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We present techniques for performing two-qubit gates on Gottesman-Kitaev-Preskill (GKP) codes with
finite energy, and find that operations designed for ideal infinite-energy codes create undesired
entanglement when applied to physically realistic states. We demonstrate that this can be mitigated
using recently developed local error-correction protocols, and evaluate the resulting performance. We also
propose energy-conserving finite-energy gate implementations which largely avoid the need for further
correction.
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The realization of a fault-tolerant quantum computer
requires the implementation of a universal set of gates
performed on error-corrected encoded logical qubits [1].
Encoding involves the redundant use of a larger Hilbert
space, which is often obtained by mapping information
across multiple physical systems. An alternative is to
examine systems with an extended Hilbert space such as
harmonic oscillators, of which bosonic codes [2] are a
prominent example. One candidate set of bosonic codes are
the Gottesman-Kitaev-Preskill (GKP) codes [3], in which
quantum error correction has recently been demonstrated in
both superconducting circuits [4,5] and trapped ions [6–8]
using a single oscillator. In order to embed this encoding
into a larger system [9–13], gates between multiple
encoded qubits will be required. While multiqubit gate
schemes have been proposed [3,14–17], these consider the
action on “ideal” infinite-energy GKP states, with the effect
on experimentally realizable finite-energy states treated as a
tolerable source of error. However, recent theoretical
[18,19] and experimental [8] works have shown that
single-qubit operations can be designed for finite-energy
states, which asks the question whether similar strategies
can be taken for multiqubit gates.
In this Letter, we present two approaches to tackle this

problem. First, we examine the effect of ideal, i.e., infinite-
energy, two-qubit operations on finite-energy GKP states,
and show that although the gate operation leads to
significant distortion of the states, this is of a form which
is correctable by finite-energy error-correction protocols.
Second, we introduce direct finite-energy gates which
preserve the energy of the states, and thus avoid the need
for correction steps. These components serve as a

foundation for integrating finite-energy GKP states into
larger-scale quantum computing systems, providing a path
towards fault-tolerant processing of quantum information.
GKP encodings have a characteristic gridlike structure in

phase space and are defined through displacement oper-
ators. The logical Pauli operators and the stabilizers for a
square code are defined by X̂ ¼ eip̂

ffiffi
π

p
, Ẑ ¼ e−iq̂

ffiffi
π

p
and

Ŝx ¼ eip̂2
ffiffi
π

p
, Ŝz ¼ e−iq̂2

ffiffi
π

p
, respectively [20]. The simulta-

neous eigenstates of these operators are the ideal GKP
codewords jμiI¼

P
s jq¼ð2sþμÞ ffiffiffi

π
p i, where μ∈ f0; 1g,

s∈Z and the subscript “I” stands for ideal. Since each
component of the superposition is an infinitely squeezed
state, ideal codewords have an infinite norm and are thus
not physical. A finite-energy version of these states can be
constructed using a Gaussian phase-space envelope cen-
tered at the origin [3,14,18,21,22]. Mathematically, this
can be realized by introducing an envelope operator
ÊΔ ¼ e−Δ

2n̂, where n̂ ¼ 1
2
ðq̂2 þ p̂2Þ is the number operator

and Δ parametrizes the size of the code states in phase
space. A finite-energy GKP state is then expressed by
jψiΔ ∝ ÊΔjψiI and can be thought of as a superposition of
periodically spaced, finitely squeezed states weighted
according to an overall Gaussian envelope. The states
and their marginal distributions, PðxÞ ¼ jhxj0iΔj2 with
x∈ fq; pg, are thus characterized by two parameters; the
peak’s standard deviation Δpeak and the inverse of the
Gaussian envelope’s standard deviation Δenvl. For a pure
state jψiΔ, these are both equal to Δ.
Two-qubit entangling gates are essential operations for

universal quantum computation [23]. For GKP codes, such
gates can be realized using quadrature–quadrature coupling
Hamiltonians that are equivalent to each other up to
local phase-space transformations. Here we focus on the
controlled Ẑ gate, a two-qubit operation expressed as
CZ ¼ eiq̂1q̂2 [3,14], where the indices 1 and 2 denote the
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two oscillators. The action of CZ on position eigenstates,
jq1 ¼ m1

ffiffiffi
π

p ijq2 ¼ m2

ffiffiffi
π

p i, is to add in a prefactor
e−iπm1m2 with m1, m2 being either odd or even integers.
If the input state is j1iIj1iI the system acquires an overall
phase of π, whereas all other input states acquire a multiple
of 2π.
Because of their limited extent in phase space, finite-

energy GKP states are not translationally invariant and thus
the action of the CZ gate described above produces
distortion of the underlying states. Consider the situation
depicted in Fig. 1(a); from the perspective of the second
subsystem the gate corresponds to a series of displacementsP

q1
hq1jCZjq1i ¼

P
q1
eiq1q̂2 ≡P

q1
D̂2ðiq1=

ffiffiffi
2

p Þ. Each of
these displacements shifts both the individual Gaussian
peaks and the envelope of the state. The final subsystem
state can thus be regarded as a Gaussian mixture model, i.e.,
a weighted sum of Gaussian functions with a broader
envelope and peak width. This distortion occurs only in the
p quadrature [see Fig. 1(b)].
In order to analytically quantify the broadening of the

envelope we evaluate the marginal distribution of the first
oscillator after tracing out the second one from the
state following the gate: Pðp1Þ¼hp1jTr2½CZρΔCZ†�jp1i,
where ρΔ ¼ j00iΔΔh00j. We perform this calculation
using the shifted grid state representation [3,24–28] and
recognizing that the main additional contributions come
from the first nearest neighbor peaks (see Supplemental
Material [29]). This assumption is valid for GKP states with
Δ≲ 0.4 which is consistent with recent experimental
realizations [4,5,8]. The marginal distribution of the target
state after the gate retains a finite-energy GKP form but
with characteristic parameters being updated to

Δ2
peak ¼ 2Δ2 and Δ2

envl ¼
Δ2

2
: ð1Þ

Thus both the peak and envelope widths of the marginal
distribution after the CZ gate increase by a factor of

ffiffiffi
2

p
compared to their initial values. Figure 1(c) shows the
comparison between these input and output state para-
meters. Eq. (1) is accurate to OðΔ6Þ, but further improve-
ments can be made by including contributions from
subsequent neighboring peaks using the same method.
Analytical expressions for the position marginal distribu-
tions and the purity of each subsystem are discussed further
in the Supplemental Material [29].
An alternative measure of the quality of a given GKP

code are the effective squeezing parameters [26,27,54],
which are defined as σ2x=z ¼ ð1=πÞ log ðjTr½Ŝx=zρ�j−2Þ and
quantify the closeness of a system’s state ρ to the unit
eigenstates of the code stabilizers. In ideal GKP states, both
effective squeezing parameters are 0, while for pure finite-
energy states such as j0iΔ, σx=z ¼ Δ. After the CZ gate is
applied, we find that the effective squeezing parameters of
each subsystem read σx ¼

ffiffiffi
2

p
Δ and σz ¼ Δ. The former

expression is consistent with the peak and envelope broad-
ening in Pðp1Þ of Eq. (1). The expression for σz indicates
that the marginal distribution in the position space will be
unaffected by the gate.
The main consequence of these finite-energy modi-

fications is the lowering of the physical overlap
fidelity between the input and desired output states,
F ¼ jhψoutjCZjψ inij2. As an example, we derive this
quantity for the input state j00iΔ using as above the shifted

FIG. 1. Finite-energy effects in two GKP qubit operations. (a) Momentum marginal distribution PðpÞ of both oscillators starting in the
state j0iΔ before (left) and after (right) the CZ gate. The output distributions get broadened as the operation corresponds to a continuous
set of displacements that spreads each oscillator’s wave function conditioned on the position of the other one. (b) Wigner
quasiprobability distribution, showing broadening only in the p quadrature. (c) Peak widths as a function of input width, showing
clearly the linear relation. (d) The physical and logical infidelity between the input and output states as a function of the energy
parameter Δ.
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grid state method and the first nearest neighbor assumption,
obtaining

F ≈
16

25

�
1þ 4e−

π
5Δ2

�
2

�
1þ 2e−

π
Δ2

�
4
�
1þ 2e−

π
4Δ2

�
4
: ð2Þ

Figure 1(d) shows that this expression agrees with the
numerically evaluated overlap using state vector simula-
tions. Eq. (2) provides an accurate approximation of the
true fidelity up to OðΔ3Þ (a higher-order formula and the
fidelity for other states can be found in Supplemental
Material [29]). In the limit Δ → 0 the fidelity approaches a
finite value Fmax ¼ 16=25 ¼ 0.64, which is independent of
the input state. Despite converging to ideal codewords,
GKP states with Δ2 ≪ 1 still possess finite-width peaks
and envelope which remain susceptible to broadening
due to the two-qubit interaction. The logical fidelity which
for the state j00iΔ is accessible by integrating its position
marginal distribution over ½− ffiffiffi

π
p

=2;
ffiffiffi
π

p
=2Þ þ 2

ffiffiffi
π

p
Z

remains close to unity [16,24,55].
The CZ gate operation considered above can be realized

exactly using two beam splitters and a single layer of
single-mode squeezers [15,16]. We find that it is also
possible to achieve the same interaction using an alternative
decomposition consisting of two squeezing operations and
only one application of the beam splitter. This is given by
CZðθ; rÞ ¼ Ŝ⊗2ðrÞB̂AðθÞŜ⊗2ð−rÞ with Ŝ⊗2ðrÞ ¼ ŜðrÞ ⊗
ŜðrÞ and ŜðrÞ ¼ ei

1
2
rðq̂jp̂jþp̂jq̂jÞ, representing the squeezing

operation on mode j, while B̂AðθÞ ¼ eiθðq̂1q̂2þp̂1p̂2Þ is the
antisymmetric beam splitter transformation. This chain of
operations can then be written as

CZðθ; rÞ ¼ eiθðe2rq̂1q̂2þe−2rp̂1p̂2Þ: ð3Þ
The ideal desired gate is obtained when θ ¼ e−2r and
r → ∞, which makes this decomposition a convergent but
approximate realization of CZ. The Hilbert-Schmidt dis-
tance between the symplectic representations of CZðθ; rÞ
and CZ scales as

ffiffiffi
3

p
e−4r, which constitutes a deviation with

respect to the ideal operator norm that is below 1% at
r > 1.06. In practice, we find that the overlap fidelity F is
above 0.6 for r ≥ 0.75 and at r ¼ 1.0 has less than 0.7%
error relative to Fmax. The approximate decomposition in
Eq. (3) has the advantage of requiring a weaker bilinear
interaction than previously proposed schemes [15,16],
allowing for a flexible selection of the beam splitter
coupling strength complying with a fault-tolerant concat-
enation of GKP and surface codes, aiding in reducing the
accumulation of errors during the gate time [12,29]. The
limitation of this scheme is that it maintains squeezed
quadratures for an extended duration, thereby enhancing
the susceptibility of the GKP code to minor deviations. This
decomposition as well as the previously proposed ones
induce the same finite-energy effects as the ideal operation.

A first solution against finite-energy effects is to correct
them locally, given that despite the impact of these effects
on the state of the oscillators, the CZ gate effectively
executes the intended logical operation. Using recently
demonstrated quantum error correction (QEC) protocols
[5,8,18], we show that this works. Figure 2(a) shows the
protocol for the error-corrected CZ gate. We initialize the
system in a pure state ρin ¼ jψ iniΔΔhψ inj and perform a
series of finite-energy stabilization cycles that correct for
small displacements in position and momentum and for
deformations in the state’s energy envelope. Halfway
through the series of QEC rounds we perform the CZ gate
and resume the stabilization. After each correction round
before the gate, we evaluate the overlap fidelity as
Fðρ; jψ iniΔÞ, whereas for those after the CZ we use
Fðρ; jψoutiΔÞ with Fðρ; jψiÞ ¼ hψ jρjψi and jψoutiΔ ∝
ÊΔCZjψ iniI being the desired output state. As an example,
Fig. 2(b) illustrates this quantity for jψ iniΔ ¼ j00iΔ ¼
jψoutiΔ as a function of the correction round. As antici-
pated, the gate lowers the fidelity, but after a few rounds of
error correction the fidelity recovers.

FIG. 2. Correction of finite-energy effects. (a) The circuit
representation of the error-corrected CZ gate. The system is
initialized in a state ρin ¼ jψ iniΔΔhψ inj and undergoes n stabi-
lization cycles. After n ¼ 9 rounds, the ideal CZ gate is applied,
followed by n ¼ 9 additional rounds of correction. (b) Fidelity F
evaluated after each QEC round with jψ iniΔ ¼ j00iΔ and
Δ ¼ 0.3. (c) The logical infidelity as a function of Δ evaluated
as the difference of overlap fidelities at the 9th round of QEC
before and after CZ. Before the gate, the overlap fidelity is
obtained with Fðρ; jψ iniΔÞ, whereas after CZ using Fðρ; jψoutiΔÞ,
where jψoutiΔ is the desired output state which for each input state
corresponds to j00iΔ, jþ0iΔ, jΦ−iΔ or ðj0þiΔ þ j1−iΔÞ=

ffiffiffi
2

p
,

respectively. The dotted curve represents the analytical result
from Eq. (4).
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To quantify the logical infidelity we evaluate
Fðρb; jψ iniΔÞ − Fðρout; jψoutiΔÞ with ρb and ρout being
the states before the gate and after the entire protocol.
We observe that this difference is finite [see Fig. 2(c)]. This
is explained by the distortion in phase space of both
oscillators’ state that then increases the probability that
the finite-energy stabilization procedure misinterprets j0iΔ
for j1iΔ (and vice versa). The states with logical coher-
ences, e.g., jþiΔ, are the most affected by this distortion
because their information is primarily stored in the momen-
tum quadrature. Therefore, we observe that the logical
infidelity for states such as jþ0iΔ, jþþiΔ, or the Bell state
jΦþiΔ ∝ j00iΔ þ j11iΔ is several orders of magnitude
higher than for the computational states. We can approach
the infidelity for those states using some ideal decoders [29]
or by integrating appropriate marginal distributions. Taking
jþ0iΔ as the analytically simplest example, we construct
Pðp1Þ using peaks and envelope widths derived in Eq. (1)
and integrate it over the domain ½− ffiffiffi

π
p

=2;
ffiffiffi
π

p
=2Þ þ 2

ffiffiffi
π

p
Z

to obtain

1 − Flogic ≈
2

ffiffiffi
2

p
Δ

π
e−

π
8Δ2

�
1 −

4Δ2

π

�
; ð4Þ

which is accurate to OðΔ5Þ. This expression is illustrated
by the dashed curve in Fig. 2(c). Despite this undesired
behavior, the infidelity of the stabilized CZ gate for states
with Δ ≤ 0.34 is below 1%, a value that has been shown to
be sufficient for a fault-tolerant concatenation of GKP
codes with discrete variable encodings [13]. The perfor-
mance of the error-corrected gate can be enhanced by
improving the recovery procedure using reshaping of GKP
states into a rectangular lattice [18] or postselection based
on correlation in syndrome outcomes between multiple
rounds of QEC [5] (see Supplemental Material [29]).
An alternative to local error correction is to use a

finite-energy version of the gate which minimally
distorts physical GKP states [8,14,18]. The finite-energy
form of the CZ gate is the nonunitary interaction
CZΔ ¼ ÊΔCZÊ

−1
Δ ¼ eiq̂1q̂2−Δ

2ðq̂1p̂2þp̂1q̂2Þ whose implemen-
tation requires us to couple the two oscillators to some
auxiliary system. Inspired by a collisional model of dis-
sipation [56] and a block encoding of the nonunitary
operation [57], we approximate CZΔ by a unitary operation
eiq̂1q̂2σ̂x−iΔ

2ðq̂1p̂2þp̂1q̂2Þσ̂y followed by a reset of the auxiliary
spin. The Trotterized verions this operation is realizable
through spin-conditioned beam splitters and/or squeezing
[29]. Unfortunately, this engineered dissipative dynamics is
subject to approximation errors. As a consequence, the
fidelity that one reaches with the 1st order Trotter formula is
0.80 whenΔ2 ≪ 1, an improvement of only 0.16 compared
to the ideal CZ gate. Higher order formulas entail a
significant increase in the number of operations and com-
plexity of the gate.

To achieve higher fidelities, we propose a third approach
that involves employing an auxiliary three-level system
coupled to only one of the oscillators. In this hybrid
discrete-continuous variable system we use the qutrit to
facilitate quantum information exchange between the
two oscillators. To entangle two GKP states, we first query
the logical information of the initial oscillator using the
auxiliary system, then swap bosonic states and apply an
operation on the second oscillator conditioned on the
auxiliary state. Finally, we swap the bosonic states back
and disentangle the first oscillator from the auxiliary
system. This procedure is illustrated in Fig. 3(a). Since
the swap via two 50∶50 beam splitters is intrinsically finite
energy, the scheme preserves the states’ energy as long as
the conditional CU and sBs are finite energy. The former

operation reads CU ¼ e−ilq̂σ̂
ðgeÞ
y e−ilΔ

2p̂σ̂ðgeÞx with l ¼ ffiffiffi
π

p
=2

and is identical to the unitary used for the readout of finite-

energy GKP states proposed in Refs. [8,19]. With σ̂ðgeÞx and

σ̂ðgeÞy being Pauli operators between states jgi and jei of the
qutrit, this operation entangles those states with j0iΔ and
j1iΔ, respectively. The second operation is the so-called

small-Big-small circuit sBs ¼ e−ilΔ
2p̂σ̂ðgfÞy eilq̂σ̂

ðgfÞ
x e−ilΔ

2p̂σ̂ðgfÞy

which has been used to perform measurement-free error
correction of the position quadrature of GKP states [8,18].
On top of the corrective power sBs has the property to
apply a logical Pauli Z that we use to add a phase to the
oscillator state if the auxiliary system is in jgi. The final
operation is the inverse of the first one followed by a reset

FIG. 3. Two-qubit gate mediated by an auxiliary three-level
system. (a) Circuit representation of the protocol. The system is
initialized in a state ρin. The auxiliary system starting in jgi is used
to retrieve the logical information of one of the oscillators using
CU after what the two oscillators are swapped using a 50∶50 beam
splitter. sBs represents a finite-energy stabilization which also
effects a Pauli Z operation if the qutrit is in jgi. The circuit is then
reversed in order to disentangle the oscillators from the auxiliary
system. (b) The logical infidelity evaluated in a similar fashion as
in Fig. 2(c).
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of the qutrit. The logical infidelity of this scheme shown in
Fig. 3(b) is consistent across states and lower than that of
the error-corrected gate. For comparison for Δ ≤ 0.34 the
fidelity is below 0.01%. The main source of this infidelity
stems from CU and CU†, which can be mitigated by
correcting the first oscillator state in between the two
swaps. After CU, the GKP state is no longer stabilized by
ðŜx; ŜzÞ but by ð−Ŝx; ŜzÞ. Fortunately, autonomous error
correction protocol can be adapted to this new stabilizer set
[represented as QEC in Fig. 3(a)] [29].
All the required elements, such as beam splitters and

squeezers, for realizing both ideal and finite-energy two
GKP qubit operations have been successfully demonstrated
in experimental setups utilizing trapped ions [58–66]
and superconducting microwave cavities [67–74]. In
Supplemental Material [29], we provide details on exper-
imental requirements for a trapped ion system.
Our work addresses a critical issue in continuous-

variable quantum information processing by proposing
protocols to address the fidelity loss issue in two-qubit
gates between GKP qubits. To this end we use quantum
error correction, introduce a direct construction of finite-
energy two-qubit gate, and propose a protocol relying on an
auxiliary three-level system to mediate the logical infor-
mation between oscillators. Our proposed solutions can be
made fault tolerant: This could be addressed through the
use of biased-noise auxiliary systems [30] or multiple
discrete-variable systems, offering the potential for fault
tolerance through the utilization of flag qubits, detection
or correction codes, or path-independent gate technique
[75–77]. While this has been suggested using bosonic
biased systems such as Cat codes, further work is necessary
to investigate how to incorporate these methods into
multiqubit GKP gates offering a path towards fault toler-
ance using hybrid discrete-continuous variable codes [78].
Another important question for later study is how the finite-
energy effects of ideal two-qubit gates together with
standard continuous-variable noise processes, such as
photon loss and dephasing, modify the thresholds of
GKP-based encodings [10–13]. We believe that our
findings will contribute to the use of GKP codes for
fault-tolerant quantum computation using dissipative
QEC [8,79] as well as for applications such as error-
corrected quantum sensing [54] that is bias free [80].
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