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Studies on the heavy-fermion pyrochlore iridate (Pr2Ir2O7) point to the role of time-reversal-symmetry
breaking in geometrically frustrated Kondo lattices. Here, we address the effect of Kondo coupling and
chiral spin liquids in a J1-J2 model on a square lattice and a model on a kagome lattice via a large-N
method, based on a fermionic representation of the spin operators, and consider a new mechanism for
anomalous Hall effect for the chiral phases. We calculate the anomalous Hall response for the chiral states
of both the Kondo destroyed and Kondo screened phases. Across the quantum critical point, the anomalous
Hall coefficient jumps when a sudden reconstruction of Fermi surfaces occurs. We discuss the implications
of our results for the heavy-fermion pyrochlore iridate and propose an interface structure based on Kondo
insulators to explore such effects further.
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Heavy-fermion metals are prototypical systems to study
quantum criticality [1–3]. The simplest model to describe
these systems is a Kondo lattice, which comprises a lattice
of local moments and a band of conduction electrons. The
local moments are coupled to each other by the Ruderman-
Kittel-Kasuya-Yosida interaction and are simultaneously
connected to a band of conduction electrons through an
antiferromagnetic (AFM) Kondo exchange interaction
(JK). In recent years, it has been realized that the effect
of geometrical frustration is a potentially fruitful but little-
explored frontier. From a theoretical perspective, geomet-
rical frustration enhances G, the degree of quantum
fluctuations in the magnetism of the local-moment com-
ponent, and a JK-G phase diagram at zero temperature has
been advanced [4,5]. Figure 1(a) illustrates the proposed
global phase diagram [4], which applies the notion of
Kondo destruction [6] to the parameter space that incor-
porates the frustration and related quantum fluctuation
effects. From a materials perspective, there is a growing
effort in studying frustrated Kondo-lattice compounds
[7–14].
The pyrochlore heavy-fermion system Pr2Ir2O7 is one

such example. Both the measured magnetic susceptibility
and specific heat [11] suggest the presence of Kondo
coupling between the Ir d electrons and the local fmoments
of Pr. No magnetic order is found down to very low
temperatures, suggesting that the f moments of Pr develop
a quantum spin liquid (QSL) ground state [11]. In addition,

experiments found a sizable anomalous Hall effect (AHE)
based on extrapolating the magnetic field applied along the
[111] direction to zero [15,16], revealing a spontaneous
time-reversal-symmetry-breaking (TRSB) state.
This system is of considerable theoretical interest [17–

23]. With a few exceptions [24], the role of the Kondo
effect has not been discussed in this context, and neither has
its relationship with the observed quantum criticality. Yet,
the observation of a large entropy and a divergent
Grüneissen ratio [25] clearly points to the importance of
the Kondo coupling and the role of a proximate heavy-
fermion quantum critical point (QCP). In the case of AFM
heavy-fermion systems, the normal Hall effect has been
successfully used to probe the evolution of the Fermi
surface across the QCP and, thereby, the nature of quantum
criticality [3,14,26]. Given that the AHE is also intrinsically
a Fermi surface property (other than contributions from
fully occupied bands) [27], we are motivated to address
whether it can serve as a diagnostic tool for the QCP in the
present setting. In addition to elucidating the AHE, study-
ing this issue promises to bring about the much-needed new
understanding of quantum phases and their transitions in
geometrically frustrated heavy-fermion metals [14]. Given
the complexity of the three-dimensional pyrochlore lattice,
we will gain insights from related but simpler models.
In this Letter, we study both the frustrated J1-J2 quantum

Heisenberg model on a square lattice and the J1 only model
on the kagome lattice with a Kondo coupling to conduction
electrons. For the square lattice, we consider the regime of
strong frustration where a chiral spin liquid (CSL) phase
[28] becomes energetically competitive in a large-N limit*These authors contributed equally to this work.
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(based on a Schwinger fermion representation of the spin
operators; see below). The kagome lattice, representing a
layer perpendicular to the [111] direction of the pyrochlore
lattice, is a two-dimensional network of corner-sharing
triangles [Fig. 1(d)] with a strong geometrical frustration. A
CSL phase is found in a spin-1

2
model on the kagome lattice

[29]. Using the large-N limit [30], we will also study the
CSL physics on this lattice. We develop the method to
calculate the AHE in both a Kondo-destroyed (PS) and a
Kondo-screened (PL) paramagnetic phase. We show that
each phase may have a sizable AHE. Moreover, across a
QCP, the AHE jumps when the Fermi surface suddenly
reconstructs.
Frustrated Kondo-lattice models—We study the follow-

ing Hamiltonian:

H ¼ Hf þHd;0 þHK: ð1Þ
Here, Hf describes a Heisenberg model. For the square
lattice case, Hf includes both J1 and J2 couplings between
the nearest neighbors (nn, hi) and next-nearest neighbors
(nnn, hhii). We focus on the maximally frustrated case of
J2=J1 ¼ 1=2. For the kagome case, the lattice is geomet-
rically frustrated and it suffices for Hf to only contain the
nn term. For both models withHf alone, CSL states appear
in the large-N limit [28,31].
The local moments are coupled to a band of conduction

electrons, described by Hd;0 ¼ −
P

ij;αðtijd†iαdjα þ H:c:Þ,
through an AFM Kondo interaction JK , specified by
HK ¼ JK

P
i si · Si. Here, si ¼

P
α;β

1
2
d†iασαβdiβ is the spin

of the conduction electrons, with σ describing the Pauli
matrices. We take thiji ¼ t ¼ 1 as the energy unit.
We use the Schwinger fermion representation for

the f-moments Si ¼
P

α;β
1
2
f†iασαβfiβ, with the constraintP

α f
†
iαfiα ¼ 1, so that Hf ¼

P
α;β;ijðJij=2Þf†iαfiβf†jβfjα−

ðJij=4Þniαnjβ. In the large-N approach [31], the spin index
α ¼ 1; 2;…; N, and the constraint is enforced by a
Lagrangian multiplier λi. The Heisenberg and Kondo terms
are decoupled by a Hubbard-Stratonovich (HS) transfor-
mation. The large-N limit leads to

Heff ¼ HQSL þHd;0 þHK;eff þ Ec; ð2Þ

with HQSL ¼ −
P

ij;αðJij=2Þðχjif†iαfjα þ H:c:Þ −P
i;α λi×

ðf†iαfiα − 1=2Þ, HK;eff¼−
P

i;αðJK=2Þðπid†iαfiαþH:c:Þ,
and Ec¼

P
ijNJijjχijj2=2þ

P
iNJKjπij2=4. The HS fields

are defined as χij ¼
P

αhf†iαfjαi and πi ¼
P

αhf†iαdiαi.
Both can be decomposed into amplitudes and phases:
χij ¼ ρijeiAij , πi ¼ ρK;ieiAK;i . The Kondo parameter πi
can be taken to be real, with its phase absorbed into the
field λi, i.e. πi → ρK;i.
By minimizing the total energy of Heff in Eq. (2), we

obtain the phase diagrams containing the chiral states, in
which JK tunes the system from the PS to PL phases (see

Supplemental Material [32]). Across a second-order
Kondo-destroyed PS;chiral to PL;chiral quantum phase tran-
sition, Fig. 1(b), we consider a power-law form for the
Kondo hybridization amplitude:

ρKðJKÞ ¼ ρr

�
JK − JK;c

JK

�
1=2

; ð3Þ

for JK > JK;c and ρK ¼ 0, for JK < JK;c. We take JK;c as
the value where the PL;chiral state becomes energetically
competitive and ρr to be the saturation value of ρK; both
values are adopted from the self-consistent calculation for a
given set of ðnd; J1Þ [32].
Mechanism of the AHE: the Kondo destroyed PS

phase—In the Kondo-destroyed PS phase, the static hybri-
dization amplitude vanishes, hρK;ii ¼ 0. However, we show
that there are TRSB terms in the effective interactions
among the conduction electrons, which are mediated by the
spinons via Kondo couplings. Such terms yield a zero-
field AHE.
We will single out the TRSB terms. The TRSB order

parameter of the CSL is the spin chirality,

Êijk ¼ Si · ðSj × SkÞ; ð4Þ

where the indices fi; j; kg mark the three sites of an
elementary triangle of the lattice. In the CSL state,

FIG. 1. (a) The global phase diagram of Kondo lattice systems
[4]; (b) in the highly frustrated regime (large, fixed G), JK tunes
through a Kondo-destruction QCP (at JK;c) from a Kondo-
destroyed chiral spin liquid (PS;chiral) to a Kondo-screened phase
(PL;chiral). The χ fields of the square lattice are shown in the π-flux
state (without the diagonal bonds) and the CSL state (c), and in
the CSL state on the kagome lattice (d). The arrows denote the
sign of gauge field Aij, and ϕ is the flux through a triangle.
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Eijk ¼ hÊijki ¼ 2iðPijk − PikjÞ, where Pijk ¼ χijχjkχki.
On symmetry grounds, we expect Eijk to be coupled to
the composite chiral operator of the conduction electrons,
si · ðsj × skÞ. With this guidance, we obtain the coupling
from integrating out the f fermions and expanding in
powers of JK; this can be represented by triangular
diagrams (Supplemental Material [32]), similar to what
is used in deriving a chiral current. We find

Hchiral ¼
X J3K

3!
ðsi · SiÞðsj · SjÞðsk · SkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δ-loop contraction

¼ J3K
2 × 3!

Eijksi · ðsj × skÞ: ð5Þ

In the kagome case, the hexagons can also possess
nontrivial fluxes. However, we can restrict the effective
TRSB coupling for the conduction electrons to the lowest
order in JK, which corresponds to considering only the
fluxes of the triangles.
The chiral interactions inHchiral have a six-fermion form.

We can decouple it by introducing a novel HS trans-
formation that involves triangular diagrams described in
Supplemental Material [32]. We end up with an effective
bilinear theory:

Hd ¼ Hd;0 þHd;1; ð6Þ

with

Hd;1 ¼
X
ij

ðgϕ�
jϕid

†
i dj þ ϕ�

i G
−1
ϕ;ijϕj þ H:c:Þ: ð7Þ

Hence, the ϕ fields are constrained by the condition that, if
they are integrated out, we obtain the same chiral inter-
action terms at Oðg3Þ by computing the same triangle
diagrams. We then replace ϕ�

jϕi by its expectation value
Gϕ;ij and arrive at

Hd;1 →
X
ij

ðgGϕ;ijd
†
i dj þ H:c:Þ: ð8Þ

It turns out that Gϕ;ij ¼ e−iAij , and g can be identified as
g ¼ JKðjEijkj=2Þ1=3. Because the bosonic Gaussian integral
has a minus sign relative to its fermionic counterpart, Gϕ;ij

carries the opposite flux pattern to produce the same Hchiral
when we integrate out the ϕ fields. Physically, the flux (or
chirality) pattern has the opposite sign to that of the CSL
state, so that the antiferromagnetic Kondo coupling will
lower the ground state energy. This effective Hamiltonian is
adequate for qualitatively describing the AHE physics of
our original Hamiltonian. Other nonchiral effective inter-
actions would only renormalize the Fermi liquid parameters
of the d electrons for the PS phase. We can then use the

Streda formula [38,39] to compute the AHE coefficient
σxy: The involved quantities are the current operator of
the conduction electrons vaðkÞ ¼ ∂aHdðkÞ, the Berry
curvature F xy

n ðkÞ, and the Fermi function f½ϵnðkÞ�
(Supplemental Material [32]).
Mechanism of the AHE: the Kondo screened PL phase—

In the PL phase, the Kondo order parameter ρK;i acquires a
nonzero expectation value ρK ¼ hρK;ii. There should still
be an incoherent piece of the slave boson fields:
ρK;i ¼ ρK þ π0i. Moreover, we focus on the case where
the chiral order survives in the PL phase. By considering
the same triangular diagrams now mediated by the inco-
herent part π0i, the fluctuations of the Kondo order param-
eter still mediate chiral interactions similarly as in the PS
phase, but with a reduced weight. However, there is no
spectral sum rule for the π0is to obtain this reduced weight
readily. In Supplemental Material [32], we use a slave rotor
approach for the periodic Anderson model to determine this
factor. The effective Hamiltonian of the d electrons
becomes

Hd ¼ Hd;0 þ ½1 − ð4JK=UÞρ2K�Hd;1; ð9Þ

where U is the onsite Hubbard repulsion. We fix U ¼ 2W,
i.e., twice the d electron’s bandwidth throughout the
calculations. Keeping only the ρK part of HK leads to
the following effective Hamiltonian:

HPL
¼ Ψ†

�
HCSL −JKρKI

−JKρKI Hd

�
Ψ; ð10Þ

where I is an identity matrix, and Ψ† ¼ ðf†; d†Þ. We have
dropped the spin index, as there are no longer spin-flip
terms. The Hamiltonian HPL

is smoothly connected with
Hd at the QCP. We then compute σxy from the Streda
formula Eq. (S-22) [32] noting that the current operators
remain the same, i.e., vaðkÞ ¼ ∂aHdðkÞ.
AHE and its evolution across the Kondo-destruction

QCP—For the square lattice, we focus on the π flux and the
CSL states which are known to be closely competing in the
pure J1-J2 Heisenberg models. In the large-N calculation
based on Eq. (10), we find that both states can be stabilized
in the presence of Kondo screening. The PL-CSL state
emerges as the ground state first, but the PL-π–flux state
eventually takes over at larger JK=J1 [see Fig. (S5) and
related Supplemental Material for details [32] ].
For the π-flux phase, HQSL ¼ Hπ flux is given by

Ari;riþx̂ ¼ π=2, Ari;riþŷ ¼ −ð−1Þxiπ=2, ρri;riþx̂þŷ ¼ 0,
where ri ¼ ðxi; yiÞ, x̂ (ŷ) is the unit vector along the
xðyÞ axis. For the CSL Hamiltonian, HQSL ¼ HCSL is
derived from Hπ flux with ρri;riþx̂þŷ ≠ 0, Ari;riþx̂þŷ ¼
Ariþŷ;riþx̂ ¼ ð−1Þxiπ=2, as illustrated in Fig. 1(c).
In the kagome lattice, any state with triangle flux ϕ ≠

0; π breaks time-reversal symmetry (TRS). Here, we choose
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ϕ ¼ −ðπ=2Þ such that the hexagon flux of −2ϕ ¼ π
preserves TRS. The ½−ðπ=2Þ; π� spinon flux state has three
well-separated bands; the middle flat band is exactly at the
Fermi energy, and the Chern numbers are Clower ¼ −1,
Cmiddle ¼ 0, Cupper ¼ þ1 [39]. These band structures can
be considered the usual, no-flux kagome bands inverted by
the fluxes. The phase structure of the corresponding χij
fields is plotted in Fig. 1(d).
The zero-field anomalous Hall conductivity σxy of the

J1-J2-JK model is shown in Fig. 2(a) for representative
parameters nd ¼ 0.5, J1 ¼ t and that of the kagome lattice
model in Fig. 2(b) for J ¼ t, nd ¼ 3=8. Across the QCP, σxy
is found continuous for the square lattice, but jumps
discontinuously for the kagome lattice. The amplitudes
of σxy are similar in the PS regimes, ∼10−2σ0. But σxy is
enhanced by 2 orders of magnitude in the PL regime of the
kagome case.
In order to understand the different behaviors, we show

the Fermi surfaces (dashed lines) and the difference of
band-summed Berry curvatureΔΩðkÞ (color map) between
the PS phase and the PL phase right across the QCP in
Figs. 3(a) for the square lattice and 3(b) for the kagome
lattice [the actual ΩðkÞ is shown in Supplemental
Material [32] ]. Here, ΔΩðkÞ ¼ ΩPS

ðkÞ − ΩPL
ðkÞ and

ΩðkÞ ¼ P
n F

xy
n ðkÞf½ϵnðkÞ�. We find the Fermi surfaces

remain continuous for the square lattice model. Both Fermi
surfaces of the PS and PL phases are the black dashed line.
However, for the kagome case, the Fermi surfaces show a
jump. The Fermi surface of the PS phase is the black dashed
circle in the middle of the BZ which overlaps with the red,
singular part ofΔΩðkÞ. Those of the PL phase are the blue-
dashed-line pockets at the edge of the BZ. These results
reflect the number of sites per unit cell and the gapped-
gapless nature of the spinon spectrum. However, ΔΩðkÞ is
singular and concentrates near Fermi surfaces in both cases.
This is because the onset of Kondo hybridization, which
acts as a topological mass term in the large-N theory, in
general singularly reconstructs the wave functions regard-
less of whether the Fermi surfaces jump or not.
To reconcile the notions of the singular wave function (or

Berry curvature) with the continuous AHE, we note that σxy
is intrinsically a Fermi surface property [27] (apart from the
contributions of fully occupied bands). We can analytically
show the following by computing the diagonal Berry’s
connection in the ρK → 0 limit [32]. When the Fermi
surfaces evolve continuously across the QCP, σxy must be
continuous; here, the projected wave functions of the
d-electron are continuous, and so are the Berry connec-
tions. By contrast, when the Fermi surface jumps, the
projected wave functions completely reconstruct due to the
existence of two noncommuting topological “masses”: the
Kondo screening and a nonzero jump of the spinon
Lagrangian multiplier λ.
Discussion—Energetic considerations [40] show that the

Kondo coupling favors gapless spin-liquid states over their
gapped counterparts (Supplemental Material [32]); in the
absence of a spinon gap, it is easier to form a Kondo singlet,
which lowers the energy by an amount ∝ JK . For the
pyrochlore lattice, the CSL state in the large-N limit is
gapless [41], and is thus expected to have a similar
sequence of quantum phase transitions involving the chiral
state. The gapless nature raises the prospect of a sudden
reconstruction of the Fermi surface across a Kondo-
destruction QCP in the pyrochlore case and, by extension,
a jump in the extrapolated zero-field AHE, especially for a
magnetic field along the [111] direction.
We expect the jump of the zero field AHE, σxy, to be

robust against weak disorder. The AHE effect considered
here is intrinsic, i.e., determined by the quasiparticle band
structure. Scattering from weak nonmagnetic impurities
only yields a small (linear in disorder) correction [42].
Moreover, the Fermi-surface jump across a Kondo-destruc-
tion QCP has been evidenced to be robust against weak
disorder [12,43]. Thus, our results can be tested in
Pr2Ir2O7, once a control parameter is identified to tune
across the implicated zero-field QCP [25]. From Ref. [44],
strain can potentially serve as such a tuning parameter.
We note that the anomalous Hall conductance from the

mechanism advanced here is quite large. Experiments in

(a) (b)

FIG. 2. Zero field anomalous Hall conductance (σxy), normal-
ized by the quantum conductance σ0 ¼ e2=h, for J1 ¼ t ¼ 1,
J2=J1 ¼ 1=2, nd ¼ 0.5 on a square lattice (a) and for J ¼ t, nd ¼
3=8 on a kagome lattice (b).

FIG. 3. Fermi surfaces (dashed curves) and the difference in the
band-summed Berry curvature distribution ΔΩðkÞ between the
PS phase and the PL phase (color map) of the square lattice model
(a) and the kagome lattice model (b).
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Pr2Ir2O7 [16] find a large sheet σxy reaching about 0.7% of
σ0 ≡ e2=h, a value which can readily arise in our mecha-
nism [Fig. 2(a)].
We have emphasized the role of the Kondo effect and

its critical destruction. Future work should incorporate
ab initio features, not only on the directional dependence
in the pyrochlore lattice but also the effect of the ab initio
electronic band structure and the non-Kramers nature of the
ground-state crystal-field level of the Pr ions [24,45].
Although Ref. [24] studied a realistic model, the mecha-
nism of AHE in the Kondo destroyed phase is not captured,
and σAHExy only starts to grow from zero at the QCP. The new
mechanism we consider here provides a possible interpre-
tation to the experimental observation that σAHExy is most
singular at the QCP.
Furthermore, we have derived our conclusions in geo-

metrically frustrated Kondo systems and demonstrated the
robustness of our results by connecting them with the
evolution of the Fermi surfaces. Thus, we expect our results
to remain qualitatively valid in the more realistic settings.
For Pr2Ir2O7, this is so given the substantial evidence for
the role of the Kondo coupling such as the large entropy
observed in the pertinent low-temperature regime [25]. It
may also be instructive to explore related effects in other
f-electron systems with geometrical frustration, such as
UCu5 under ambient conditions [46] and when suitably
tuned through a QCP. Recently, the proximity to the
Kondo-destruction QCP we predict here for Pr2Ir2O7 is
confirmed experimentally [47]. In this STM measurement,
regions of heavy Fermi liquid are interweaved with a
nonmagnetic metallic phase with Kondo destruction, form-
ing spatial nanoscale patterns consistent with being in
proximity to a critical point.
While the current work emphasizes the link between

AHE and the evolution of Fermi surfaces due to Kondo
physics, other topology-related components, such as con-
duction band topology, k dependence of Kondo coupling,
etc., are not taken into account. It is known that such
components can lead to topological Kondo lattice models
that realize such topological states as Weyl-Kondo semi-
metals [48–51]. In addition, d-electron-based systems on
frustrated lattices, through the notion of compact molecular
orbitals, can realize topological Kondo lattice models and
the associated states [52–54]. For these states, the Berry-
curvature-induced Hall effect is also an important charac-
teristic; thus, we expect our work here will provide new
insights into those systems.
We close by proposing an engineered Kondo-insulator

interface as a model material for the frustrated Kondo lattice
Hamiltonian. Themotivation for the proposed setting comes
from advances in the molecular beam epitaxy (MBE) of
Kondo systems [55–57]. As a promising candidate material,
we suggest the golden phase of SmS (g-SmS). In bulk
samples, this phase is stable under pressures between about
0.65 GPa [58] and 2 GPa [59]. As MBE thin film, the phase

might be stabilized by lattice mismatch with an appropriate
substrate. g-SmS crystallizes in a face-centered-cubic (fcc)
structure of rocksalt (NaCl) type. A lattice plane is shown in
Fig. (S6). g-SmS shows characteristics of aKondo insulating
state in transport [59,60], thermodynamics [61], and point
contact spectroscopy [60]. From thermal expansion and heat
capacity measurements, the energy gap was estimated to be
90 K on the low-pressure side of the g-SmS phase [61]. At
temperatures low compared to this scale, the proposed lattice
plane could then serve as a setting to realize the frustrated
J1-J2 Kondo lattice and study the anomalous Hall effect.

Note added—Recently, chiral heavy fermion phases and
their associated Kondo-destruction transition have also
been discussed in the context of moiré structures of
transition metal dichalcogenides [62,63].
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