, we show that the same
does not apply to the QTFIM. Indeed, the first-order phase
transition remains robust in the presence of ωzð≠ 0Þ.
From an exact diagonalization analysis of theHQTFIM, we

calculated the photon number ha†ai in the ground state for a
range of values ðωz; g2Þ. The number of photons serves as
the order parameter, being zero in the ferromagnetic phase
and finite in the superradiant phase, see Fig. 1(b). See [39]
for a detailed analysis of the phase transition point. Further
insight into this transition is obtained from the mean-field
treatment, as discussed in the following sections.
Mean field—The thermodynamic partition function can

be approximated in the mean-field approach as

Z ¼ lim
Ns→∞

Tr½e−βHQTFIM �;

¼ lim
Ns→∞

ffiffiffiffiffiffi
Ns

βπ

s Z
dx exp ½Nsfðx;mzÞ�; ð3Þ

where

fðx;mzÞ≡ ð−βωax2 þ ln ½2 cosh ðβγ=2Þ� − βJzm2
zÞ; ð4Þ

and x≡ Re½α�= ffiffiffiffiffiffi
Ns

p
with α denoting the photo-

nic coherent state ajαi ¼ αjαi. We define γ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2gxÞ2 þ ð4Jzmz − ωzÞ2

p
, representing the combined

effects of interaction strengths and magnetization, with
mz being the magnetization along the z direction. See [39]
for the complete derivation of Eq. (3). In the thermody-
namic limit, Laplace’s method [45,46] enables the deter-
mination of the optimal Gibbs-free energy by minimizing
fðx;mzÞ with respect to x and mz. The results are depicted
in Fig. 2. A clear phase transition is evident, indicated by a
discontinuity in x and mz; this discontinuity corresponds to
the black line in Fig. 1(b).
Quench dynamics and confinement—Finite-system size

effects tend to smooth the first-order mean-field transition
curves into a continuous change of the order parameter and
magnetization [39]. This phenomenon allows for a few spin

FIG. 1. (a) Illustration representing an array of atoms (blue)
trapped by optical tweezers within an optical cavity with loss rate
κ. (b) Phase diagram of the QTFIM for the spin-excitation
frequency ωz and spin-light interaction strength g. The colors
represent the photon number ha†ai, computed by exact diagonal-
ization of HQTFMI for Ns ¼ 10 (truncating the photon basis to
Np ¼ 50). The photon number is the order parameter for
the transition between a ferromagnetic phase (with ha†ai ¼ 0

and hσzr0i ¼ −1) and a superradiant phase (with ha†ai ≠ 0 and
hσzr0i ≠ −1). The black line indicates the phase transition obtained
from the mean-field approach. The brown dots and arrow refer to
the quench dynamics discussed in the main text.
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flips and the emergence of a few photon modes near the
transition line. In this study, we have examined the quench
dynamics of spin excitations in the QTFIM near transition.
Specifically, we start the system in the ferromagnetic phase
and then abruptly shift it toward the transition line [this
quench is represented in Fig. 1(b)] by increasing the spin-
photon coupling g and introducing the frequency splitting
ωz. In a competing fashion, the parameter g facilitates spin
flips in the z basis and photon creation, while ωz promotes
the alignment of all spins.
Similar to the TFIM, small clusters of spin excitations

tend to remain confined within small regions, and the
dynamics is characterized by oscillations in the size of these
clusters. In the QTFIM, this dynamics can be tracked via
the number of photons ha†aiðtÞ and the total magnetization
hσzr0iðtÞ at time t, as shown in Fig. 3. We observe a decrease
in the magnetization followed by an increase in the photon
number. Also, the oscillations exhibit two characteristic
frequencies, i.e., a fast oscillation modulated by a slower
one. The fast oscillation is nearly insensitive to the system
size, while the slower one is strongly dependent, as
illustrated in Fig. 4. These frequencies can be determined
by taking the Fourier transform

ha†aiðωnÞ ¼
1

N

X
k

e−iωntkha†aiðtkÞ; ð5Þ

where N is the number of terms in the sum, ωn=Jz ¼ n,
and Jztk ¼ 2πk=N . The indexes run over n; k ¼
1; 2;…;N . The fast oscillation frequency is discerned
from the highest peak in the Fourier transformation, as
depicted in Fig. 4(b). Confinement of spin excitations is
evident by computing the connected correlation function
(using periodic boundary conditions), hσzr0σzr0þric ≡
hσzr0σzr0þri − hσzr0ihσzr0þri. Figure 4(c) shows a synchron-
ized increase of the correlations with photon creation
over time.
Characterization of the photonic field—We now turn our

attention to analyzing the quench dynamics by examining
the photonic properties. We compute the dynamics of the
Wigner function of the photonic field, initially in a vacuum
state, which is a Gaussian distribution centered at zero. We
observe “breathing” oscillations of the Wigner function,
which undergo oscillations and rotations in the phase
space [47], as illustrated in Figs. 5(a) and 5(b).
We monitor the degree of squeezing, measurable by the

function ζB [48]

ζ2B ¼ 1þ 2ðha†ai − jhaij2Þ − 2jha2i − hai2j: ð6Þ

The condition for squeezing is ζ2B < 1, as shown in
Fig. 5(c). Additionally, we observe oscillations in the
photon number distribution, attributed to interference in
phase space between the ground and squeezed vacuum
states [49,50], as shown in Fig. 5(f). The dynamics of the
gð2ÞðτÞ correlation function [51]

gð2ÞðτÞ ¼ ha†ð0Þa†ðτÞaðτÞað0Þi
ha†ð0Það0Þi2 ; ð7Þ

FIG. 2. The mean-field phase diagram for the (a) photon-
coherent state x and (b) magnetization mz as a function of the
coupling strength g and the spin-excitation frequency ωz. The
transition is identified by the sudden change of colors, corre-
sponding to the black line in Fig. 1(b). The lower plots show cuts
(fixed values of ωz) in the upper plots. Note that for ωz ¼ 0, the
magnetization mz is zero on the right side of the transition.
However, for jωzj > 0, themz shifts from unity to a finite value; a
similar, albeit slower, trend is observed for x.

FIG. 3. Quench dynamics of the photon number and z mag-
netization, respectively, for Np ¼ 30 for the photon and Ns ¼ 14

for the spin. We set Jz ¼ ωa. The quench parameters are
ðωz; g2Þ ¼ ð0; 2Þ → ð0.5; 4Þ and are signaled in Fig. 1. The
dynamics are characterized by a rapid oscillation (with a period
of ΔJzt ≈ 10) modulated by a longer-period oscillation (with a
period of ΔJzt ≈ 300).
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is depicted in Fig. 5(h). We note that gð2ÞðτÞ > gð2Þð0Þ for
any time τ.
Open system dynamics—We express the master equation

as ∂tρ ¼ −ði=ℏÞ½HQTFIM; ρ� þ L½ρ� [52,53], incorporating
the Lindbladian

L½ρ� ¼ γ
X
n

�
σ−nρσ

þ
n −

1

2
fσ†nσ−n ; ρg

�

þ 2κ

�
aρa† −

1

2
fa†a; ρg

�
; ð8Þ

with κ denoting the leakage rate and γ the atomic-decay
rate. The first term accounts for independent atomic decay
(σ−n ), while the second term represents photon leakage from
the cavity (a) due to imperfect mirrors, characterized by
rate κ.
In Fig. 6, we examine these decay processes and

compare the results with the dynamics of the closed system,
using the same quench parameters as in Fig. 1(b). The
closed system (γ ¼ κ ¼ 0) exhibits photon number and
magnetization oscillations, consistent with the confinement
effect described earlier. Including cavity leakage in the time
evolution reveals that the confinement-induced oscillations
are suppressed. Interestingly, the equilibrium state retains a
finite photon number, indicating that the system remains in
the superradiant phase. Conversely, atomic decay exerts
a less dramatic effect on the dynamics, allowing the

FIG. 4. (a) The same results as in Fig. 3(a) but for various
system sizes. Note that the fast-oscillation period is nearly
independent of the system size, while its modulation’s period
increases with the system size. The legends follow panel (b),
which displays their respective Fourier transformation, with
N ¼ 3000. The highest peak, indicated by the blue-vertical-
dashed line, marks the frequency ω=Jz ≈ 0.08N associated with
the fast oscillation. (c) The connected spin-spin correlation
function during the quench dynamics. Observe that the correla-
tions remain short ranged in space (at a distance r between any
two sites), indicating the confinement of the excitations, and that
the correlation approaches zero every time the system nears the
magnetic phase, with ha†ai ¼ 0. Periodic-boundary conditions
were used for the exact diagonalization.

FIG. 5. Wigner function at Jzt ¼ 163 (a) and Jzt ¼ 167
(b) where the minimum and maximum photon excitation happen,
respectively. The oscillation is accompanied by a squeezing in
the photonic state. The squeezed vacuum state is characterized
by the squeezing factor ζ2B < 1 shown in (c). For a better
understanding of the photonic and magnetic states, we show
the Fock number (F.n.) and the spin configuration (s.c.) in panels
(d) and (e), respectively, for the same parameters as in (a). The (f)
and (g) panels show analogous results but for the same
parameters as in (b). Observe in panel (f) the pairwise creation
of photons (0; 2; 4;… photons), favoring over single photon
creation. Finally, the quench is characterized by a correlation
function gð2ÞðτÞ > gð2Þð0Þ at any instant τ, as seen in (h), where
the red-dashed line is 1=Ns for Ns ¼ 6.
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oscillations to persist and resulting in a longer equilibration
time, and much higher photon number. When both effects
are present, the cavity leakage dominates over the atomic
decay, i.e., the oscillations are strongly suppressed and the
system quickly converges to a steady state [39].
Conclusions—This study represents a significant

advancement in the understanding of confinement dynam-
ics in quantum spin systems, particularly in the context of
their interaction with cavity fields. We have explored the
equilibrium phase diagram and the dynamics of confine-
ment in such systems. Our work integrates the effective
spin-spin interactions among Rydberg atoms with the
Dicke model in a cavity-assisted setting, paving the way
for novel experimental investigations in quantum many-
body physics.
The feasibility of this model is further underscored by its

compatibility with existing experimental platforms, and the
theoretical model is shown to be realizable with a Rydberg-
dressed chain of atoms coupled to a cavity field. Finally, we
highlight that the confinement effects unveiled in this
research can be detected through optical readout, utilizing
photon-cavity leakage, or via single-site imaging tech-
niques. These methods are applicable to current experi-
mental setups involving neutral-atom arrays, showcasing
the broad applicability and potential impact of our findings
in the field of quantum physics.
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