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For many-particle systems with short-range interactions, the local (same point) particle-particle pair
correlation function represents a thermodynamic quantity that can be calculated using the Hellmann-
Feynman theorem. Here we exploit this property to derive a thermodynamic Maxwell relation between the
local pair correlation and the entropy of an ultracold Bose gas in one dimension (1D). To demonstrate the
utility of this Maxwell relation, we apply it to the computational formalism of the stochastic projected
Gross-Pitaevskii equation (SPGPE) to determine the entropy of a finite-temperature 1D Bose gas from its
atom-atom pair correlation function. Such a correlation function is easy to compute numerically within the
SPGPE and other formalisms, which is unlike computing the entropy itself. Our calculations can be viewed
as a numerical experiment that serves as a proof-of-principle demonstration of an experimental method to
deduce the entropy of a quantum gas from the measured atom-atom correlations.
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Introduction—Entropy plays a fundamental role in
thermodynamics, statistical mechanics, and quantum infor-
mation theory. However, measuring it directly or calculat-
ing it from the defining multiplicity function or the density
matrix of an interacting many-body system often represents
a formidable challenge. Instead, the entropy is often
deduced from other thermodynamic quantities (such as
the heat capacity or the free energy) using the relevant
thermodynamic relations [1,2]. Here, we derive and discuss
a thermodynamic Maxwell relation by which the entropy of
a quantum many-body system with short-range interactions
can instead be related to, and hence deduced from, the local
particle-particle correlation function. Such a pair correla-
tion function characterizes the probability of two particles
to be found in the same position compared to uncorrelated
particles and can often be computed using methods of
many-body and quantum field theory either analytically or
numerically [3,4]. It can also be measured experimentally
in, e.g., ultracold quantum gas experiments using photo-
association [5,6].
The surprising aspect of the Maxwell relation between

the pair correlation and the entropy that we discuss here
is that the pair correlation function is usually viewed and
treated as a typical two-body observable, whereas the
entropy a macroscopic thermodynamic quantity. How-
ever, what promotes the pair correlation into a thermo-
dynamic quantity as well is the fact that we are only
considering many-body systems with short-range inter-
actions that can be characterized by the s-wave scattering
length [7,8]. In this case, the interparticle interactions can
be approximated by a simple contact interaction, meaning
that the two-body correlation function at zero interparticle
separation indeed becomes a thermodynamic quantity. This
was first demonstrated by Lieb and Liniger in their seminal

work on the exact Bethe ansatz treatment of a uniform
one-dimensional (1D) Bose gas with repulsive contact
(δ-function) interactions [9]. By using the Hellmann-
Feynman theorem and differentiating the total ground state
(zero-temperature, T ¼ 0) energy of the gas with respect to
the interaction strength, Lieb and Liniger were able to
calculate the mean interaction energy component, which
itself is proportional to the unnormalized pair correlation
function (see below).
The extension of the Hellmann-Feynman theorem to

finite-temperature systems [4,10,11], together with the
exact Yang-Yang thermodynamic Bethe ansatz (TBA)
solution for the 1D Bose at finite temperature [12], was
later utilized to calculate the local pair correlation at any
temperature and interaction strength. In this case, the pair
correlation function is related to the partial derivative of the
Helmholtz free energy with respect to the interaction
strength [4,10,13]. In this Letter, we take this relationship
a step further by combining it with the fact that the partial
derivative of the same Helmholtz free energy with respect
to the temperature, on the other hand, gives the entropy of
the system according to the canonical ensemble formalism
of statistical mechanics. Therefore, by using the commu-
tative property of mixed second derivatives of the
Helmholtz free energy (with respect to the interaction
strength and temperature), one obtains the Maxwell relation
between the pair correlation and the entropy that we
discuss here.
As a practical application of this Maxwell relation, we

utilize it for computing the entropy of a weakly interacting
1D Bose gas in the quasicondensate regime in the context
of the classical c-field approach of the stochastic projected
Gross-Pitaevskii equation (SPGPE) [14–19]. The SPGPE is
a well established and widely used numerical approach for
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computing thermal equilibrium and dynamical properties
of finite-temperature Bose gases, such as partially con-
densed Bose-Einstein condensates in 2D and 3D (see, e.g.,
[17,18,20] and references therein) or phase-fluctuating
quasicondensates in 1D [14,17,19–29]. Despite its wide
applicability to ultracold quantum gas systems, computing
the entropy of such systems within the SPGPE has not
been accomplished prior to this work. Here, we compute
the entropy of a 1D quasicondensate within the SPGPE
approach; we restrict ourselves to the 1D Bose gas because
of the availability of the exact TBA solution for both the
entropy and the pair correlation function, to which we
compare, and hence validate, our numerical SPGPE results.
However, we point out that the Maxwell relation derived
and discussed here is equally applicable to 2D and 3D
systems, as well as to Fermi gas systems with similar
contact interactions, such as the Yang-Gaudin model
in 1D [30] or a two-component 3D Fermi gas near the
BCS-BEC crossover [8,31–33].
Lieb-Liniger model and two-particle correlation—We

start by considering the Lieb-Liniger model describing a
uniform 1D gas of N bosons of mass m interacting via a
pairwise δ-function potential on a line of length L with
periodic boundary conditions and of linear density of
n ¼ N=L. In second-quantized form, the Hamiltonian of
such a system is given by

Ĥ ¼ −
ℏ2

2m

Z
dx Ψ̂† ∂

2Ψ̂
∂x2

þ χ

2

Z
dxΨ̂†Ψ̂†Ψ̂ Ψ̂ : ð1Þ

Here, Ψ̂†ðxÞ and Ψ̂ðxÞ are the bosonic field creation and
annihilation operators, whereas χ quantifies the strength of
boson-boson interactions, assumed to be repulsive (χ > 0).
This interaction strength can be expressed in terms of the
3D s-wave scattering length a via χ ≈ 2ℏω⊥a [34], away
from a confinement induced resonance, where ω⊥ is the
frequency of the harmonic potential in the transverse
(tightly confined) dimension.
The normalized two-point particle-particle correlation is

defined in terms of the field operators as the expectation
value of a normally ordered product of two density
operators, n̂ðxÞ ¼ Ψ̂†ðxÞΨ̂ðxÞ and n̂ðx0Þ ¼ Ψ̂†ðx0ÞΨ̂ðx0Þ,

gð2Þðx; x0Þ ¼ hΨ̂†ðxÞΨ̂†ðx0ÞΨ̂ðx0ÞΨ̂ðxÞi
nðxÞnðx0Þ : ð2Þ

In other words, the pair correlation gð2Þðx; x0Þ is a normal-
ized and normally ordered density-density correlation
function. It is normalized to the product of mean den-
sities nðxÞ ¼ hn̂ðxÞi and nðx0Þ ¼ hn̂ðx0Þi at points x
and x0 so that for uncorrelated particles [with
hΨ̂†ðxÞΨ̂†ðx0ÞΨ̂ðx0ÞΨ̂ðxÞi ¼ hΨ̂†ðxÞΨ̂ðxÞihΨ̂†ðx0ÞΨ̂ðx0Þi],
one has gð2Þðx; x0Þ ¼ 1. For values of gð2Þðx; x0Þ ≠ 1, the
pair correlation characterizes an enhanced [gð2Þðx; x0Þ > 1]

or suppressed [gð2Þðx; x0Þ < 1] probability of finding two
particles at positions x and x0, respectively, compared to
uncorrelated particles.
Because of the translational invariance of the uniform

system that we are considering, where nðx0Þ ¼ nðxÞ ¼ n,
the above pair correlation gð2Þðx; x0Þ can only depend on the
relative distance jx − x0j between the two particles, i.e.,
gð2Þðx; x0Þ ¼ gð2Þðjx − x0jÞ. The local or the same-point
(x ¼ x0) correlation then corresponds to

gð2Þ ≡ gð2Þð0Þ ¼ hΨ̂†ðxÞΨ̂†ðxÞΨ̂ðxÞΨ̂ðxÞi
n2

: ð3Þ

In the canonical formalism, the partition function
ZðT;N; L; χÞ can be written in terms of either the
Helmholtz free energy F or the Hamiltonian Ĥ via
Z ¼ expð−F=kBTÞ ¼ Tr expð−Ĥ=kBTÞ. By differentiating
the Helmholtz free energy FðT; L;N; χÞ ¼ −kBT lnZ with
respect to the interaction strength χ, at constantN, L, and T,
one finds that [4]

�
∂F
∂χ

�
T;L;N

¼ 1

Z
Tr

�
e−Ĥ=kBT

∂Ĥ
∂χ

�
¼ 1

2
Gð2Þ; ð4Þ

where we have introduced an integrated unnormalized

correlation function Gð2Þ ≡ R
dxhΨ̂†Ψ̂†Ψ̂ Ψ̂i. Since Gð2Þ ¼

LhΨ̂†Ψ̂†Ψ̂ Ψ̂i ¼ Ln2gð2Þ for a uniform system, Eq. (4) can
be rewritten as

gð2Þ ¼ 2

Ln2

�
∂F
∂χ

�
T;L;N

: ð5Þ

This relationship between the local pair correlation and the
Helmholtz free energy is what was used in Ref. [4] to
calculate the gð2Þ function using the exact Yang-Yang
TBA [12] solution for F, as a function of the dimensionless
interaction strength γ and the dimensionless temperature τ,
defined, respectively, via

γ ¼ mχ

ℏ2n
; τ ¼ 2mkBT

ℏ2n2
: ð6Þ

We note here that these two dimensionless parameters
completely characterize the thermodynamic properties of a
uniform 1D Bose gas [4,12].
Maxwell relation—We now recall that the partial deriva-

tive of the same Helmholtz free energy with respect to
temperature T in the canonical formalism gives the entropy
S ¼ SðT; L;N; χÞ of the system,

S ¼ −
�
∂F
∂T

�
L;N;χ

: ð7Þ

Combining Eqs. (4) and (7) with the commutative
property of mixed second derivatives of F, i.e.,
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ð∂=∂χÞð∂F=∂TÞL;N ¼ ð∂=∂TÞð∂F=∂χÞL;N , leads to the fol-
lowing Maxwell relation:

�
∂S
∂χ

�
T;L;N

¼ −
1

2

�
∂Gð2Þ

∂T

�
L;N;χ

; ð8Þ

which for a uniform system can be rewritten as
ð∂S=∂χÞT;L;N ¼ −ðLn2=2Þð∂gð2Þ=∂TÞL;N;χ .
Equation (8) is one of this Letter’s key results (see also

Appendix A) and implies that the entropy of the gas at a
specific value of χ (and some fixed values of T, L, and N)
can be calculated by integrating the partial derivative

of Gð2Þ with respect to T over the interaction strength,

SðT;L;N;χÞ¼SðT;L;N;χ0Þ

−
1

2

Z
χ

χ0

�
∂Gð2ÞðT;L;N;χ0Þ

∂T

�
L;N;χ0

dχ0: ð9Þ

Here, SðT; L; N; χ0Þ serves the role of the integration
constant and is assumed to be known for the method to
work; in practice, it can be chosen to correspond to
the entropy of an ideal (χ0 ¼ 0) Bose gas (IBG),
SIBG ¼ SðT; L; N; 0Þ, which can indeed be calculated
for any T using standard methods of statistical
mechanics [1,35].
As a simple analytic illustration of the utility of Eq. (9),

we calculate the entropy of a 1D Bose gas in a highly
degenerate, nearly ideal Bose gas regime that can be treated
using perturbation theory with respect to γ (see the results
for the so-called decoherent quantum regime in
Refs. [4,35], valid in the region 2

ffiffiffi
γ

p ≪ τ ≪ 1). In this
regime, the normalized local pair correlation function gð2Þ,
which was calculated in Ref. [4] without resorting to the
Helmholtz free energy, is given by

gð2Þ ¼ 2 − 4γ=τ2: ð10Þ

Therefore, Eq. (9) yields the following result for the
corresponding entropy:

S ¼ SIBG − 4kBNγ2=τ3: ð11Þ

Application to the SPGPE approach—We now illustrate
the utility of Eq. (9) using a numerically computed pair
correlation function within the SPGPE approach. This itself
can be viewed as a numerical experiment demonstrating
how one can deduce the entropy of a quantum gas from the
measured atom-atom correlations.
The SPGPE approach (see Appendix B) is a classical

field or c-field method for computing thermal equilibrium
and dynamical properties of degenerate Bose gases at finite
temperatures [14,17–29]. Evolving the SPGPE from an
arbitrary initial state, for a sufficiently long time (such that

the memory of the initial state is lost), samples thermal
equilibrium configurations of the system from the grand-
canonical ensemble. These configurations are represented
by stochastic realizations of the complex c-fields ΨCðx; tÞ,
which we will denote as ΨCðxÞ for thermal equilibrium
states. In the SPGPE approach, the pair correlation function
gð2Þ is computed according to

gð2Þ ¼ hΨ�
CðxÞΨ�

CðxÞΨCðxÞΨCðxÞi
hΨ�

CðxÞΨCðxÞi2
; ð12Þ

where the expectation values are over a large number of
stochastic realizations.
We illustrate the utility of Eq. (9) for a 1D quasicon-

densate using a c-field approach within the regime of its
applicability, which is restricted to the parameter rangeffiffiffi
γ

p ≪ τ ≪ 1 [14,29]. In Fig. 1 we first show the depend-
ence of the normalized pair correlation function gð2Þ
over a range of the dimensionless interaction strength
γ ∈ ½10−4; 10−2�, for a fixed value of the dimensionless
temperature τ ¼ 0.2, obtained from the SPGPE approach.
For comparison, we also show the exact TBA result
(squares) [4] and the approximate analytic result of
Eq. (10) (dashed line).
As we see, in the limit of an ideal Bose gas (γ → 0) at

finite temperature, the pair correlation approaches the value
of gð2Þ ¼ 2, which is the Hanbury Brown–Twiss effect of
bosonic bunching (gð2Þ > 1) first observed for photons
from a chaotic (thermal) light source [36] and more recently
for an ultracold atomic gas above the transition to a
Bose-Einstein condensate [37–39]. It corresponds to
large density fluctuations and an enhanced probability of

FIG. 1. Normalized pair correlation gð2Þ for a 1D quasicon-
densate as a function of the dimensionless interaction strength γ,
for a fixed dimensionless temperature τ ¼ 0.2. The numerically
computed data from the SPGPE simulations are shown as circles
and are compared to the exact TBA result (squares) and the
analytic approximation of Eq. (10) (dashes).
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detecting two indistinguishable bosons in the same position
due to the constructive interference of the respective
probability amplitudes. As the strength of the repulsive
interaction increases, the said probability decreases and
manifests itself in the reduction of the value of gð2Þ below 2
[4,5]. At some finite, but still weak (γ ≪ 1) interaction
strength, the pair correlation crosses the coherent level of
gð2Þ ¼ 1 characteristic of a phase-fluctuating quasiconden-
sate with suppressed density fluctuations, which itself
shares the properties of a weakly interacting Bose-
Einstein condensate in the mean-field description [37,38].
As the interaction strength increases further and

approaches the regime of very strong or hard-core repulsion
(γ → ∞), also known as the Tonks-Girardeau limit of
fermionization, the pair correlation reduces further down
to gð2Þ → 0 (see Refs. [4,5]). This reduction reflects the
fact that the bosons are now strongly (anti)correlated and
behave effectively as fermions, wherein the bosonic hard-
core repulsion mimics the fermionic Pauli blocking. In the
pair correlation function, such repulsion manifests itself as
antibunching (gð2Þ < 1), which itself is due to the destruc-
tive interference of probability amplitudes for detecting two
indistinguishable fermions in the same position [39]. This
regime, however, is beyond the applicability of the SPGPE
approximation (γ ≪ 1, 2γ ≪ τ ≪ 1; see, e.g., Refs. [29,35]
and references therein), and this is why in Fig. 1 we do not
show the behavior of the gð2Þ beyond the weakly interacting
regime of γ ≪ 1. Because of the same approximate nature
of the SPGPE approach, we see that the SPGPE data for
gð2Þ, while agreeing well with the exact TBA results at small
γ, start to deviate from the TBA results as γ increases and
approaches its upper bound of γ ¼ 0.01, where the con-
dition 2γ ≪ τ is not well satisfied. Similarly, the analytic
result of Eq. (10) deviates from TBA to a larger extent as γ
is increased, because it is applicable in an even more
restricted region of 2

ffiffiffi
γ

p ≪ τ ≪ 1 [4,35].
We next deduce the entropy of the 1D quasicondensate

using Eq. (9) and the SPGPE data for gð2Þ, except that now
the integration in Eq. (9) is done numerically. To obtain the
dependence of Sðχ; T; L; NÞ on χ at a fixed T, or rather on
the dimensionless γ at a fixed τ, we convert Eq. (9) to the
dimensionless units and first evaluate the derivative�
∂gð2Þðγ0; τÞ=∂τ�γ0 using the central difference scheme,
for a range of values of γ0. We next evaluate the integral
over γ0 numerically, as a function of the upper bound.
The upper bound is scanned within γ ∈ ½10−4; 10−2�, while
fixing the lower bound at γ0 ¼ 10−6, which is sufficiently
low for the SPGPE results to be nearly identical to the
IBG results at finite T, for which gð2Þ ¼ 2 and
Sðγ0; T; L; NÞ ≃ SIBGðT; L;NÞ. In Fig. 2 we show the
SPGPE result for the entropy difference per particle,
ðS − SIBGÞ=kBN, obtained from the SPGPE approach as
a function of γ, for a fixed value of the dimensionless
temperature τ. We again compare these data with the exact

TBA result (squares) and the analytic result of Eq. (11)
(dashed line). As we see, the entropy is maximal in the ideal
Bose gas limit (γ → 0), where gð2Þ ¼ 2 is also maximal,
reflecting the large density fluctuations and excess random-
ness (bunching) in the probability of finding two indis-
tinguishable bosons in the same position. As the strength of
repulsive interactions increases, the random density fluc-
tuations become more and more suppressed, which is also
evident in the decrease of the entropy of the gas, as
expected. Overall, we see a good agreement between the
SPGPE and TBA results, particularly at small values of γ,
where the condition of validity of the SPGPE approxima-
tion is better satisfied; the agreement becomes worse as γ is
increased, for the same reason as the discrepancy in the
behavior of gð2Þ discussed earlier.
Summary and outlook—We have derived and discussed a

new Maxwell relation by which the entropy of a quantum
many-body system with contact two-body interactions can
be related to, and deduced from, the local two-particle
correlation function. We have validated this method though
a numerical experiment based on the c-field SPGPE
simulations and computed—for the first time (to the best
of our knowledge) within the SPGPE formalism—the
thermodynamic entropy of a weakly interacting 1D Bose
gas in the quasicondensate regime.
The Maxwell relation derived here may find immediate

applications, such as measuring the entropy and deducing
the thermodynamic equation of state, in quantum gas
experiments that take advantage of tunable interparticle
interactions and measurements of atom-atom correlations
using photoassociation or in situ imaging techniques in

FIG. 2. Entropy of a 1D quasicondensate as a function of the
dimensionless interaction strength γ, relative to that of an ideal
Bose gas at the same temperature, Sðγ; τÞ − SIBGðτÞ, for τ ¼ 0.2.
The SPGPE data computed using Eq. (9) are shown as circles and
are compared to the exact TBA data (squares) and the analytic
approximation of Eq. (11) (dashes).
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quantum gas microscope setups. It can also be applied to
other computational approaches, such as density matrix
renormalization group and phase space stochastic gauge
methods [40,41], that are capable of computing particle-
particle correlations from the many-body wave function or
density matrix formalism, but struggle to compute the
entropy from, e.g., the multiplicity or the free energy.
Apart from the 1D Bose gas model, the main results

presented in this Letter, Eqs. (4), (8), and (9), can be easily
extended to 2D and 3D Bose gas systems, Fermi gases, and
Fermi and Bose gas mixtures. For example, for the Yang-
Gaudin model of an interacting two-component Fermi gas
in 1D [30,42,43], with the interaction Hamiltonian
Ĥint ¼ χ

R
dxΨ̂†

↑Ψ̂
†
↓Ψ̂↓Ψ̂↑, the results of Eqs. (4), (8),

and (9) continue to hold with the replacement

Gð2Þ=2 → Gð2Þ
↑;↓ ≡

R
dxhΨ̂†

↑Ψ̂
†
↓Ψ̂↓Ψ̂↑i, where Ψ̂↑ðxÞ and

Ψ̂↓ðxÞ are the fermionic field operators for the spin-up
and spin-down components, respectively. Beyond quantum
gas systems, these results can also aid the study of
condensed matter systems that are characterized through
the static structure factor which is measured in scattering
experiments [44,45]. Indeed, the static structure factor
SðkÞ is related to the nonlocal pair correlation gð2ÞðrÞ
via a Fourier transform, SðkÞ ¼ 1þ n

R
drgð2ÞðrÞe−ik·r.

Therefore, a measurement or theoretical knowledge of
SðkÞ can be used to deduce the local pair correlation
gð2Þð0Þ≡ gð2Þ by an inverse Fourier transform, which
can then be used for determining the thermodynamic
entropy from Eq. (9). Finally, one can envisage derivation
of related Maxwell relations for a large class of spin
Hamiltonians [46] in which (a) the spin-spin interaction
term can be similarly calculated using the Hellmann-
Feynman theorem, and (b) the relevant spin-spin correla-
tion function can be experimentally measured.
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End Matter

Appendix A: Thermodynamic potential behind the Max-
well equation for the atom-atom correlation function—In
this appendix, we outline the fundamental thermody-
namic identities behind the Maxwell relation (8). First,
we note that, in Eq. (4), which follows from the
Hellmann-Feynman theorem, the integrated correlation

function Gð2Þ ¼ R
dxhΨ̂†ðxÞΨ̂†ðxÞΨ̂ðxÞΨ̂ðxÞi (times a

factor of 1=2) can be viewed as an extensive
thermodynamic parameter [47] that characterizes the
variation of the system’s internal energy U ¼ hĤi with
the interaction strength χ which itself is an intensive

parameter conjugate to Gð2Þ=2. [The factor of 1=2 is an
artifact of the conventional definition of the interaction

part of the Hamiltonian (1), with hĤinti ¼ ðχ=2ÞGð2Þ,
where 1=2 can be either absorbed into the redefinition of
the coupling constant, χ=2 → χ, or kept as a multiplier

in front of Gð2Þ whenever we talk about the integrated
pair correlation as an extensive parameter.] The variation
of the generalized Helmholtz free energy in the
canonical formalism, F ¼ FðT; L;N; χÞ, where for
the 1D system the role of the volume V is played by the
length L, can therefore be written as

dF ¼ −SdT − PdLþ μdN þ ðGð2Þ=2Þdχ; ðA1Þ
where S ¼ −ð∂F=∂TÞL;N;χ is the entropy, P ¼
−ð∂F=∂LÞT;N;χ is the pressure, μ ¼ ð∂F=∂NÞT;L;χ is the

chemical potential, and Gð2Þ=2 ¼ ð∂F=∂χÞT;L;N . From
this, one can derive a set of Maxwell relations as usual,

including the one between S and Gð2Þ, i.e., Eq. (8).
According to the standard formalism of thermodynamics

(see, e.g., [2,48]), the fundamental equation (A1) can be
obtained via a Legendre transform,

F ¼ U − TSþ χðGð2Þ=2Þ; ðA2Þ
from the Euler equation for the generalized internal energy
of the system,

U ¼ TS − PLþ μN − χðGð2Þ=2Þ; ðA3Þ
which is a function of only extensive parameters,

U ¼ UðS; L; N;Gð2Þ=2Þ. The differential of U is given by

dU ¼ TdS − PdLþ μdN − χdðGð2Þ=2Þ; ðA4Þ
where T ¼ ð∂U=∂SÞ

L;N;Gð2Þ , P ¼ −ð∂U=∂LÞ
S;N;Gð2Þ ,

μ ¼ ð∂U=∂NÞ
S;L;Gð2Þ , and χ ¼ −

�
∂U=∂ðGð2Þ=2Þ�S;L;N

[49]. We note that the negative sign in χ ¼
−
�
∂U=∂ðGð2Þ=2Þ�S;L;N makes physical sense for positive

χ (repulsive interactions) as the internal energy of the
system increases when the pair correlation is decreased
when approaching the “fermionized” regime of particle-
particle antibunching where gð2Þð0Þ → 0, as opposed to the
weakly interacting regime where the gas displays bosonic
bunching gð2Þð0Þ → 2 [4].
Furthermore, an equation similar to Eq. (A1) can be

written down for the grand-canonical thermodynamic

potential Ω ¼ F − μN ¼ U − TSþ χðGð2Þ=2Þ − μN,

dΩ ¼ −SdT − PdL − Ndμþ ðGð2Þ=2Þdχ; ðA5Þ

with Ω ¼ ΩðT; L; μ; χÞ. Using additionally Ω ¼ −PL for
homogeneous systems, Eq. (A5) can be further rewritten as

LdP − SdT − Ndμþ ðGð2Þ=2Þdχ ¼ 0; ðA6Þ

which takes the role of the generalized Gibbs-Duhem
relation and implies, in particular, that among the four
intensive parameters fP; T; μ; χg only three are indepen-
dent; this, in turn, implies that the functional dependence of
the fourth parameter on the other three takes the role of the
thermodynamic equation of state, such as P ¼ PðT; μ; χÞ.
For explicit examples of such equations of state for the
uniform 1D Bose gas, see a recent review in Ref. [35].
We emphasize that all these generalizations of the

thermodynamic relations, accounting for the changes of
the interaction strength χ, are applicable only to ultracold
atomic gases in which the interactions are short ranged
and can be accounted for via a single parameter (χ), which
itself can be varied via the s-wave scattering length a.
These generalized thermodynamic relations can be
adopted to describe short-range interacting Fermi gases
[8,30,31,33,50], Fermi and Bose gas mixtures [7,8], as well
as lattice models, such as Bose and Fermi Hubbard models
[7,8], and Heisenberg-like models of interacting spins [51]

where the role of the correlation function Gð2Þ is taken by
the neighboring spin-spin correlation function [46]. We
also note that these thermodynamic relations are similar to
those that have been derived in the context of Tan’s contact
parameter and the related Tan thermodynamic relations
[30–32,50]; see, e.g., the treatments summarized in
Chap. 18.3 of Ref. [8] and in Ref. [33], which we closely
followed here. In retrospect, this is not surprising, because
Tan’s contact, which characterizes the strength of the tails
of the momentum distribution of an ultracold atomic gas, is
known to be directly proportional to the (spatial) local
atom-atom pair correlation function gð2Þ [30,35,52,53]. We
emphasize, however, that deriving the thermodynamic and
Maxwell relations presented in this Letter does not rely on,
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and does not require the knowledge of, Tan’s contact and
Tan’s thermodynamic relations.

Appendix B: The stochastic projected Gross-Pitaevskii
approach—In the SPGPE approach [14,17,18], the
quantum field operator Ψ̂ðx; tÞ is decomposed into two
regions, a c-field region and an incoherent thermal
region. The c-field region contains highly occupied low-
energy modes and is described by a single complex-
valued classical field ΨCðx; tÞ. The incoherent region, on
the other hand, contains sparsely occupied high-energy
modes that act as an effective thermal bath, treated as
static, with temperature T and chemical potential μ that
governs the thermal average number of particles in the
system (in the c-field region). The boundary between
these two regions is defined by an appropriately chosen
energy cutoff ϵcut [54].
In this approach, the thermal equilibrium state of the

system is prepared by evolving the simple growth SPGPE
for the complex c-field ΨCðx; tÞ [17,18],

dΨCðx;tÞ¼PðCÞ
�
−
i
ℏ
LðCÞ
0 ΨCðx;tÞdt

þ Γ
kBT

ðμ−LðCÞ
0 ÞΨCðx;tÞdtþdWΓðx;tÞ

�
: ðB1Þ

Here, the projection operator PðCÞf·g sets up the high-
energy cutoff ϵcut, whereas Γ is the so-called growth rate
responsible for the coupling between the c-field and the
effective reservoir (served by the incoherent region). In

addition, LðCÞ
0 is the Gross-Pitaevskii operator defined by

LðCÞ
0 ¼ −

ℏ2

2m
∂
2

∂x2
þ Vðx; tÞ þ χjΨCðx; tÞj2; ðB2Þ

where Vðx; tÞ is the external trapping potential, if any. The
last term, dWΓðx; tÞ, in Eq. (B1) is a complex-valued

stochastic white noise term with the following nonzero
correlation:

hdW�
Γðx; tÞdWΓðx0; tÞi ¼ 2Γδðx − x0Þdt: ðB3Þ

As we mentioned in the main text, the stochastic
realizations of the c-field ΨCðx; tÞ prepared via the
SPGPE after a sufficiently long evolution time sample
the grand-canonical ensemble of thermal equilibrium states
of the system. These stochastic realizations can then be
evolved in real time according to the mean-field projected
Gross-Pitaevskii equation [17], following a certain out-of-
equilibrium protocol. This would then represent real-time
dynamical evolution of the system starting from an initial
thermal equilibrium state. In this Letter, however, we do not
simulate any real-time dynamics; instead, we are interested
in the pair correlation function gð2Þ of a 1D quasicondensate
at thermal equilibrium. Accordingly, our simulations
involve only the SPGPE stage.
Denoting the SPGPE realizations of the complex c-field

ΨCðx; tÞ after a sufficiently long evolution time via ΨCðxÞ,
the thermal equilibrium values of physical observables are
then calculated in terms expectation values of products of
ΨCðxÞ and its complex conjugate Ψ�

CðxÞ over a large
number of stochastic realizations. This is much in the
same way as calculating the same observables in terms of
expectation values over normally ordered products of
quantum field operators Ψ̂ðxÞ and Ψ̂†ðxÞ, except that their
noncommuting nature is ignored. As an example, the
particle number density nðxÞ ¼ hΨ̂†ðxÞΨ̂ðxÞi in the
SPGPE approach is calculated as nðxÞ ¼ hΨ�

CðxÞΨCðxÞi,
where the brackets h…i refer to ensemble averaging over a
large number of stochastic trajectories; similarly, the pair
correlation function gð2Þ can be computed via Eq. (12) of
the main text.
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