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Driven by a sufficiently powerful pump laser, a cavity optomechanical system will stabilize in coupled
oscillations of its cavity field and mechanical resonator. It was assumed that the oscillation will be
continuously magnified upon enhancing the driving laser further. However, based on the nonlinear
dynamics of the system, we find that the dynamical behaviors of the system are much more complex than
this intuitive picture, especially when it is operated near the blue detuning point by the mechanical
resonator’s intrinsic frequency. There exists an anomalous stabilization: depending on its intrinsic damping
rate and the pump power, the mechanical resonator will metastably stay on one orbit of oscillation after
another until it completely stabilizes on the final orbit it can reach. These orbits are consistent with the
locked ones with almost fixed oscillation amplitudes, which are realized after the pump power becomes still
higher. The oscillatory cavity field is seen to adjust its sidebands following the mechanical frequency shift
due to optical spring effect, so that it always drives the mechanical resonator to near those locked orbits
once the pump power is over a threshold. In the regimes with such correlation between cavity field
sidebands and mechanical oscillation, the system’s dynamical attractors are confined on the locked orbits
and chaotic motion is also excluded.
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Multiple oscillators coupled through nonlinear interac-
tion potential exhibit nontrivial phenomena such as phase
synchronization [1,2] and internal resonance of energy
transfer [3,4]. When it comes to a pair of celestial bodies
(two generalized oscillators), a complicated scenario can
emerge: by its appropriate deformation and the adjustable
gravitational interaction from the other, one of them will
have its rotation and spin velocity locked to a fixed ratio
(spin-orbit resonance) [5], explaining why the same side of
the moon always faces Earth. Here, we illustrate that,
through a unique mechanism realized by radiation pressure,
a mechanical simple harmonic oscillator can be locked
to a set of fixed orbits with its shifted frequency and a
correspondingly adjusted light field spectrum.
So far, the effects of radiation pressure have been widely

studied with cavity optomechanical systems (COMS) [6,7]
exemplified in Fig. 1(a). Those effects are asymmetric with
respect to the difference (detuning) of the driving laser
frequency ωl from the resonance frequency ωc of the
associated optical cavity. Scanning the pump frequency

from the point red detuned by the mechanical frequency ωm
of a COMS, where the system can stabilize to a static
equilibrium so that optomechanical cooling can be imple-
mented [8–12], to where it is blue detuned by the same ωm,
one would encounter optomechanical oscillations [13–26]
on the way: the mechanical resonator will stabilize in
oscillation, while the cavity field is modulated to have more
frequency components as the sidebands. On the other hand,
a Hopf bifurcation determined by the pump power exists at
a fixed drive frequency, as the boundary between static
equilibrium and optomechanical oscillation. Viewed from
the linearized dynamics, a two-mode squeezing effect is
enhanced at the exact blue detuning by the mechanical
frequency ωm [7], which we call resonance point of blue
detuning (RPB), and it could be beneficial for generating
optomechanical entanglement [27–31]. A more powerful
pump driving at a RPB was thus expected to always
magnify the optomechanical oscillation further. However,
based on the full nonlinear dynamics, the system driven at
the RPB is found to stabilize in an anomalous way when the
pump power is between one threshold higher than the Hopf
bifurcation point and another transitional value toward
a different regime of dynamics, resulting in a behavior
contrary to the intuition that a stronger pump simply leads
to more augmented optomechanical oscillation.
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For a realistic cavity, its displacement xm under radia-
tion pressure is much less than its original size, giving rise
to an interaction potential VðXmÞ ¼ −ℏgmXmjaj2 for the
coupled cavity field and mechanical resonator, where jaj2 is
the intracavity photon number and Xm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmωm=ℏÞ

p
xm

(m is the mechanical resonator’s effective mass) is dimen-
sionless. Then, the dynamical equations of the COMS
are written in the reference frame rotating at the frequency
ωc as [32]

ȧ ¼ −κaþ igmXmaþ EeiΔt; ð1Þ

Ẍm ¼ −γmẊm − ω2
mXm þ gmωmjaj2; ð2Þ

where Δ ¼ ωc − ωl is the laser detuning and its pump
power P specifies the drive amplitude E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κeP=ðℏωlÞ
p

.
The mechanical damping rate γm can be much smaller than
the field decay rate κ ¼ κe þ κi from both pump-cavity
coupling and intrinsic loss. To obtain an exact picture of
dynamics, we will stick to the numerical calculations with
Eqs. (1) and (2), together with some analytical arguments
for interpreting the results.
An ideal situation is frictionless mechanical resonator

(γm ¼ 0); the whole coupled system stabilizes only under
the field damping at a rate κ. Above the Hopf bifurcation
point (E ≈ 1200κ) at the RPB, such a system in Fig. 1 will
enter oscillations. In most range of E, it is a normal
stabilization (NS) showing a relatively short transient
period, like the two processes in Fig. 1(b). However, after
the amplitude E is switched to an in-between value as in
Fig. 1(c), the system will undergo an anomalous stabiliza-
tion (AS): the mechanical energy EmðtÞ ¼ 1

2
X2
mðtÞ þ

1
2
P2
mðtÞ (Pm ¼ Ẋm=ωm) repeatedly jumps to a higher step,

together with a field pattern change, after each action of a
sequence of field pulses. The energy step heights are
determined by the system’s fabrication (mostly by the
parameters gm and ωm).
The scenarios in Fig. 1(b) are outside the two boundaries

of the AS regime illustrated in Fig. 2(a), which serves as a
partial phase diagram at RPB. Although the pump power
range between the boundaries of the AS regime is con-
siderable to a specific COMS, the corresponding pump
frequency range is narrow, e.g., within a window of 0.36κ at
ðωm=κ; gmE=κ2Þ ¼ ð10; 10Þ; see Fig. 2(b). The mechanical
energy steps and associated field patterns become deformed
around the ratio ωm=κ ¼ 1 [the purple point in the lower
left-hand corner of Fig. 2(a)], and the phenomenon of AS
gradually disappears with the further decreased ωm=κ < 1.
If the ratio is tuned through fiber-cavity coupling to
ωm=κ ¼ 1.1 for the microresonator in Ref. [26], this
remnant phenomenon of AS is observable with a pump
power of 4.2 mW and within a frequency window of
2π × 4.5 MHz.
One can freely adjust the time lags between the pulses

that push the mechanical oscillation to higher amplitudes.
In Fig. 3(a) we show how to change the length of a
mechanical energy step by the parameter gmE=κ2. For a
specific COMS with fixed gm, the pulses’ emergence will
be tremendously delayed if the pump power is close to both
boundaries of the AS regime. It is due to the critical
slowing-down near the bifurcation points. A realistic
system (γm ≠ 0) does not change the jump moments to
the higher steps but will lower the gap,

FIG. 1. (a) Two exemplary types of COMS: a movable mirror of
Fabry-Perot cavity and the breathing mode of a microcavity
driven through an optical fiber. (b) The normal stabilization
processes of the intracavity photon number outside the AS regime
and exactly at the RPB (Δ ¼ −ωm). The dashed line in the inset
of the upper panel highlights a feature that the field oscillation
does not split into two distinct parts in each whole period. (c) An
anomalous stabilization at the RPB. Because of the pulsed jaðtÞj2
in succession, the metastable cavity field and mechanical oscil-
lation repeatedly change together with time, manifesting the
mechanical energy steps n ¼ 1, 2, 3 and others. The lower
(upper) limit for the AS phenomenon is around E ¼ 9.5 × 103κ
(1.711 399 × 105κ). Together with the indicated drive amplitudes
E, the system parameters are all scaled by the damping rate κ:
gm ¼ 10−4κ, ωm ¼ 10κ, and γm ¼ 0.
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ΔEmðnÞ ¼
Z
δtn

�
gmjaðtÞj2PmðtÞ − γmP2

mðtÞ
�
dt; ð3Þ

between the (n − 1)th and nth step by the second term of
the above, with δtn being the nth pulse’s duration. For
example, the mechanical damping up to γm ¼ 2.73 × 10−5κ
lowers the first step (n ¼ 1) of the ideal system in Fig. 3(a)
by about 1.2%. With a loss larger than this amount, the next
pulse leading to n ¼ 2 cannot be formed anymore and the
resonator will stay on the former forever. A more general
result is in Fig. 3(b): any realistic system operated in the AS
regime stabilizes near one of a series of fixed average
energy hEmi according to its mechanical damping rate γm
and the optomechanical strength gmE=κ2, except for a

sufficiently high γm that leads only to the dynamical
processes below the lower boundary of the AS regime.
Before finally stabilizing on the step n ¼ 3, a system

with γm ¼ 10−5κ and operated at gmE ¼ 10κ2 temporarily
stayed in two metastable states on n ¼ 1 and n ¼ 2
successively, having their corresponding cavity field pat-
terns in Figs. 3(c1)–3(c3). Two factors explain why the
system can be in these metastable and stable states during
its time evolution. One is optical spring effect which
shifts the actual frequency Ωm of the mechanical oscillation
XmðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2hEmi

p
cosðΩmtÞ þ d (d=

ffiffiffiffiffiffiffiffiffiffiffiffi
2hEmi

p
≪ 1) by an

amount δ ¼ Ωm − ωm. The other is the first sideband
magnitude A1 ¼ 2jPþ∞

n¼−∞ a�nanþ1j of the field intensity
or intracavity photon number,

jaðtÞj2 ¼
X∞
n¼0

An cosðnΩmtþ ϕnÞ; ð4Þ

where aðtÞ ¼ Pþ∞
n¼−∞ anei½φðtÞþnΩmt�. Optical spring effect

was regarded as a contribution to the effective spring
constant keff ¼ mω2

m − ðmωm=ℏÞV 00ðX0Þ by the radiation
potential at the equilibrium position X0 of the mechanical
resonator, and there is an analytical form of δ based on the
approximated linear response of COMS [7]. As a matter of
fact, the mechanical resonator is generally under compli-
cated radiation force during one oscillation period (see
Fig. S-1 in Supplemental Material [32]), significantly
deviating from the linear approximation. Instead, the shift
δ can be exactly read from the Fourier transform of a
numerically simulated XmðtÞ as in Figs. 3(c1)–3(c3). The
sideband magnitude A1, which can be obtained from the
Fourier transform of jaðtÞj2, determines the energy,

hEmi ¼
ðgmωmA1Þ2

2δ2ð2ωm þ δÞ2 þ 2γ2mðωm þ δÞ2 ; ð5Þ

from Eq. (2). Generally one has δ ≠ 0, so the correspon-
ding mechanical amplitude can be permanently or tempo-
rarily stable even for an ideal system with γm ¼ 0. From
Figs. 3(c1)–3(c3), the sideband magnitude A1 dwindles
after each jump of the mechanical amplitude. What
compensates for the smaller driving force on a higher orbit
is a further shrunk δ, so that the energy according to Eq. (5)
will be the one on the higher orbit. The jointly reduced δ
and A1 in Fig. 3(c2) give hEmi ¼ 5.21 × 1011, well close to
5.19 × 1011 on the level n ¼ 2 in Fig. 4. In Fig. 3(c3) the
system has reached a completely stable optomechanical
oscillation after the mechanical frequency shift lowers to
δ ∼ γm. More examples are two different E ¼ 2.5 × 104κ
and E ¼ 1.7 × 105κ, under both of which the COMS in
Fig. 4 finally stabilizes on n ¼ 1. Their corresponding
ðδ; A1Þ ¼ ð2.48 × 10−5κ; 3.373 × 105Þ and ð3.45 × 10−3κ;
4.996 × 107Þ lead to the hEmi adequately near 2.476 × 1011

on the level n ¼ 1. Through an automatic adjustment
of δ with A1, a system operating in the AS regime is

FIG. 2. (a) The distribution of the AS phenomenon in the space
(ωm=κ, gmE=κ2). The green and purple insets based on the
parameters in Fig. 1 show the cavity field evolution over the
duration of κt∈ ½0; 2 × 104� at the indicated points, and a
transition across the upper boundary (the blue and red insets)
is demonstrated within a duration κt∈ ½0; 5 × 104�. Here the
system driven at the RPB is the one with γm ¼ 0. (b) The
distribution of AS along the pump detuning. It is at the fixed
ωm=κ ¼ 10 in (a), where another exemplary system with γm ¼
10−5κ has the approximate lower (upper) boundary at gmE=κ2 ¼
2.296 (17.1139), while its Hopf bifurcation is around
gmE=κ2 ¼ 0.2. The duration of the green inset is still between
κt ¼ 0 and 2 × 104, and those of two others are slightly over two
mechanical oscillation periods.
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always locked close to one of the reference energy levels
like in Fig. 4.
The cavity field corresponding to the nth locked orbit has

a special pattern of (nþ 1) plus (nþ 2) peaks during each
mechanical oscillation period; see Figs. 3(c1)–3(c3). In
contrast, the patterns in some NS regimes are noncom-
pound, not splitting into two distinct parts in each oscil-
lation period, like the stabilized one in the upper panel of
Fig. 1(b). A field oscillation or its spectrum can be used to
identify the associated mechanical orbit.
After the pump near the RPB becomes more powerful,

the system will cross the upper boundary of the AS regime
and be locked again to the more regularly distributed orbits
(the levels n ¼ 1, 2, 3 in Fig. 4 are according to the
stabilized hEmi in this regime). Given the experimental
setup in Ref. [26], the upper boundary at ωm=κ ¼ 10 can be
reached with a pump power around 55.5 mW. Now the
system is in NS, but the possible field patterns still assume
the composite ones as those in Figs. 3(c1)–3(c3). The lower
panel of Fig. 1(b) displays one more composite pattern of
1þ 2 peaks, corresponding to the lowest orbit n ¼ 0.
Those locked oscillations in the right-hand part of Fig. 4
are also due to the correlated A1 and δ in Eq. (5). There exist
random transitions between them under a slight change of
the larger E in this regime, and they are similar to those
caused by a two-tone drive with its tones differed by the
mechanical frequency ωm [33,34] (in that two-tone sce-
nario a locked orbit similar to n ¼ 0 is realized within the
range of E for the AS regime).

One relevant issue is about the multiple dynamical
attractors of a system driven at the fixed Δ and E. The
mechanical amplitudes at the attractors were determined by
the balanced average power flows into and out of a
mechanical resonator [35–37], and such discrete mechani-
cal amplitudes thus change with pump detuning and power
continuously [32]. We approach the multistability by add-
ing initial mechanical momentum to the dynamical proc-
esses described by Eqs. (1) and (2), so that the system can
directly reach different basins of attraction. Apart from

FIG. 4. The stabilized average mechanical energy distribution
for a COMS driven at the RPB and from the static initial
condition. From the left (AS regime) to the right (NS regime),
the system is locked to the orbits from n ¼ 0 to n ¼ 3. The stray
point in the upper right-hand corner is on n ¼ 4. Here,
gm ¼ 10−4κ, ωm ¼ 10κ, and γm ¼ 10−5κ.

FIG. 3. (a) The adjustable moment t1, corresponding to the driving pulse’s peak, for an ideal system (γm ¼ 0) to jump up to the step
n ¼ 1, together with the adjustable t2 to the next n ¼ 2, when this system of gm ¼ 10−4κ and ωm ¼ 10κ is driven at the RPB to have its
mechanical energy evolution as in the inset. (b) The distribution of stabilized average energy hEmi (over one oscillation period) after
adding various mechanical damping rates γm. The indicated levels are the average positions of the energy steps in (a), and are extremely
close to those defined in Fig. 4. Panels (a) and (b) share the same horizontal axis. (c1)–(c3) The correlated field pattern and mechanical
oscillation in both time domain and frequency domain, exemplified with the system operated at gmE=κ2 ¼ 10 in (a) but with
γm ¼ 10−5κ. On each step from n ¼ 1 to n ¼ 3, the metastable or stable jaðtÞj2 reaches its bottom value twice whenever the mechanical
resonator arrives at its top speed in each oscillation period, forming a composite pattern of 2þ 3, 3þ 4, or 4þ 5 peaks. Each lower
panel displays the field intensity sideband magnitudes, together with the corresponding mechanical frequency shift in the inset.
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below the lower boundary of the AS regime, where the
attractors were observed by the signature of noncompound
field patterns [38], we find that the attractors beside an RPB
are totally locked to the fixed orbits like those in Fig. 4 [32].
Given enough pump power, locked orbits can exist in the
vicinity of Δ ¼ nωm (n are integers). They exclude
optomechanical chaos [39–43] to somewhere beyond the
range of Fig. 4. Under lower drive powers, chaos emerges
only at the detuning points without locked orbits, and
one route toward this type of chaos is exemplified in
Supplemental Material [32].
Although locked orbits can be encountered elsewhere

over the detuning Δ of a pump laser, the phenomenon of
AS is unique, only in a neighborhood of RPB. It is an effec-
tive channel to add up mechanical energy with lower pump
powers. Not only the oscillations as phonon lasers [44–46]
can be excited, coupling one COMS to other cavities will
also preserve the phenomenon of AS, as long as the
coupling intensities are below certain limit. It is possible
for such coupled systems operating in the AS regime to
outperform thePT -symmetric phonon lasers [47–49] aided
with optical gain.
Based on the full nonlinear dynamics well depicted by

Eqs. (1) and (2), we have demonstrated that the dynamical
behaviors of a COMS under single-tone drives are much
richer than what were thought in the past, particularly near
its RPB where only a Hopf bifurcation was known. In fact,
responding to a continuously enhanced pump laser driving
at the RPB, the system will first enter one more regime of
AS and then another regime of NS. Like a celestial
body deformation in tidal locking, a metastable or stable
mechanical oscillation in these regimes is deformed by
proper frequency shift, to correlate with the corresponding
field sidebands, so that it can be locked to one of the
reference energy levels as in Fig. 4, rather than its mono-
tonous amplitude increase with the pump power higher
than the Hopf threshold. The current understandings of
optomechanical dynamics, especially the existence of AS
processes, will find applications in the development of the
relevant setups.
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