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We identify a new class of surface waves that arise at a plasma-liquid interface due to resonant coupling
between discrete plasma pattern modes and a continuum of interfacial liquid surface wave modes. Awave
mode is selected due to localized excitation by the plasma, and standing waves result when waves excited
from different locations interact. These waves propagate with a slower phase velocity than traditional
capillary waves, but exhibit the same damping behavior with respect to liquid viscosity. Surface tension
does not appear to play a significant role. We propose a curvature-dependent Maxwell pressure mechanism
to explain these nondispersive interfacial waves in the presence of plasma.
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Plasma interactions with liquids can promote unique
physiochemical interactions dictated by delivery of reactive
plasma species, including electrons, ions, and radicals,
across the gas-liquid interface [1]. These reactions are
typically limited by the transport of reactants in the liquid
phase. For example, plasma systems used to destroy per-
and polyfluoroalkyl substances (PFAS) in wastewater are
limited by transport of PFAS to the interface [2], because
the dominant reactive plasma species (solvated electrons
and hydroxyl radicals) do not penetrate far into the liquid
[3]. Direct current (dc) plasma discharges are known to
self-organize into patterned states and form coherent
structures under the right conditions, including forming
intricate patterns on resistive anode surfaces, such as doped
silicon [4,5] or liquid saline solutions [6–9]. In medical
applications, patterns have been shown to introduce favor-
able conditions in terms of current density and heat
generation for the treatment of cancer cells [10]. Self-
organization in natural systems often arise because of
transport optimization [11,12]. Inherent coupling of plasma
self-organization with solution advective transport could
naturally lead to highly efficient reaction promotion at a
plasma gas-liquid interface.
The complex interactions between plasma and liquids

involve physics at highly disparate time and length scales,
making their dynamics difficult to analyze even with full
numerical simulations [13,14]. Rumbach et al. [15] accu-
rately predicted the transition from a uniform spot to an

annular ring plasma pattern by applying a Turing-like
theory [11] for radial transport-reaction pattern formation.
The Turing mechanism establishes quasiequilibrium static
patterns with millimeter length scales that are governed by
the net electron axial flux into the liquid. This flux is gated
by both liquid and plasma ion charge distributions in the
nanometer and micron-scale Debye layers on both the
liquid and plasma side of the interface, respectively [16].
At higher currents, liquid anode dc plasma patterns

exhibit dynamic fluctuations, which currently are not
predicted by any existing theory. The ring pattern loses
its stability and dynamically oscillates between a continu-
ous annulus ring and four individual plasma spots at a
frequency of around 102 Hz, similar to an m ¼ 4 standing
wave mode on a drumhead, as shown in Figs. 1(e) and 2(a).
Increasing the current further introduces more complex
shapes and pattern dynamics, such as rotating spotted rings
and spokes [6], that often depend on the electrolyte salt
[9,17]. Dynamic plasma patterns in these systems have
been reported with characteristic frequencies near 100–
1000 Hz [7,17,18], which is much slower than plasma
timescales that produce fluctuations at 105–106 Hz [19].
Low frequency plasma pattern oscillations suggest that

the motion is limited or controlled by electrohydrodynamic
(EHD) coupling to the water, likely in the form of
interfacial liquid surface waves. Specifically, the reaction-
diffusion wave number of the plasma pattern selects a
specific wave mode from the continuum of liquid surface
waves. In this Letter, we present experimental evidence for
this in the form of measured dispersion relations. Changing
the solution ionic strength effectively changes the reaction-
diffusion wave number for plasma electrons by altering the
interfacial electrostatic conditions. Increasing the solution
viscosity decreases the measured wave frequency in a
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manner mathematically consistent with well-established
models for the viscous damping of liquid surface
waves [20].
Interestingly, the measured frequencies are an order of

magnitude lower than predicted by capillary wave theory.
Plasma pattern wavelengths are < 1 mm, which yields
frequencies of 103–104 Hz using the well-known inviscid
capillary wave formula ω0 ¼ ðγk3=ρÞ1=2, where γ is surface
tension and ρ is liquid density. Unlike capillary waves, the
waves also appear to be nondispersive with a wave-
number-independent phase velocity. We hypothesize that
electrostatic stresses at the plasma-liquid interface negate
the effects of surface tension, and we derive a new
theoretical inviscid dispersion relation based entirely on
curvature-dependent Maxwell pressure that underscores the
electrostatic coupling between the plasma and liquid phase.
Figure 1(a) illustrates our experimental apparatus. A

tungsten needle electrode (3.175 mm diameter) is sus-
pended 4 mm above the surface of the electrolyte solution,
consisting of dissolved sodium perchlorate (NaClO4) in
concentrations ranging from IS ¼ 16 to 256 mM. Glycerol
was added from 0% to 20% to vary the viscosity of the
solution from ν ¼ 1.0 × 10−6 to 1.9 × 10−6 m2 s−1 [21]. A
grounded platinum (Pt) foil submerged beneath the liquid
surface serves as the counterelectrode. A discharge is
formed by applying roughly −2 kV to the tungsten
electrode across a ballast resistor of 47 kΩ using a high
voltage dc power supply (Power Designs INC., Model
1570). Current was monitored using a digital multimeter
(Amprobe, AM-510) connected to the Pt foil counter-
electrode. Pattern oscillations were filmed with a high-
speed camera (Photron FASTCAM, SA4) angled 45° to the

liquid surface at a rate of 104 fps, and the oscillation
frequency was extracted from each video. Static photo-
graphs were taken using a Canon EOS 6D Mark II camera
with an exposure of 1 ms and have been contrast enhanced
for clarity. All experiments were conducted in atmospheric
air and repeated at least n ¼ 9 times to ensure repeatability.
Uncertainty for each measured mean frequency was esti-
mated using the random error of the 9 measurements with a
Student’s t value of 2.306 (95% confidence level).
Our experiments show that for the ionic strength range of

16 to 256 mM, the transition from a uniform spot to an
annulus ring pattern occurs at approximately 10 mA
[Figs. 1(c) and 1(d)], consistent with prior work [15].
Around 25 mA, the ring pattern enters into an unstable
regime, where it oscillates between the annulus ring pattern
and a four-spot pattern [Fig. 1(e); see Sec. S1 in
Supplemental Material [22] for still frames and a video].
At approximately 30.0 mA, it transitions into a quasistable,
complex spotted pattern [Fig. 1(f)]. The oscillation fre-
quency depends on both the ionic strength and viscosity of
the solution as shown in Fig. 2, exhibiting a stronger
viscosity dependence at low conductivities. The frequency
is on the order of 102 Hz, which is considerably slower than
any plasma chemical reactions [23], but it is within the
scope of fluid motion frequencies, specifically surface
waves [24–27]. As Fig. 2(a) shows, the measured wave
frequency decreases with solution viscosity, just as
expected for liquid surface waves.
There is a sensitive but distinct dependence of the

oscillation frequency with respect to both viscosity and
ionic strength. As shown by Rumbach et al. [15], the length
scale of the patterns generated from a plasma spot is
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FIG. 1. (a) Schematic of liquid anode glow discharge system. The discharge is generated by applying dc voltage through a ballast
resistor R to a needle cathode suspended above a liquid surface with a submerged, grounded counterelectrode. (b) Illustration of the
electrostatics of the plasma-liquid interface. The space charge field in the plasma’s anode sheath induces waves on the liquid surface,
whose wavelength is determined by the reaction and diffusion of electrons in the anode sheath. (c)–(f) Show patterns for a 128 mM
NaClO4 solution. As the current increases in the system, the plasma progresses from a uniform spot (c) to a continuous annular ring (d).
At higher currents, the annular ring breaks into four spots (e) and oscillates between the two conditions. At still greater currents, a more
complex pattern (f) is observed.
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determined by a balance between the electron-avalanche
autocatalytic reaction and electron diffusion. In a strong
electric field, electron impact ionization is the dominant
reaction, and other reactions, such as electron attachment,
can be neglected. The relevant wave number k for the
plasma pattern and subsequent capillary waves is

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
αμeEr

De

s
; ð1Þ

where α ¼ Ap expð−Bp=ErÞ is the Townsend electron
impact ionization coefficient for the avalanche autocatalytic
reaction, μe is the electron mobility, Er is the radial electric
field that accelerates the electrons for the avalanche
autocatalytic reaction, andDe ¼ 0.415 m2=s is the electron
diffusivity in the plasma [15]. The pressure is assumed to be
p ¼ 750 torr, and other parameters, including the ioniza-
tion parameters A and B, are approximated for humid air
using the BOLSIG+ Boltzmann solver [28]. Further discus-
sion and a table of values can be found in Supplemental
Material [22].

The average radial electric field depends on the plasma
electron density n0 and plasma spot radius rs, such that
Er ¼ ðqn0=4ϵ0Þrs, where q is the elementary charge and ϵ0
is the permittivity of free space [15]. Hence, the wave
number of the excited patterns is a function of the plasma
spot radius rs, which depends on both the plasma current I,
experimentally controlled to be 26.2 mA, and the current
density j. The current density j is determined by the
conductivity and field of both the plasma and liquid
[16]. Matching the flux in the plasma sheath and solution
Debye layer, we have an explicit formula for j as a function
of liquid ionic strength Is [16],

jðIsÞ ¼ j∞
1 − expð−bIsÞ
erf

� ffiffiffiffiffiffiffi
bIs

p � ; ð2Þ

where j∞ ¼ De

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q3n30=ðπϵ0VTeÞ

q
is the maximum

current density allowed by the plasma and b ¼
80qV2

L=ðn0VTekbTLÞ [16]. The electron thermal voltage
is assumed to be VTe ¼ 1 V, and the liquid temperature to
be TL ¼ 320 K. The plasma electron density n0 ¼ 2.35 ×
1018 m−3 and voltage drop across the liquid Debye layer
VL ¼ 8.6 μV are determined experimentally by fitting
Eq. (2) to measured current density versus ionic strength
data [16]. The current density increases with increasing
ionic strength, eventually reaching a constant limit j∞,
where it is no longer limited by solution conductivity,
but by the plasma conductivity instead. The plasma spot
radius is

rs ¼
ffiffiffiffiffiffiffiffiffi
I

mπj

s
; ð3Þ

where m is the number of spots. Thus, the plasma current I
and solution ionic strength Is can be used to control the
radial electric field Er and plasma wave number k. The
plasma radius decreases toward a constant asymptote at
high ionic strength due to the limiting current density
phenomenon related to j∞, which also causes the plasma
radius rs, radial field Er, and the plasma wave number k to
asymptote. This high ionic-strength asymptote is observed
in the wave number of Fig. 3(a).
Figure 3(a) shows both the experimental and theoretical

wave number and inviscid frequency as a function of the
solution ionic strength. To compute the theoretical curves,
phase velocities c were acquired experimentally using
high-speed imaging by placing the camera aligned with
the liquid surface, as shown in Fig. 3(b) and discussed in
Sec. S4 of Supplemental Material [22]. The experimental
inviscid frequency ω0;exp and wave number kexp are
extrapolated by curve fitting the experimental data, such
as those in Figs. 2 and S2 of Supplemental Material [22],
with the viscous capillary wave dispersion relation [29]
(gravity is negligible for these waves)

FIG. 2. (a) Pattern oscillation frequencies measured using high-
speed imaging (inset) for various solution viscosities and ionic
strengths. (b) The inviscid frequency f0 for ν ¼ 0 and wave
number k were extrapolated using Eq. (4) for various values of
ionic strength. Extrapolated inviscid frequencies are compared to
the traditional capillary wave dispersion and Eq. (5).
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ð2νk2 − iωÞ2 þ ω2
0 ¼ 4ν2k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − iω

νk2

r
; ð4Þ

where ν is the kinematic viscosity of the solution, k is the
wave number, Re½ω� is the temporal frequency, Im½ω� is the
viscous damping rate, and ω0 is the natural resonance
frequency or inviscid frequency of the particular wave
number k.
The damping of the observed frequencies ω scale with

wave number k and viscosity ν as predicted by Eq. (4).
However, the data are not consistent with the well-known
inviscid capillary wave formula ω0 ¼ ðγk3=ρÞ1=2, which
predicts frequencies an order of magnitude greater. Shown
in Fig. 2(b), the experimental data follow the nondispersive
relation ω0 ¼ ck with a constant phase velocity
c ≈ 0.08 ms−1. Others have shown that a uniform electro-
static field typically reduces liquid surface wave frequency
and phase velocity [30,31]. Plasma-liquid surface waves
represent an extreme example of this, with a nonuniform
electric field and considerable current density across the
interface. This likely creates an interfacial Helmholtz
double layer that may alter the physiochemical structure
of the water and reduce the surface tension [32–34].
We believe these waves constitute a new class of liquid

surface waves, whose behavior is unaffected by surface
tension and dictated entirely by EHD interactions. In the
Appendix, we derive a new dispersion relation based on the
perturbation of electrostatic stresses due to surface curva-
ture in a plasma medium [35]. We hypothesize that the
effects of surface tension are neutralized by the intense
electric field across the plasma liquid interface, and we
propose a new inviscid dispersion relation

ω0 ¼
�
qn0LpE0

ρ

�
1=2

k; ð5Þ

where E0 is the uniform normal component of the electric
field, and Lp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ0VT=qn0
p

is the plasma Debye length.
Using the values for n0 and VT listed earlier and E0 ¼
3.5 × 106 Vm−1 yields a theoretical phase velocity
c ¼ 0.08 ms−1, which matches our experimental data.
The classic inviscid capillary wave dispersion and the
new plasma-liquid wave dispersion relations are compared
with the experimental data in Fig. 2(b).
Interestingly, at low ionic strengths (16 and 32 mM), we

observed a dramatically different dynamic behavior. Rather
than the four spots shown in Fig. 1(e), we observed a
deforming annulus ring with visible transverse surfacewaves
(Cartesian plane waves) inside with significantly shorter
wavelengths [Figs. 3(a) and 3(c)] as we move away from
the limiting current region. In this low-conductivity limit
below the limiting current, the high wave number k reduces
the viscous wave decay length LD ¼ Re½ω�=Im½ω�k, such
that LD ≪ rs. (Fig. S5 in Supplemental Material [22] plots
these two length scales, showing their divergence at low ionic
strength.) Thus, surface waves emanating from nascent
plasma spots are damped before they can interact and form
standing waves, and we observe transverse plane waves
propagating inward from the edges of the plasma ring.
The dispersion relation given by Eq. (4) can be non-

dimensionalized by defining a nondimensional frequency
ω� ¼ ω=ω0 and a viscous damping ratio ζ ¼ 2νk2=ω0 to
obtain

FIG. 3. (a) Extrapolated wave numbers k (black open squares) and inviscid frequencies f0 (red solid circles) as a function of ionic
strength. Curves depict theory based on Eq. (1) for k and f0 ¼ ck=2π, where the empirical values for j∞ and b in Eq. (3) were used from
[15]. Plasma parameters of n0 ¼ 2.35 × 1018 m−3 and I ¼ 26.2 mA were used for the theoretical lines. (b) Side-view still frame of the
plasma impinging on the liquid surface, inducing surface waves propagating radially outward at a measurable phase velocity c.
Photographs of (c) a deformed ring with induced transverse waves at 32 mM and (d) the four spots with radial waves at 48 mM. The
yellow arrows indicate the propagation direction of the waves.
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ðζ − iω�Þ2 þ 1 ¼ ζ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − i

2ω�

ζ

s
: ð6Þ

Note that the viscous damping ratio is essentially the
inverse Reynolds number (ζ ¼ Re−1) for a viscous capil-
lary wave, where Re≡ ðω0=k × 1=kÞ=2ν [36,37]. It is
small at low wave numbers and low viscosity, but can
reach large values >> 1 as the wave number k blows up at
low ionic strengths [Fig. 3(a)] or high viscosity.
Equation (6) can be written as a quartic polynomial with
four roots for ω�, plotted in Fig. S6 in Supplemental
Material [22]. Two of the most stable modes are considered
nonphysical and are typically ignored. The physical pair of
roots, shown in Fig. 4, have a real part corresponding to
temporal frequency and an imaginary part corresponding to
damping rate. At a critical value of ζ ≈ 2.62, the real part
vanishes and the waves become overdamped.
Also shown in Fig. 4 are the experimental data, which

have been similarly nondimensionalized, where ζ is com-
puted from the experimental viscosity value ν and theo-
retical plasma pattern wave number k computed using
Eq. (1) for each ionic strength, and ω� is computed by
dividing every measured frequency by ω0 ¼ ck, using the
phase velocity c ¼ 0.08 ms−1. The nondimensional exper-
imental data points collapse onto the theoretical line, which
corresponds to the solution of Eq. (6). Importantly, no
pattern oscillations were observed beyond the critical value
ζ ¼ 2.62, where high viscosity prevents wave motion. The
collapse of the data using both the theoretical wave number
for plasma patterns combined with the theoretical
dispersion relation Eq. (6) shows that the size of the
patterns is dictated by plasma processes, while the transient

behavior is limited by the advection of solvated salt cations
(Naþ) via viscous surface waves.
We have hence verified that the dynamics of self-organ-

ized plasmapatterns on a liquid anode surface are driven by a
unique class of EHD surface waves. Liquid transport is
likely also a limiting factor in higher order pattern oscil-
lations, such as the rotation of radially symmetric patterns of
spots or spokes [6]. While there are inherent plasma
processes, including ionization [15] and electron attachment
to electronegative molecules [6,38], that affect pattern
formation, this work shows that the solution plays a critical
role in both the form and behavior of such self-organization.
We have proposed a simple model involving the surface
curvature, yielding a nondispersive wave speed that quanti-
tatively matches our data. However, there are many other
EHD effects that should be considered, such as electrostatic
shear stress and the electromigration of solution ions, which
likely effect plasma-liquid surface waves and play an
important role in various plasma applications [39,40].
Understanding the nonlinear EHDcoupling between plasma
and viscous liquids will require more sophisticated theo-
retical techniques and numerical simulations.
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End Matter

Appendix: New electrohydrodynamic dispersion
relation—The inviscid dispersion relation is significantly
affected by the strong interfacial electric field imposed
on the liquid by the plasma. Namely, cations accumulate
on the liquid side of the interface to form an oppositely
charged layer. If interfacial charge transfer is negligible,
the thickness of this polarized liquid layer is comparable
to the liquid Debye layer λ or the sub-1 nm Stern layer
thickness [32]. The high field between the two
oppositely charged layers [41], one on the gas side and
one on the liquid side, have been speculated to disrupt
the hydrogen bonds in the liquid and significantly
diminish the surface tension [33,34]. The high liquid
conductivity and permittivity, relative to the gas phase,
dictate that the plasma electric field dominates the
Maxwell pressure, despite the presence of a liquid
polarized layer. We hence neglect both capillary pressure
and hydrostatic pressure and concentrate only on the
Maxwell pressure at the interface that sustains the
interfacial wave.
In the presence of an interfacial wave, this interfacial

Maxwell pressure produces an in-phase component P0 that
sustains the wave,

P ¼ ε0E2=2 ¼ ε0
2
ðE0 þ E0Þ2 ∼ εE2

0

2
þ ε0E0E0 ¼ P0 þ P0;

ðA1Þ
where ε0 is the plasma permittivity. Yuzhakov et al. [35]
show that the perturbation field on the interface E0 due to
surface curvature is

E0 ¼ −E0

2
Lp

∂
2h
∂x2

; ðA2Þ

where h is the surface height, and Lp is the plasma Debye
length. Neglecting capillary pressure due to the intense
field across the interface by the cation polarized layer in the
liquid, the leading-order inviscid Euler equation of motion
becomes

ρ
∂v
∂t

¼ − ∂P
∂z

: ðA3Þ

Combining Eqs. (A1)–(A3) and noting the kinematic
condition v ¼ ð∂h=∂tÞ at the liquid surface, we obtain

ρ
∂
2h
∂t2

¼ ∂

∂z

�
εE2

0

2
Lp

∂
2h
∂x2

�
: ðA4Þ

Differentiating the right hand side yields the wave equation

ρ
∂
2h
∂t2

¼ εE0Lp
∂E0

∂z
∂
2h
∂x2

: ðA5Þ

with the wave frequency corresponding to a constant phase
velocity,

ω2 ¼ εLpE0
dE0

dz

ρ
k2: ðA6Þ

Neglecting the electron distribution within the plasma
sheath (Debye layer), we apply the Maxwell-Poisson
equation ðdE0=dzÞ ¼ qn0 to (A6) and yield the inviscid
dispersion relation with a constant phase velocity

ω0 ¼
�
qn0LpE0

ρ

�
1=2

k: ðA7Þ
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