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The classical Hertzian contact model establishes a monotonic correlation between contact force and area.
Here, we showed that the interplay between local friction and structural instability can deliberately lead to
unconventional contact behavior when a soft elastic shell comes into contact with a flat surface. The
deviation from Hertzian solution first arises from bending within the contact area, followed by the second
transition induced by buckling, resulting in a notable decrease in the contact area despite increased contact
force. Additionally, our results invalidated a previous claim of a linear relation between friction and
dissipated energy, demonstrating the suppression of both buckling and dissipation at high friction levels.
Different contact regimes are discussed in terms of rolling and sliding mechanisms, providing insights for
tailoring contact behaviors in soft shells.
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The contact area and pressure distribution between solid
surfaces directly influence the frictional [1,2] and thermal
resistance [3] as well as the sealing capacity [4] of the
interface. Assuming a parabolic pressure profile, infinitesi-
mal deformation, and material homogeneity, Hertzian
theory [5] establishes a power-law relationship between
the normal load and contact area for a wide range of elastic
geometries, including spherical, cylindrical, and elliptical
contacts [6] (also see Fig. 1). Alternatively, it is shown that
the contact area increases linearly with the normal load
when plastic deformation occurs [1]. Since these findings,
the contact area-load relation has faced a transformative
modification as the interplay of other factors such as
friction [7–9], adhesion [10–12], roughness [13–16],
and material and geometric nonlinearities [17–19] were
examined. It is well established that the contact area grows
with the normal load [20], while material properties,
contact geometry, and surface conditions dictate the growth
rate [21–25].
Recent studies [26,27] have discussed the possibilities of

modifying friction laws (i.e., the correlation between the
normal and frictional forces) by designing metainterfaces
with certain roughness morphology. Studying the contact
response of soft polymeric shells has offered another angle
to modify the contact laws using the structural instability at
the contact. Pauchard and Rica demonstrated a subcritical
bifurcation, namely, a first-order phase transition, changes
the nature of the mechanical response in contact [28]. It was
observed that a flat contact exists initially between the rigid

plane and the shell. However, it transitions to a postbuck-
ling state characterized by contact along an axisymmetric
circular ridge formed between the rigid plane and the
inverted shell. The relevant parameters of this problem are
material, a shell’s Young’s modulus E, and geometrical, a
shell’s radius R and thickness h. The combination of these
results into the relevant force scale, F0 ≡ Eh3=R, and a
detailed analysis proposes three regimes [29]: (i) Hertzian
regime with a circular contact area, for a range of forces
F ≪ F0, where deformation occurs within a region smaller
than the shell thickness, h; (ii) intermediate regime, where

(a)

(b) (c)

FIG. 1. (a) Bulk hemisphere of PDMS in dry contact with a
PLA plate. The contact area is circular and increases with normal
load, following the Hertzian solution, as illustrated by the red line
in panel (c). (b) PDMS hemispherical shell in dry contact with a
PLA plate, as shown by the solid blue line in panel (c). (c) This
panel presents the variation of the normalized contact area
[Ā ¼ 2A=ðπR2Þ] as a function of the normalized normal load
[F̄ ¼ FR=ðEh3Þ] for both the bulk hemisphere and the shell. The
graph highlights unconventional contact behavior where the
contact area decreases (marked by a double arrow) and stabilizes
despite an increase in the normal load.
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F ∼ F0 and equilibrium is obtained by a balance between
bending and stretching, the shell flattens in a manner
assumed to be similar to Hertzian contact with a disklike
contact area; (iii) the postbuckling regimes, where F > F0

and the stretching energy caused by sphere flattening
becomes significant, the shell destabilizes and undergoes
mirror buckling, transitioning into an inverted shape [30].
This behavior is akin to the isometric problem described by
Pogorelov [31]. Recent studies [32–34] have demonstrated
secondary buckling instability, where a transition from the
axisymmetric to asymmetric deformation mode with multi-
ple vertices occurs at large indentation [33]. The critical
role of structural imperfections [35] and adhesion [36–38]
on shell buckling has also been explored. Despite these
advances in understanding the mechanics of shell inden-
tation, there still exist limitations in the exploration of the
effect of structural instability and friction on contact
morphology and pressure distribution.
In this Letter, we examine the evolution of contact

morphology and pressure when a thin shell comes into
contact with a rigid and flat surface within the axisymmetric
deformation regime. Our experiments and numerical sim-
ulations show that a circular contact area is first established
and grows by indentation, followed by a smooth transition
from circular to disklike contact as a result of bending. As
indentation progresses, a secondary transition occurs, result-
ing in a sharp reduction in the contact area despite increased
contact force. Our results led to three novel discoveries:
(1) the force-contact area deviates from Hertzian solution
in the intermediate regime, where the contact geometry
transitions from circular (Fig. 3—p0) to disklike contact
(Fig. 3—p1); (2) a nonmonotonic force-contact area relation
can be achieved in connection with the shell instability
(postbuckling regime), which is dictated by the local
friction; and (3) friction introduces hysteresis upon unload-
ingwith amaximumat a critical coefficient of friction (CoF),
after which hysteresis drops as high friction suppresses
sliding. The critical aspect of our findings, which pertains to
the contact behavior in the intermediate regime, is that we
observed a departure fromprevious claims that full contact is
maintained until the bifurcation point [29]. Additionally, it is
also shown that local friction delays and eventually sup-
presses the postbifurcation regime, hindering the abrupt
change in the force-contact area relation and hysteresis.
The snapshots in Figs. 1(a) and 1(b) showcase the

deformation modes of a bulk solid and a shell, both made
from cross-linked polydimethylsiloxane (PDMS), upon con-
tact with a flat polylactic acid (PLA) plate. Figure 1(c)
presents the force-contact area relation, highlighting an early
deviation from Hertzian solution, followed by a sudden drop
in the contact areawhen a transition occurs in the deformation
mode. First, we experimentally study the contact of a thin,
elastic hemispherical shell made of cross-linked PDMS [40]
with a flat PLA plate, having a roughness of Sa ¼ 15 μm to
suppress the contribution of adhesion (Fig. 1). Systematic

investigation of adhesion is not performed in this study, due to
the difficulty of varying adhesion and friction independently.
The PDMS shell, with a radius of R ¼ 25 mm and thickness
h ¼ 1.33� 0.06 mm, is made by pouring a PDMS mixture
over a 25 mm radius bearing ball [41]. In a displacement-
control manner (see Supplemental Fig. S1 [39]), the PLA
plate comes into contact with the shell at a constant velocity
of 10 mm=min, where the force-displacement data are
recorded. A side camera is used to monitor the deformation
of the shell. To study the effect of the friction coefficient,
we ran the test under dry and lubricated conditions, where
KemaGL-68 is used as the lubricant. Additional experiments
are conducted to measure μ between PDMS and PLA under
dry (1.0� 0.2) and lubricated (0.48� 0.09) contacts (see
Supplemental Figs. S2 and S3 [39]).
To complement our experiments with details of contact

area and pressure evolution over a wider range of μ, we
performed systematic finite element simulations using
the commercial software ABAQUS [42]. A fixed boundary
condition is applied at the top, while a displacement is
applied to the plate (Supplemental Fig. S4 [39]). The shell
mesh is presented in Supplemental Fig. S5. Details of
loading and boundary conditions as well as material
properties are presented in the Supplemental Material [39].
Figure 2(a) summarizes the experimental and numerical

results, presenting the evolution of contact force
[F̄ ¼ FR=ðEh3Þ] during the loading and unloading stages
under dry (μ ¼ 1.0) and lubricated (μ ¼ 0.48) conditions.
We additionally include simulation results for the friction-
less (μ ¼ 0.0) and high-friction (μ ¼ 2.2) scenarios.
Despite the absence of the adhesion effect in our simu-
lation, a close agreement between the experimental and
numerical results has been obtained for the dry and
lubricated contacts in all stages of indentation. As seen,
the contact force monotonically increases with the inden-
tation until buckling occurs, after which a small drop is
identified in the indentation force. The force continues to
increase at a lower rate in the postbuckling regime. One can
see that the evolution of force in the postbuckling regime is
a function of the CoF. As friction rises, it opposes the
compressive stresses within the shell, increasing the critical
force needed for instability initiation. In other words, the
heightened frictional forces hinder relative motion between
surfaces, strengthening resistance to compressive loading.
Consequently, the critical force threshold rises due to the
combined effects of friction-induced resistance and the
reaction to compressive stresses on the shell material. This
observation highlights how frictional mechanics control the
structural stability of materials.
A significant dissipation through hysteresis is also

observed upon unloading in both cases. It is evident that
as the CoF increases, the buckling is delayed, while a larger
energy dissipation occurs upon unloading. As expected, no
dissipation occurs in the frictionless case, indicating that
sliding in the postbuckling stage is the main source of
energy dissipation. Interestingly, it can be seen that a high
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CoF can completely avoid shell buckling and, conse-
quently, energy dissipation is reduced to a minimum.
The inset of Fig. 2(a) shows a parabolic relation between
the dissipated energy (W ¼ H

S Fdx) and CoF, indicating
the existence of a critical CoF, where sliding and dissipa-
tion in the postbuckling stage are maximized (also see
Supplemental Table S1 [39]). This critical CoF may be a
function of geometrical (thickness, diameter) and material
parameters (Young modulus).

The evolution of the contact area in different stages of
indentation is presented in Fig. 2(b). It can be seen that the
normalized contact area [Ā ¼ 2A=ðπR2Þ] increases mono-
tonically until the point of instability, after which a sharp
reduction occurs (also see Supplemental Table S1 [39]). For
the case of high friction (μ ¼ 2.2) and the absence of
instability, the contact area increases for the entire simu-
lation. The inset figure in Fig. 2(b), compares the force-
contact area relationship with the Hertzian solution
shown by an orange dashed line in the loading regime.
Interestingly, it can be seen that deviation from the Hertzian
solution occurs in the intermediate regime and before the
point of buckling. This observation challenges the previous
assumption of Hertzian-like behavior in the intermediate
regime [29]. Remarkably, the contact area remains constant
in the postbuckling regime despite the increase in the
indentation force. This stands in contrast to the contact
response of a bulk sphere, where the contact area mono-
tonically grows [5,21] (also see Fig. 1). Three regimes of
deformation can also be distinguished by monitoring the
average contact pressure as a function of indentation. The
maximum contact pressure Pmax is defined as maximum
values of the pressure pðxÞ in the pressure field at a given
indentation d̄. Figure 2(c) presents the maximum contact
pressure normalized by the elastic modulus (p̄ ¼ Pmax=E).
The pressure initially increases in the Hertzian regime
(regime I), followed by a smooth drop and saturation
(regime II). Clearly, it can be seen that the pressure in
the intermediate regime II does not follow the Hertzian
behavior shown in regime I. The maximum pressure
experiences a sharp increase as a result of buckling and
the reduction in the contact area [see Fig. 2(b)], indicating
the transition into the postbuckling regime III.
An in situ analysis of shell deformation and the evolution

of contact area and pressure for the dry contact scenario
(μ ¼ 1.0), corresponding to marked points p0–p5 in
Fig. 2(a), is illustrated in Fig. 3 (see Supplemental
Movies [39] for other CoFs). It can be seen that the
numerical simulations predict the profile of the shell in
all regimes. At the onset of contact (p0), the circular contact
geometry [Fig. 3(b)] and the parabolic contact pressure
distribution [Fig. 3(c)] follow the Hertzian solution. p1

demonstrates the deviation from the Hertzian solution in
the intermediate regime but before the point of buckling by
showing a disklike contact area and nonparabolic pressure
distribution as a direct result of bending in the shell. A
similar pressure profile has also been derived theoretically
[43]. Contrary to the parabolic Hertzian pressure distribu-
tion, the pressure in the intermediate regime reduces from
the leading edge to the trailing edge (see Supplemental
Movies [39]), indicating that the change in the contact
morphology is dominated by the rolling mechanism. This
explains the minimization of dissipation until the point of
buckling, after which sliding and thus dissipation occur at
the contact. In the postbuckling regime (p2 and p3), the

(a)

(b)

(c)

FIG. 2. The evolutions of normalized force F̄, contact area Ā,
and maximum contact pressure p̄ ¼ Pmax=E (times 103), as a
function of the indentation ratio d̄ ¼ d=R are presented for
different CoFs. Experimental results are displayed using black
diamond symbols for dry conditions and red triangle symbols for
lubricated conditions across all panels. Simulations are depicted
with solid lines for various CoFs: μ ¼ 0 (blue), μ ¼ 0.48 (red),
μ ¼ 1.0 (black), and μ ¼ 2.2 (green). Insets include the dissipated
energy during unloading W presented in panel (a), highlighting a
parabolic correlation with a CoF, and two key transitional points
in panel (b): the deviation of the force-area relation from the
Hertzian solution (orange dash line) due to bending and a sudden
drop in contact area due to shell buckling. The deviation from
Hertzian can also be seen from the pressure drop in (c).
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contact occurs along a circular ridge with a parabolic
pressure distribution across the contact width. In the unload-
ing phase, the outer side of the shell is first unloaded
elastically (p4) as shown in Supplemental Fig. S6. In this
regime, while the buckled (inner) side of the shell remains
fairly stationary due to friction (see Supplemental Fig. S7a),
the outer side unrolls, causing a reduction in the contact area
(Supplemental Fig. S7b). The unloading phase continues
with a transition, where the local tangential load overcomes
friction. In this regime (p5), while the contact area remains
constant [see Fig. 2(b)], dissipation occurs via frictional
sliding. Eventually, the shell unbuckles, after which the
Hertzian solution is recovered.
Another intriguing effect of friction is that it makes the

loading-unloading response asymmetric. Figure 4 demon-
strates the evolution of contact morphology during the
loading and unloading phases by showing the location and
size of the contact area. The contact size refers to the radius
of a circular contact in the Hertzian regime and the width of
the annular contact area in the intermediate and postbuck-
ling regimes. Noting the variation of contact size, three
regimes of Hertzian, intermediate, and postbuckling are
classified for each friction case. It can be seen that friction
postpones all transition points during the loading and
unloading phases, resulting in a more extended Hertzian
regime during the loading, but a smaller one upon unload-
ing. Additionally, the degree of asymmetry in the loading-
unloading response increases with friction. For the high
friction case (μ ¼ 2.2) where the buckling regime is absent,
unloading is mainly accommodated via the rolling mecha-
nism, explaining the absence of dissipation (also see
Supplemental Movie [39]).

(a)

(b)

(c)

FIG. 3. (a) In situ snapshots of a shell profile indented by a PLA plate, under dry contact (μ ¼ 1.0) at different stages of indentation,
corresponding to points p0–p5, marked in Fig. 2(a). The profiles obtained from the simulation are superimposed with red solid lines for
comparison. (b) and (c) present, respectively, the corresponding contact morphology and the contact pressure distribution [pðxÞ=E],
obtained from simulations multiplied by 103 for clarity. Inset numbers in (b) present the total contact area. The evolution of contact area
and pressure distribution, as well as the indentation force and shell profile for different CoFs can be seen in Supplemental Movies [39].

FIG. 4. The evolution of contact size and location in the loading
and unloading phases for different CoFs. The indentation on the y
axes is normalized by the maximum indentation. The contact size
represents the radius of a circular contact in the Hertzian regime
and the width of an annular contact area in the intermediate and
postbuckling regimes. Letters H, I, and B denote Hertzian,
intermediate, and postbuckling regimes, respectively. Red dashed
lines mark the transition point between the Hertzian and
intermediate regimes. The shaded areas highlight the elastic
unloading at the onset of unloading for cases of μ ¼ 0.48 and 1.0.
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We have shown how the interplay between structural
instability and the local friction coefficient dictates the
morphology of contact. It is shown that the contact
behavior departs from the Hertzian solution due to bending
at the onset of contact. This observation challenges the
previous assumption of a Hertzian-like response in the
prebuckling regime. In agreement with previous studies
[29], two transition points are identified in the loading
phase, classifying three regimes of deformation: Hertzian,
intermediate, and postbuckling. While the contact area
increases monotonically in the first two regimes, it abruptly
drops and then remains constant in the postbuckling
regime. The distribution of pressure in the contact zone
revealed two distinct mechanisms for the evolution of the
contact area: (i) the energy-preserving rolling mechanism
in the Hertzian and intermediate regimes, and (ii) the
dissipative frictional sliding in the postbuckling regime.
In other words, the response is fully reversible (non-
dissipative) in the absence of friction or the postbuckling
regime. The unloading phase for μ ¼ 0.48 begins with an
elastic unrolling, followed by dissipative frictional sliding.
Furthermore, it is evident that friction causes a delay at all
transition points, leading to the expansion and contraction
of the Hertzian regime during the loading and unloading
phases, respectively. The addition of adhesion in simula-
tions would be a natural step to extend our current work,
given the strong coupling between friction and adhesion,
especially in the low roughness contact scenario. [36–38].
The interplay between friction, material properties, and

structural instability leverages the controlled departure
from Hertzian behavior and the monotonic contact force-
area relation. This new understanding presents a direction
to tailor the contact morphology and governing mechanism,
offering solutions to a diverse range of engineering appli-
cations such as systems with superior damping capabilities
[44], a sport ball [45,46], haptic robotics [47,48], or vesicle
manipulation [49,50].
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Pépin-Donat, Gel phase vesicles buckle into specific shapes,
Phys. Rev. Lett. 108, 108303 (2012).

[50] N. Tsapis, E. R. Dufresne, S. S. Sinha, C. S. Riera, J. W.
Hutchinson, L. Mahadevan, and D. A. Weitz, Onset of
buckling in drying droplets of colloidal suspensions, Phys.
Rev. Lett. 94, 018302 (2005).

PHYSICAL REVIEW LETTERS 133, 106202 (2024)

106202-6

https://doi.org/10.1103/PhysRevE.99.053005
https://doi.org/10.1103/PhysRevE.99.053005
https://doi.org/10.1016/j.triboint.2018.02.010
https://doi.org/10.1038/nature07748
https://doi.org/10.1126/science.adn1075
https://doi.org/10.1126/science.adk4234
https://doi.org/10.1080/13642819808202945
https://doi.org/10.1080/13642819808202945
https://doi.org/10.1098/rspa.2015.0732
https://doi.org/10.1016/j.tws.2008.11.009
https://doi.org/10.1039/c3sm50279a
https://doi.org/10.1140/epje/i2014-14001-x
https://doi.org/10.1140/epje/i2014-14001-x
https://doi.org/10.1115/1.4034431
https://doi.org/10.1016/j.eml.2024.102140
https://doi.org/10.1016/j.ijsolstr.2021.111351
https://doi.org/10.1016/j.ijsolstr.2021.111351
https://doi.org/10.1007/s11340-018-0400-9
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.106202
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.106202
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.106202
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.106202
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.106202
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.106202
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.106202
https://doi.org/10.1051/epjap/2009124
https://doi.org/10.1038/ncomms11155
https://doi.org/10.1038/ncomms11155
https://doi.org/10.1115/1.3422838
https://doi.org/10.1115/1.3422838
https://doi.org/10.1016/j.pce.2022.103203
https://doi.org/10.1016/j.pce.2022.103203
https://doi.org/10.1103/PhysRevE.4.018302
https://doi.org/10.1103/PhysRevE.4.018302
https://doi.org/10.1016/j.proeng.2016.06.307
https://doi.org/10.1016/j.proeng.2016.06.307
https://doi.org/10.1089/soro.2016.0039
https://doi.org/10.1002/admi.202101380
https://doi.org/10.1002/admi.202101380
https://doi.org/10.1103/PhysRevLett.108.108303
https://doi.org/10.1103/PhysRevLett.94.018302
https://doi.org/10.1103/PhysRevLett.94.018302

