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We propose heterostructures that realize first and second order topological superconductivity with
vanishing net magnetization by utilizing altermagnetism. Such platforms may offer a significant
improvement over conventional platforms with uniform magnetization since the latter suppresses the
superconducting gap. We first introduce a 1D semiconductor-superconductor structure in proximity to an
altermagnet that realizes end Majorana zero modes (MZMs) with vanishing net magnetization. Addi-
tionally, a coexisting Zeeman term provides a tuning knob to distinguish topological and trivial zero modes.
We then propose 2D altermagnetic platforms that can realize chiral Majorana fermions or higher order
corner MZMs. Our Letter paves the way toward realizing Majorana boundary states with an alternative
source of time-reversal breaking and zero net magnetization.

DOI: 10.1103/PhysRevLett.133.106601

Realizing a topological superconductor (TSC) has been a
driving force in the development of topological phases of
matter, motivated by producing Majorana states for quan-
tum computation [1–4]. While intrinsic realizations remain
elusive, much research has been devoted to engineering
hybrid platforms that realize TSCs in 1D nanowires and 2D
heterostructures [5–14].
The three main ingredients in these platforms are

superconductivity, spin-orbit coupling, and a time-reversal
breaking element (e.g., an applied magnetic field, an
adjacent ferromagnet, or magnetic adatoms). However, des-
pite intense efforts, a definitive realization of Majorana
qubits is still lacking [15–18]. The main challenges are
(i) the detrimental effect of disorder, which can create
accidental states below the superconducting gap that are
difficult to distinguish from protected Majorana zero modes
(MZMs), and (ii) control of the proximity-induced super-
conducting gap, which is typically suppressed by the time-
reversal breaking element.
In this Letter, we introduce a new platform to address

both problems by realizing MZMs in a system with
vanishing net magnetization, which allows further tuna-
bility with a Zeeman field that can distinguish disorder-
induced subgap modes from topological MZMs. The new
ingredient is altermagnetism. Altermagnets are a class of
collinear antiferromagnets with a momentum-dependent
magnetic order parameter [19,20] that have recently
attracted attention [21–27], though they have been studied
previously as Fermi surface instabilities [28]. Crucially,
despite their vanishing magnetization, altermagnets can

generate sizable spin splitting, which changes sign in
different regions of the Brillouin zone (BZ). For the sake
of concreteness, we here focus on a d-wave magnetic order
parameter, which describes the order of, e.g., RuO2 [20].
However, the route we propose should generalize to order
parameters with higher angular momenta.
We show that 1D and 2D TSCs hosting MZMs and chiral

Majorana fermions (CMFs), respectively, can be realized in
heterostructures where an altermagnet replaces the time-
reversal breaking element. In addition to MZMs and CMFs,
this platform can also realize higher order topological
insulator (HOTI) and higher order TSC phases in two
dimensions. Importantly, in one dimension a weak uniform
magnetization or Zeeman field provides a knob to distin-
guish disorder-induced midgap states from protected
MZMs.
Majorana nanowire: MZMs without magnetic field—We

first consider a 1D semiconducting (SM) nanowire on the
surface of an altermagnet and in proximity to an s-wave
superconductor (SC), shown in Fig. 1(a). The Bogoliubov–
de Gennes (BdG) Hamiltonian of the nanowire can be
written as

hðkÞ¼ �
ϵðkÞþλR sinðkÞσ2þJA cosðkÞσ3

�
τ3þΔτ2σ2; ð1Þ

where ϵðkÞ ¼ t cosðkÞ − μ, τ and σ are Pauli matrices in
Nambu and spin space, respectively, t is the hopping
strength, λR is the strength of the Rashba spin-orbit
coupling, and JA and Δ denote the proximity-induced
altermagnetism and superconducting pairing, respectively.
Importantly, the induced altermagnetism in the wire is
specific to coupling to a dx2−y2-wave altermagnet and
depends sensitively on the orientation of the altermagnet:*Contact author: sayedaliakbar.ghorashi@stonybrook.edu
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a dxy-wave altermagnet yields JA ¼ 0, incompatible with
MZMs (see Appendix A [29]). This crystal anistropy is
intrinsic to altermagnets and can provide improved detec-
tion and characterization of MZMs. Later we will show a
similar angular dependence in two dimensions. Therefore,
introducing altermagnetism adds crystal anistropy as a
novel tuning knob for designing topological super-
conductors.
The Hamiltonian is in class BDI, which has a Z classi-

fication; this effective Hamiltonian has more sym-
metry than the physical quasi-1D nanowire, which is in
class D [30–33]. It is topologically nontrivial whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðt − μÞ2

p
< JA <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðtþ μÞ2

p
, where, despite

vanishing net magnetization, a finite-sized wire hosts
MZMs at its ends, shown in Fig. 2(a). Similar to the case
of uniform magnetization, MZMs arise when the nanowire
has an odd number of partially filled subbands gapped by
the superconductivity. By eliminating the net magnetiza-
tion, the altermagnetic heterostructure offers a significant
improvement over uniform magnetization, which sup-
presses the superconducting gap [16,34]. Furthermore,
ignoring this effect and assuming the same value of Δ in
Eq. (1), we show in Appendix B [29] that the topological
gap in a heterostructure with an altermagnet generically

exceeds that for uniform magnetization. Therefore, alter-
magnetism may provide a more robust topological phase
compared to uniform magnetization. The effectiveness of
the altermagnet in replacing the ferromagnet relies on it not
vanishing on generic Fermi surfaces; this is the crux of
designing TSCs with altermagnets, as will become more
clear when we consider 2D models.
While our altermagnet can directly reproduce the MZMs

seen in ferromagnetic systems, we also find phenomena
that distinguish the two. One example is the dependence of
the Zeeman term on the orientation of the wire, as
mentioned below Eq. (1). Second, Fig. 2(b) shows the
open boundary spectrum as a function of μ for jJAj > jtj,
α ¼ 0.5t, Δ ¼ 0.3t. In this regime, the altermagnetism,
combined with the Rashba term, generates a nontrivial
Su-Schrieefer-Heeger [35] phase in the normal state, i.e.,
the two normal-state bands each have a π Berry phase.
When μ is in the insulating gap, the resulting super-
conducting phase will have a pair of MZM end states
arising from the single complex fermion bound state in the
normal state. Generically, these MZMs couple and open a
gap. However, if μ is tuned so that the edge modes in the
normal state are at zero energy, which occurs at μ ¼ 0 for
the Hamiltonian in Eq. (1), then the resulting MZMs will be
degenerate, as in Fig. 2(b). If jtj > jJAj, there is generically
an indirect gap closing for μ ∼ 0 and no boundary MZMs.
Note this physics does not occur in uniform magnetization,
for which the normal phase is a trivial 1D insulator when
magnetism is stronger than t.
Importantly, our model in Eq. (1) also has a useful

sensitivity to an applied magnetic Zeeman field. Explicitly,

FIG. 1. Proposed setups using altermagnets to realize topologi-
cal superconductivity with vanishing net magnetization. (a) A 1D
altermagnet-semiconductor (SM)-superconductor (SC) wire hosts
single (shaded area) and multiple (along μ=t ¼ 0; red line shows
the boundary) MZMs, also indicated by red stars on right. (b) 2D
altermagnet-SC and altermagnet-SC-3D topological insulator (TI)
heterostructures generate chiral Majorana modes. (c) An alter-
magnet-SC-2D TI heterostructure hosts corner MZMs.

FIG. 2. Spectra of a nanowire heterostructure with vanishing
net magnetization. (a) Finite-size spectrum of SC-proximitized
nanowire vs μ with λR ¼ 0.5t, JA ¼ 0.5t, Δ ¼ 0.3t; red lines
show MZMs; inset shows the LDOS of MZMs. (b) Finite-size
spectrum with λR ¼ 0.5t, JA ¼ 1.2t, Δ ¼ 0.3t; inset spectrum vs
JA (μ ¼ 0) where green lines show twoMZMs. (c) Bulk spectrum
of nanowire with λR ¼ 0.6t, JA ¼ 1.2t, JZ ¼ t (solid), and Jz ¼ 0
(dashed) and (d) the corresponding finite-size spectra for solid
lines in (c) vs μ with Δ ¼ 0.1t. MZMs appear only when the
chemical potential resides in the dispersive blue band in (c) [blue
box in (d)].

PHYSICAL REVIEW LETTERS 133, 106601 (2024)

106601-2



consider a weak external magnetic field, which induces a
Zeeman term JZB̂ · σ in the normal state. The application of
a Zeeman field parallel to the altermagnet axis tunes the
bandwidth of the subbands: Fig. 2(c) shows a generic
regime where a Zeeman field parallel to the altermagnet
axis can suppress the bandwidth and flatten one of the spin-
split subbands. This should be contrasted with the ferro-
magnetic case where a Zeeman field perpendicular to the
Rashba term will modify the spin-split subband gaps, but
will not exhibit such bandwidth tuning. As a consequence
of the band flattening, the open-boundary spectra in
Fig. 2(d) exhibit a dramatic asymmetry as a function of
μ, displaying narrow and wide topological regions corre-
sponding to gating into the narrow or wide subbands in
Fig. 2(c). When μ is in the narrow band, the presence of
MZMs can be easily tuned using a weak Zeeman field.
Since spurious subbgap states created by nonmagnetic
disorder will not be as sensitive to the applied field, this
effect distinguishes nontopological and topological bound
states. A Zeeman field perpendicular to the altermagnetic
axis does not show a similar effect.
Chiral Majorana fermions with zero net magnetization—

We now study 2D altermagnetic heterostructures shown in
Fig. 1(b) that can host chiral modes and, in the presence of
superconductivity, CMFs.
Approach I: Altermagnet-3D TI interfaces—3D time-

reversal-invariant topological insulators (3D TIs) in prox-
imity to a superconductor and time-reversal breaking
magnetic element can exhibit CMFs [13,14,36]. We pro-
pose to replace the magnetic element with an altermagnet.
The key requirement, as mentioned earlier, is that the
topological surface states must reside at momenta where
the altermagnetic order is nonvanishing and can open a gap.
We first discuss the normal phase. Consider depositing

an altermagnet with order parameter ðcos kx − cos kyÞσ3 on
the ẑ-normal surface of a 3DTI. In the case of perfect crystal
alignment, the altermagnetism can open gaps of opposite
sign on surface Dirac cones at the X ¼ ðπ; 0Þ and Y ¼
ð0; πÞ points of the surface Brillouin zone, but leaves cones
at Γ ¼ ð0; 0Þ and M ¼ ðπ; πÞ gapless. (If the altermagnet-
ism persisted in the bulk it could yield a 3D HOTI with
chiral hinge modes [37,38].) Thus, for a 3D TI with a single
Dirac cone at X or Y, there will be a single chiral mode at a
domain wall there the altermagnetic order parameter
changes sign. (Other configurations of altermagnetic
domain walls hosting chiral modes are discussed in
Appendix C [29]).
Now consider adding an s-wave SC: the chiral Dirac

fermion at the domain wall will become a CMF. Similarly, a
3DTI with two altermagnets and an s-wave SC arranged
laterally on one surface [Fig. 1(b), right] yields a chiral SC
with CMFs along each SC-altermagnet boundary. We
conclude that the ferromagnetic element can be replaced
by an altermagnet as long as the 3DTI surface states reside
at momenta off the nodal lines or surfaces of the
altermagnet.

Approach II: Bulk altermagnet or superconductor het-
erostructures—We simplify the platform by removing the
3DTI and considering altermagnet-SC heterojunctions as in
Fig. 1(b), left. We model an altermagnet layer coupled to a
SC layer with s- and/or d-wave singlet pairing by the
Hamiltonian:

HIðkÞ ¼ ½ϵðkÞ − μ�τ3 þ λRðkÞ þ JAðkÞ þ ΔðkÞτ2σ2; ð2Þ

where ϵðkÞ ¼ t½cosðkxÞ þ b1 cosðkyÞ�, λRðkÞ ¼
λR½sinðkxÞτ3σ2 − sinðkyÞτ0σ1�, JAðkÞ ¼ JA½cosðkxÞ−
b2 cosðkyÞ�τ3σ3, ΔðkÞ ¼ Δ0 þ Δ1½cosðkxÞ þ b3 cosðkyÞ�;
t; λR; JA;Δ0;1 represent hopping, Rashba spin-orbit cou-
pling, altermagnet strength, and superconducting pairing
amplitudes, and we have included the parameters 0 <
b1;2;3 < 1 to represent anisotropic distortions along the y
direction for hopping, magnetic, and superconducting
strength, respectively. The parameters b1;2 are generically
independent; for example, hopping anisotropy where b1 ≠
1 need not change the magnetic structure [39]. Since we
find b2 ≠ 1 does not qualitatively change the results, we set
b2 ¼ 1, t ¼ 1 in the following. Interestingly, in the absence
of superconductivity, an altermagnet can be gapped out and
turn into a Chern insulator by applying a weak uniform
magnetization. However, because our focus is on TSCs
with zero net magnetization we do not consider any
uniform external magnetization. We now discuss three
important limits (I–III) of Eq. (2).
(I) Altermagnet-s-wave SC: First consider isotropic s-

wave pairing, Δ0 ≠ 0, Δ1 ¼ 0. Figure 3(a) shows the x-
normal boundary spectra of Eq. (2) for JA ≠ 0, with b1 ¼ 1.
For JA ¼ 0 the normal state has two Rashba-like Fermi
surfaces around the Γ point, yielding a fully gapped trivial
superconducting phase (see Appendix D [29]). In contrast,
for JA ¼ 0.3, the normal state has one Fermi surface around
Γ and another around M, yielding a weak TSC with
vanishing Chern number, but hosting two Majorana edge
modes of opposite chirality protected by translation sym-
metry, e.g., on an x-normal edge there is one mode each at
ky ¼ 0; π. Adding a slight crystal anisotropy, e.g.,
b1 ¼ 0.85, a strong chiral TSC with SC Chern number
jN j ¼ 1 appears despite the vanishing net magnetization
[see Fig. 3(b)]. The anisotropy of the altermagnet forces the
CMFs to reside at different momenta for edges related by a
π=2 rotation, e.g., we find a chiral mode at ky ¼ 0 on an x-
normal edge, but at kx ¼ π for a y-normal edge. This
configuration is reversed by changing the sign of μ (relative
to half-filling); hence a momentum-resolved spectroscopy
measurement would observe alternating profiles between x-
and y-normal edges as a function of doping or gating.
Similar to the 1D case, the topological phase depends on
the orientation of the altermagnet. We show in Appendix E
[29] that a dxy-wave altermagnet yields a topologically
trivial phase, illustrating again the role of crystal anistropy
as a tuning knob for topological superconductivity.
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(II) Altermagnet-anisotropic sþ s�-wave SC: Similar
topological phases for an isotropic crystal are obtained by
resorting to a slightly anisotropic s� pairing, i.e.,
Δ0;Δ1 ≠ 0; 0 < b3 < 1. Figure 3(c) shows the x-normal
boundary spectra with JA ≠ 0 and b3 ¼ 1. Similar to limit
(I), a weak TSC is generated with isotropic s� and
nonvanishing altermagnetism [see Fig. 3(c)] while the case
with vanishing altermagnetism is trivial (see Appendix E
[29]). Including a small anisotropy in the pairing, b3 ≠ 1,
yields a chiral TSC with jN j ¼ 1, Fig. 3(d). In contrast to
(I), the momenta of the Majorana modes on each edge are
correlated to the sign (phase) difference betweenΔ0 andΔ1

instead of the sign of μ.
(III) Altermagnet-sþ d-wave SC: Adding a small real

d-wave pairing component (see Appendix F [29] for sþ id
pairing) to limit (I) yields a fully gapped chiral TSC with
N ≠ 0 without the need for crystal anisotropy. Indeed,
Fig. 4(a) shows that the edge spectrum for Δ0 ¼ 2Δ1 and
b1 ¼ 1, b3 ¼ −1 hosts CMFs such that jN j ¼ 1. While this
Letter has focused on fully gapped TSCs, increasing the
strength of Δ1 > Δ0 creates bulk nodes in the super-
conducting state; the CMFs can survive as shown in
Fig. 4(b).
Majorana corner modes: SC/2D TI/Altermagnet

heterostructures—As a final application, we demonstrate
routes to higher order topology using altermagnets. We
show Majorana corner modes in a heterostructure where a
d-wave altermagnet is adjacent to a SC-proximitized 2D TI,
depicted in Fig. 1(c) [40]. In Appendix G [29], we show
that a g-wave altermagnet also yields Majorana corner
modes, but with different phenomenology.

Consider the following Hamiltonian for a normal-state
2D time-reversal invariant TI coupled to a dx2−y2-wave
altermagnet:

hTIðkÞ ¼ AðkÞ þMðkÞ þ JAðkÞ; ð3Þ

where AðkÞ ¼ A½sinðkxÞκzσx þ sinðkyÞκzσy�, MðkÞ ¼
½Bþ tð4 − 2½cosðkxÞ þ cosðkyÞ�Þ�κx, JAðkÞ ¼ JA½cosðkxÞ−
cosðkyÞ�κzσz and κi and σi are Pauli matrices that denote
orbital and spin spaces. In the limit JA ¼ 0 and
0 < −B < 8t, Eq. (3) describes a 2DTI exhibiting helical
edges states. Upon proximitizing with an altermagnet, i.e.,
turning on JA ≠ 0, Eq. (3) becomes a HOTI protected by
C4T symmetry that hosts single, complex fermion corner
modes and fractional e=2 corner charges. Such a
Hamiltonian is experimentally feasible: the 2D TI layer
could be, e.g., HgTe, WTe2, bismuthene on SiC or a
monolayer iron chalcogenide [43–45], and the altermagnet
could be one of the materials described in Ref. [20] such
as RuO2.
We now consider adding superconductivity. There are

six possible antisymmetric, k-independent superconducting
pairing terms, Δi; i ¼ 0;…; 6. We leave a discussion of
each of the pairing terms to future work, and here focus
only on two options. First, upon proximitizing the HOTI
phase with the simplest intraorbital spin singlet pairing of
the form Δ1 ¼ κ0σ2, the complex fermion corner states
become a pair of MZMs and gap out. However, as we found
in 1D, when the chemical potential μ is tuned to zero, there
is a regime where the pair of MZMs corner modes survive.
Since the superconductivity competes with the altermag-
netism, we expect that as the pairing increases the edges
will undergo a transition between a phase gapped by
altermagnetism and a phase gapped by superconductivity,
the latter of which has no corner modes. To illustrate, at a
fixed pairing strength, Fig. 5(a) shows that a critical
strength of the altermagnetism is required to generate the
pair of Majorana corner modes when μ ¼ 0. The transition
from trivial to higher order superconducting phases occurs

FIG. 3. The x-normal edge spectrum of the altermagnet-SC
heterojunction in Eq. (2) with s (a),(b) and s�-wave (c),(d)
pairings. (a) Δ0 ¼ 0.3, b1 ¼ 1, JA ¼ 0.3, (b) Δ0 ¼ 0.3,
b1 ¼ 0.85, JA ¼ 0.3, (c) Δ0 ¼ 0.4, Δ1 ¼ 0.3, b1 ¼ 1, b3 ¼ 1,
JA ¼ 0.3, (d) Δ0 ¼ 0.4, Δ1 ¼ 0.3, b1 ¼ 1, b3 ¼ 0.8, JA ¼ 0.3.
For all plots, μ ¼ −0.4, λR ¼ 0.3, t ¼ 1.

FIG. 4. The x-normal edge spectrum of the altermagnet-SC
heterojunction in Eq. (2) with sþ d-wave pairing. (a) Δ0 ¼ 0.4,
Δ1 ¼ 0.2, μ ¼ 0, b1 ¼ 1, JA ¼ 0.3, (b) Δ0 ¼ 0.1, Δ1 ¼ 0.3,
μ ¼ 0, b1 ¼ 1, JA ¼ 0.3. t ¼ 1, b3 ¼ −1, and λR ¼ 0.3 is used
for all plots.
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at the edges of the sample, providing a superconducting
analog of a boundary obstructed topological phase [46].
Second, consider a spin-triplet pairing Δ4 ¼ κ2σ1.

Momentarily ignoring the altermagnetism, this model
describes a time-reversal-invariant first-order TSC in class
DIII when the chemical potential enters the bulk bands.
Such a system harbors helical Majorana edge states
that will immediately be gapped by altermagnetism in a
spatially alternating pattern, leading to corner MZMs as
shown in Fig. 5(b).
Discussion—We remark on the experimental outlook.

Altermagnets vastly expand the possible material platforms
to realize Majorana fermions. Already, 60 materials are
proposed to exhibit altermagnetic order [47]. RuO2,
Mn5Si3, MnF2, and MnO2 are among most studied d-wave
altermagnets, while CrSb and MnTe are among g-wave
ones. Furthermore, altermagnetism may be induced in
conventional 2D antiferromagnets by an external electric
field [48]. Our Letter will catalyze first-principles calcu-
lations on these materials to find the most suitable
candidates.
In addition, altermagnets with sizable SOC (while

maintaining λ ≪ JA) allow for simpler platforms that do
not require a semiconductor (in one dimension) or a 3D TI
surface (in two dimensions). Follow-up work will study
multiband effects from quantum confinement in 1D alter-
magnetic wires. Recently, we showed that the 2D effective
Hamiltonian in Eq. (2) is a good description of both a 2D
altermagnet or a thin film of a 3D altermagnet [49].
Furthermore, the anistropic nature of magnetic order in

altermagnets warrants further study on which interfaces or
facets show the strongest altermagnetic order. Recently, a
first-principles study of an altermagnet on a TI demon-
strated that only specific surfaces of the TI are amenable to
induced altermagnetic order [50]. This study demonstrates
the experimental feasibility of our proposal, as well as the
importance of detailed follow-up on specific surfaces.
In conclusion, Majorana heterostructures made from

altermagnets offer several advantages over those with
uniform order by providing new tuning knobs and vanish-
ing net magnetization in a wealth of new materials. The 1D
and 2D setups we proposed will further generalize to 3D

topological phases [51–54]. Thus, our Letter provides a
launching point for many future studies of both new
materials and new platforms in the quest to realize
Majorana fermions.
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