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Topological surface states are unique to topological materials and are immune to disturbances. In
isostatic lattices, mechanical topological floppy modes exhibit softness depending on the polarization
relative to the terminating surface. However, in three dimensions, the polarization of topological floppy
modes is disrupted by the ubiquitous mechanical Weyl lines. Here, we demonstrate, both theoretically and
experimentally, the fully polarized topological mechanical phases free of Weyl lines. Floppy modes emerge
exclusively on a particular surface of the three-dimensional isostatic structure, leading to the strongly
asymmetric stiffness between opposing boundaries. Additionally, uniform soft strains can reversibly shift
the lattice configuration to Weyl phases, switching the stiffness contrast to a trivially comparable level. Our
work demonstrates the fully polarized topological mechanical phases in three dimensions, and paves the
way towards engineering soft and adaptive metamaterials.
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Introduction—Isostatic structures [1,2], also known as
Maxwell structures [3,4], are mechanical frames that
perfectly balance the degrees of freedom and constraints.
These structures, ranging from molecular to architectural
scales [5], are viewed as networks of nodes and links. Their
significance lies in providing insights into stability and
adaptability for innovative material and structure design,
particularly in soft-matter systems [6–10]. Isostatic struc-
tures host zero-frequency edge modes that exhibit topo-
logical protection [11–14], because the boundary
mechanical softness and rigidity remain unchanged even
when disturbances or damage occur [15–17].
In one- and two-dimensional isostatic lattices, mechani-

cal floppy modes can be “topologically fully polarized,” as
they emerge exclusively on a single boundary, while the
opposing surface is completely devoid of floppy modes.
This behavior results in a highly asymmetric contrast of
boundary stiffness in a uniform structure. Fully polarized
isostatic lattices establish the connection between elasticity
and topological electronic band theory [18–23], laying the
foundation for topological mechanics [24–35]. However,
for two-dimensional isostatic lattices, this conceptual
correspondence is not applicable to out-of-plane motions,
which lack topological protection and mechanical
polarization.
In three-dimensional (3D) isostatic lattices, the fully

polarized topological mechanics is disrupted by the ubiqui-
tous Weyl lines [36,37] that close the mechanical band gap

and reduce the contrast of boundary stiffness to a trivially
comparable level. Recent studies have theoretically pro-
posed 3D isostatic lattices that eliminate Weyl lines [36,38],
but these designs allow floppy modes to emerge on both
opposing surfaces, resulting in a stiffness contrast that is
still trivially comparable. Furthermore, in the precedented
experiments [37,39], the continuous mechanical junctions
introduce finite bending stiffness that pushes the 3D-
printed specimens beyond the isostatic point [40,41],
making topological numbers undefined. Thus, the elimi-
nation of Weyl lines and full polarization of mechanical
topology in 3D isostatic lattices remains challenging.
In this work, we demonstrate, both theoretically and

experimentally, the fully polarized topological mechanical
phase in three dimensions. Using the three-dimensional
example known as the generalized pyrochlore lattice, we
illustrate this topological mechanical phase and the result-
ing distinctive boundary elasticity. Our analytic design
principle is based on the mechanical transfer matrix [42,43]
that polarizes all floppy modes to concentrate on a single
open boundary of the lattice, whereas the opposite surface
is clear of floppy modes. Consequently, the lattice is
topologically fully polarized and exhibits highly contrast-
ing boundary mechanics.
Moreover, isostatic lattices grant uniform soft strains of

the entire structure, known as Guest-Hutchinson modes
[44], that reversibly shear the lattice configuration and
induce transitions among topologically polarized and
mechanical Weyl phases. This uniform shearing in a
mechanical lattice is a nonlinear mechanism that alters
the geometric configuration of all unit cells, but without
inducing elastic energy. By shearing the lattice to the
mechanical Weyl phase, the contrast in local stiffness is
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reduced to a comparable level, because floppy modes arise
on both parallel open surfaces of the lattice. This fully
polarized mechanical phase in three dimensions, together
with the freely switchable topological transition, results in
advancements not possible in 2D systems [45], such as
topological softness bounded to 3D dislocations, static
mechanical nonreciprocity in all spatial dimensions, and
topologically protected all terrain tire.
3D fully polarized topological isostatic lattices—Our

prototype is a polymer 3D mechanical structure that uses
pyrochlore lattice for network connectivity. Figure 1 dis-
plays two geometries of pyrochlore lattices, namely, the
regular and generalized ones in (a) and (b), respectively.
Figure 1(a) shows the unit cell of the regular pyrochlore
lattice, with four corners at Að0Þ ¼ lð1; 1; 0Þ=2,
Bð0Þ ¼ lð0; 1; 1Þ=2, Cð0Þ ¼ lð1; 0; 1Þ=2, and Dð0Þ ¼
lð0; 0; 0Þ=2; primitive vectors að0Þ1 ¼ lð1; 1; 0Þ, að0Þ2 ¼
lð0; 1; 1Þ, and að0Þ3 ¼ lð1; 0; 1Þ; and a length scale of
l ¼ 24 mm. In Fig. 1(b), the geometry of the generalized
pyrochlore lattice deviates from the regular one, with vertex
positions X ¼ Xð0Þ þ ΔX for X ¼ A;B;C;D and primitive

vectors ai ¼ að0Þi þ Δai for i ¼ 1, 2, 3. These geometric
parameters reside in a vast 14-dimensional space (demon-
strated in Supplemental Material [45]), which poses chal-
lenges for searching fully polarized topological mechanical
phases. To address this, we employ the technique known as
the 3D mechanical transfer matrix [45]. By decomposing
the isostatic lattice into layers of lower dimensions, we

ensure that the lattice geometry associated with the transfer
matrix allows for consistent growth of mechanical floppy
modes from the top to the bottom layer. Remarkably, this
approach substantially reduces the parameter space from 14
to just three dimensions. Figure 1 illustrates a geo-
metric example that facilitates the consistent growth of
floppy modes from top to bottom. In this configuration,
we have ΔA ¼ 0.053ð1; 0.3; 0Þ, ΔB ¼ 0.053ð0.55; 0; 1Þ,
ΔC ¼ 0.053ð−1; 1;−1Þ, ΔD ¼ 0.053ð−1.8;−1; 1.2Þ, and
Δai¼1;2;3 ¼ 0.
The unit cell of the generalized pyrochlore metamaterial

consists of two polymer tetrahedra, each featuring a
spherical hinge at every vertex, as depicted in Fig. 1(c).
In Fig. 1(d), the A, B, C, D vertices of the white tetrahedra
are connected to the A0, B0, C0, D0 tips of the green
tetrahedra, enabling free rotations between neighboring
bodies and eliminating bending stiffness. Within the unit
cell, the site positions of the green tetrahedron [45] are give
by A0 ¼ A − a1 þ a3, B0 ¼ B − a2 þ a3, C0 ¼ C, and
D0 ¼ Dþ a3. As a result, each spherical hinge provides
three constraints, and each tetrahedron is connected to four
hinges. A total of ð3 × 4Þ=2 ¼ 6 constraints are imposed on
a tetrahedron, balancing the six degrees of freedom of the
rigid body. Consequently, the pyrochlore metamaterial is
classified as an isostatic lattice due to the perfectly balanced
degrees of freedom and constraints [4]. This isostatic point
ensures the rigorous definition of topological mechanical
indices, distinguishing them from the previously undefined
topological numbers in super-isostatic structures [37,39].
Floppy modes refer to tetrahedron movements that do not

deform their rigid bodies or mutual hinges, and thus do not
involve elastic potential energy. Furthermore, floppy modes
occur slowly, and their zero-frequency nature makes kinetic
energy negligible. These properties allow us to exactly map
the Newtonian statics of the metamaterial to an idealized
spring-mass network,which enables the analytic studyof the
topological phases in static mechanical properties.
The idealized spring-mass model is established by

assigning a mass particle to each site and representing
each edge with a central-force Hookean spring. In both the
spring-mass system and the pyrochlore metamaterial, the
static mechanics are equivalent, as each set of floppy modes
corresponds to undistorted spherical hinges, edges, and
tetrahedral bodies. The static mechanics of the spring-mass
pyrochlore model can be described by the compatibility
matrix (C), which maps site displacements to spring
elongations [6]. In spatially repetitive systems, the compat-
ibility matrix can be Fourier transformed into reciprocal
space [45], ðCÞðkÞ, where k represents the wave vector.
This compatibility matrix defines three integer-valued
winding numbers,

NiðkÞ¼
−1
2πi

I

k→kþbi

dk ·∇k ln detðCÞðkÞ; i¼ 1;2;3; ð1Þ

(a) (c)

(d)
(b)

FIG. 1. Design principle of the 3D fully polarized topological
mechanical metamaterial. Panels (a) and (b) describe the unit
cells of the regular and generalized pyrochlore lattices, respec-
tively, with the same primitive vectors a1, a2, and a3. Each cell
contains 12 bonds and 4 vertices marked by A, B, C, D. (c) The
white and blue rigid bodies stand for the bottom and top
tetrahedra that form the unit cell of the mechanical metamaterial.
Each vertex is equipped with either a concave or convex surface,
constituting the spherical hinges that allow for relative free
rotations. (d) The assembly of the fully polarized topological
mechanical metamaterial.
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that govern the topological phase of static mechanical
properties, where the integration trajectory k → kþ bi
follows a straight and closed loop that is parallel to the
reciprocal vector bi.
For different unit cell geometries, winding numbers can

manifest qualitatively distinct behaviors. In most geom-
etries of pyrochlore lattices, winding numbers exhibit
jumps between integers as the wave vector moves across
the Brillouin zone, and the critical boundaries between
different integers are called mechanical Weyl lines.
However, in models with gapped mechanical spectra, such
as the structure exhibited in Fig. 1, winding numbers stay
invariant for arbitrary wave vector, and the mechanical
bands are clear of Weyl lines. These globally defined
winding numbers constitute the vector [4]

RT ¼
X3
i¼1

Niai ð2Þ

known as the topological polarization. This globally
defined vector characterizes the topological phases of static
mechanics and reflects the topological robustness of floppy
modes in both the spring-mass model and the pyrochlore
metamaterial. These zero-frequency mechanisms prefer to
localize on the open boundary that terminates this topo-
logical polarization, while the opposite parallel boundary
has fewer floppy modes.
For the lattice configuration in Fig. 1, the topological

polarization is RT ¼ a1 − a2 − 2a3. As topological polari-
zation depends on the choice of the unit cell, we introduce
the local polarization vector, denoted as RL. This vector
characterizes how nodes and bonds are locally connected
on the open surface [4,45], effectively canceling the gauge
dependence of the total polarization vector, RT. Together,
these two polarizations govern the number density, ν, of
topological floppy modes on the open surfaces of isostatic
lattices. Specifically, we have ν ¼ ð1=2πÞðRT þ RLÞ · G,
where G represents the reciprocal vector with its normal
pointing outward from the open surface. For the pyrochlore
structure shown in Fig. 1, we find the number density of the
top and bottom open surfaces as ðν↑; ν↓Þ ¼ ð0; 3Þ.
The top boundary, with the floppy mode density ν↑ ¼ 0,

lacks any topological floppy modes entirely. In contrast, the
bottom boundary hosts three floppy modes per supercell, as
indicated by ν↓ ¼ 3. Because of the contribution of these
floppy modes to local softness, the top boundary remains as
rigid as the lattice’s interior, while the bottom surface
becomes significantly softer than the interior. As the lattice
thickness increases, the contrast ratio in edge stiffness
grows exponentially due to the localization of topological
floppy modes near boundaries. This exotic behavior arises
uniquely from topological polarization in isostatic lattices,
which we term “fully polarized topological mechanical
metamaterials in 3D.” In the subsequent section, we

validate this highly polarized boundary elasticity both
numerically and experimentally.
It is worth emphasizing that our 3D topological lattice is

fundamentally distinct from its 2D counterparts, because
2D mechanical structures are prone to deform, distort, and
lose mechanical stability due to external pressure, thermal
expansion, and bending [57,58]. Our work discovers the
fully polarized topological mechanical phase in three
dimensions. This new phase opens up avenues towards
novel applications of topological mechanical metamateri-
als, including asymmetric wave propagation, directional
polar elasticity in isostatic media, and topological fractur-
ing protection [45].
Uniform shearing and transformable mechanical Weyl

phase—Isostatic lattices are known to host nonlinear and
uniform soft strains of the whole structure, namely, Guest-
Hutchinson modes [1,44,59], that reversibly shear the
geometry without causing any elastic energy. In the
pyrochlore metamaterial, the uniform shearing represents
the rotation of the top tetrahedron around the spherical
hinge connecting it to the bottom tetrahedron within the
unit cell. This rotational mode is uniform across all unit
cells in the lattice.
The insets of Figs. 2(c) and 2(e) display two configu-

rations of the pyrochlore unit cell that demonstrate how
uniform shearing can reversibly evolve from one state to
another, as visualized by the Supplemental Material, video
[45]. These structures display mechanical responses that
are topologically distinct from those in Fig. 2(a).

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Weyl lines and winding numbers in three configurations
of the generalized pyrochlore lattice. (a) Brillouin zone of the
generalized pyrochlore lattice without mechanical Weyl lines.
The unit cell of Fig. 1(d) is described by the inset, whose black
dashed line represents the rotation axis of the uniform shearing
mode. (b) Winding numbers of the surface Brillouin zones of (a).
(c) and (e) The Brillouin zones of the generalized pyrochlore
lattice for shearing angles θ ¼ 10° and θ ¼ 45°, containing 2 and
4 Weyl lines presented by solid color curves, respectively. (d) and
(f) The winding numbers in the surface Brillouin zones corre-
sponding to the unit cell configurations in the insets of (c) and (e),
respectively.
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In contrast to the globally defined winding numbers in
Fig. 2(b) that originate from the fully polarized topological
phase, the winding numbers in Figs. 2(d) and 2(f) can
change as the wave vector moves [45]. At the critical wave
vectors where the winding numbers jump, the mechanical
band gap closes and form gapless lines in the 3D Brillouin
zone. These are called mechanical Weyl lines [38], and are
difficult to remove due to their topological robustness. The
topological charge of Weyl lines [36] is determined
by a nontrivial Berry phase Nw ¼ ½ð−1Þ=2πi�×H
C dk ·∇k ln detðCÞðkÞ, where the integration path C enc-
loses the gapless lines. We highlight that the Brillouin
zones depicted in Figs. 2(c) and 2(e) feature two and four
Weyl lines, which correspond to a two-Weyl-line phase and
a four-Weyl-line phase, respectively.
In Fig. 3(a), numerical simulations are conducted to

analyze the stiffness of the top and bottom open surfaces as
the uniform shearing angle increased from θ ¼ 0° to 45°. At
θ ¼ 0°, corresponding to the configuration in Fig. 2(a), the

pyrochlore metamaterial is in the topologically fully
polarized phase, exhibiting significantly higher stiffness
on the top surface compared to the bottom. This strong
asymmetry in surface elasticity is further corroborated by
the numerical results against external poking forces shown
in Fig. 3(b). Upon increasing the uniform shearing angle to
10°, the lattice undergoes a transition into the two-Weyl-
line phase, as illustrated in Fig. 2(c). This transition is
characterized by a significant decrease in stiffness of the top
boundary, which is quantitatively supported by the numeri-
cal analysis presented in Fig. 3(a). Further rotation of the
uniform shearing angle to 45° induces a shift to the four-
Weyl-line phase, depicted in Fig. 2(e), leading to an

(a)

(b)

(c)

FIG. 3. Numerical simulations of the surface mechanics in the
pyrochlore models under horizontal periodic boundaries and
vertical open boundaries. (a) The local stiffness of top and bottom
open surfaces in a model composed of 5 × 5 × 8 unit cells as the
uniform shearing angle θ varies. The different background colors
mark topologically distinct mechanical phases, with 0, 2, and 4
denoting topologically polarized, two-Weyl-line, and four-Weyl-
line phases, respectively. (b) Top and bottom surface deforma-
tions in the left and right panels, respectively, with the colors on
each tetrahedron represents its center displacement. The lattice is
in the topological phase (uniform shearing angle θ ¼ 0°), and is
constructed from 15 × 15 × 8 unit cells. (c) Spatial profiles of
floppy modes in the topologically polarized and Weyl phases for
the up and down panels, respectively.

(a) (b)

(c)

(e) (f) (g)

(d)

FIG. 4. Experimental measurements of the 3D-printed pyro-
chlore metamaterials. (a) and (b) Assembly of the 3D-printed
pyrochlore lattice in topologically fully polarized and Weyl
phases, respectively. The measuring open top and bottom
boundaries are highlighted in red and green, whereas the four
side boundaries are fixed during experimental implementations.
(c) and (d) Force-displacement measurements for the topologi-
cally fully polarized and Weyl phases, respectively, where the red
and green curves represent the measurements for the top and
bottom boundaries. The solid lines indicate the average values,
while the shaded areas represent the standard deviation across
five measurements. The positive direction of displacement is
defined as normal to the measuring surface when it pushes
towards the interior of the lattice. (e) Topological landing gear
with reconfigurable elasticity for drones. (f) Topological pyro-
chlore lattice incorporated into a cylindrical domain, forming a
porous wheel. (g) Numerical analysis reveals the wheel’s
mechanical response while rolling on a rugged terrain profile.
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additional reduction in stiffness of the top open surface, as
evidenced by the data in Fig. 3(a). The corresponding
topological mechanical phase diagram is derived in the
Supplemental Material [45], exhibiting sharp and well-
defined phase boundaries.
These numerical results have a direct correspondence to

the boundary experiments of the 3D-printed metamaterial.
In the topologically fully polarized case [Fig. 4(a)], floppy
modes emerge exclusively on the bottom boundary,
whereas the clearance of floppy modes on the top boundary
indicates a topologically protected rigidity. This unprec-
edented and strongly contrasting boundary stiffness in three
dimensions is experimentally demonstrated using force-
displacement measurements in Fig. 4(c). We rotate the
lattice’s unit cell configurations by a uniform shearing
angle of 45°, and the lattice structure reaches the mechani-
cal four-Weyl-line phase in Fig. 4(b). Floppy modes arise
on both the top and bottom surfaces, which is reflected by
the comparable stiffness in Fig. 4(d). Here, hysteresis in the
force-displacement measurements stems from the com-
bined effects of the hinge clearance and friction. We note
that the fully polarized topological and Weyl phases can be
reversibly transformed by the uniform soft shearing
strain.
In three dimensions, highly polarized and flexible

boundary elasticity has transformative implications for
various applications. Notably, our material enables switch-
able landing gear for drones [Fig. 4(e)]. During landing, it
transitions into a soft-bottomed Weyl phase, effectively
absorbing shocks. In flight, the bottom becomes a topo-
logically rigid surface, preventing swaying. Our pyrochlore
structure, applicable to continuum materials, raises the
frequencies of topological floppy modes. These “soft
modes” propagate asymmetrically between the top and
bottom surfaces. When incorporated into a cylindrical
domain, our pyrochlore structure creates porous wheels
that efficiently absorb energy on rugged terrains [Figs. 4(f)
and 4(g)]. Remarkably, these functionalities persist even if
outer layers are removed, showcasing resilience.
Discussions—We have demonstrated, both theoretically

and experimentally, the topologically fully polarized
mechanical phase in three dimensions. The mechanical
metamaterial remains on the isostatic point, ensuring the
rigorousness of the topological mechanical index.
Topological floppy modes, confined exclusively to a single
boundary, result in fully polarized topological phase with-
out Weyl lines. This mechanical achievement is analogous
to the discovery of 3D topological insulators in electronic
systems. Using soft uniform shearing modes, the isostatic
metamaterial can be transformed from topologically polar-
ized toWeyl phases, reducing the stiffness contrast between
opposite boundaries to a trivially comparable level.
The topological polarization in three dimensions paves

the way towards physics not possible for 2D lattices, such
as higher-order topological floppy modes in three

dimensions, topological mechanical cloaking, and static
mechanical nonreciprocity in all spatial dimensions.
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