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AI algorithms have proven to be excellent predictors of protein structure, but whether and how much
these algorithms can capture the underlying physics remains an open question. Here, we aim to test this
question using the Alphafold2 (AF) algorithm: We use AF to predict the subtle structural deformation
induced by single mutations, quantified by strain, and compare with experimental datasets of correspond-
ing perturbations in folding free energy ΔΔG. Unexpectedly, we find that physical strain alone—without
any additional data or computation—correlates almost as well with ΔΔG as state-of-the-art energy-based
and machine-learning predictors. This indicates that the AF-predicted structures alone encode fine details
about the energy landscape. In particular, the structures encode significant information on stability, enough
to estimate (de-)stabilizing effects of mutations, thus paving the way for the development of novel,
structure-based stability predictors for protein design and evolution.
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AI has ushered in a revolution in structural biology, yet
we are still in uncharted waters [1,2]. In particular, it is not
clear whether AI algorithms that predict protein structure
from sequence, such as AlphaFold (AF) [3] or Rose-
TTAFold [4], owe their unprecedented accuracy to highly
sophisticated pattern recognition or these algorithms can
capture some of the many-body physics underlying protein
folding. Recent studies provide evidence suggesting that
AF has learned an effective energy functional that is
searched in order to accurately predict the native structure
[5], even if it includes uncommon structural motifs [6].
A stringent test for whether an AI algorithm has learned

the actual physical energy landscape would be the capacity
to probe, from the predicted structure alone, changes in the
thermodynamic free energy (ΔΔG) due to single mutations.
This would indicate that the predicted structure encodes
fine details about the physical energy landscape. Besides
this fundamental interest, such capacity may be impactful
in applications: Of particular importance for protein design
and sequence generation [7–10], and for protein evolution
[11–13] is the ability to predict whether a given protein
sequence will lead to a stably folded structure [3,4]. AF has
been reported to predict folded structures for proteins that
are not stable [14–16]. Despite this, some analyses suggest
that AF and RoseTTAFold can be used for predicting
stability changes upon mutation [14,17–20]. All this
motivates us to systematically investigate here the question
of whether AI-predicted structures can be used to infer
changes to free energy landscapes.

To this end, we study a curated subset of 2499 mea-
surements of stability change (ΔΔG) due to single muta-
tions, taken from ThermoMutDB (TMDB) [21]. Strain is a
simple general measure of deformation in proteins [22–27].
We find that the deformation upon mutation—as measured
by the effective strain [14]—correlates well with ΔΔG. We
show it is essential to average over an ensemble of multiple
AF-predicted structures to get precise estimates of strain
due to mutation, and that most of the relevant information is
gleaned from the residues within 15 Å of the mutated
residue. Our initial motivation was to examine whether
the AF structures encode any information about stability.
Surprisingly, we found that correlations between strain
and ΔΔG compare well against those obtained using state-
of-the-art ΔΔG predictors, suggesting that AF predictions
are highly informative of stability changes. We propose
that new energy-based force fields can be developed that
may provide a mechanistic understanding of the effects of
mutations on stability. Since stability measurements are
easier than structure determination, such a development
could settle the question of whether AI algorithms have
truly learned the physics of protein folding by testing on
massive stability datasets [5,6,28].
Strain correlates with ΔΔG in Thermonuclease—We

first examine thermonuclease (NUC, Uniprot ID, P00644;
staphylococbus aureus)—the protein that has the highest
number of mutants in TMDB (491 after applying controls,
Appendix A). NUC consists of a folded region (starting
around K88) and an extended disordered region near the
N terminus [Fig. 1(a)], indicated by the low pLDDT
(AF-predicted confidence score) values [Figs. 1(a)–1(b)].
The NUC mutants are all sampled from the folded domain
[Fig. 1(c)]. Note that we define ΔΔG such that an increase
in ΔG upon mutation is destabilizing.
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To measure deformation, we calculate effective strain
(ES; Appendix B) per residue, Si, between wild-type (WT)
and mutant structures predicted by AF [Fig. 1(d)].
Disordered residues always show high ES [Fig. 1(d),
dotted lines] due to prediction noise, regardless of muta-
tions [14]. We therefore exclude residues whose pLDDT <
70 from the ES calculations [Fig. 1(d), solid lines]. Even
without disordered residues, if we only compare two static
structures [Figs. 1(d) and 1(e), teal], we still see residual ES
in regions far from the mutated site. This occurs since
regions in proteins with high flexibility tend to have high
variability across repeat AF predictions (Supplemental
Material Fig. 1) [29]. To achieve a more accurate estimate
of deformation due to mutation, we calculate deformation
using “averaged” AF structures (Appendix B) [14]. This
drastically reduces ES in most regions (which originates
chiefly from noise and fluctuations), except for regions near
the mutated site [Figs. 1(d) and 1(e), orange].
Using this more precise measure of deformation due to

mutation, we find a significant correlation (Spearman’s
ρ ¼ 0.35) between strain at the mutated site Sm and change
in stability ΔΔG [Fig. 1(f)]. This correlation is even higher
(Spearman’s ρ ¼ 0.57) when calculating the sum of strain

over all residues within a spherical neighborhood of radius
γ ¼ 15 Å around the mutated site, Sn [Fig. 1(g)]. See
Supplemental Material Fig. 2 for similar analyses without
excluding low pLDDT residues and without using average
structures [29]. Our rationale for choosing γ ¼ 15 Å will
become clear in a following section. For now, we highlight
that, in this particular example (NUC) it appears that AF-
predicted deformation correlates quite well with empirical
measurements of changes in stability.
Strain correlates with ΔΔG within protein families—We

expand our analysis of NUC to more protein families, again
focusing on the families that have the highest coverage in
TMDB. For the second-to-fifth most common proteins, we
find correlations between stability change and local de-
formation ranging from 0.39 ≤ ρ ≤ 0.61 [Fig. 2(a)].
Extending this analysis to the 40 most common proteins
reveals that there are insufficient samples to show signifi-
cant strain-stability correlations in most cases. Neverthe-
less, in the 16 correlations that are statistically significant,
the average Spearman’s ρ is 0.54 [Fig. 2(b)] with an overall
range 0.29–0.78. We see that for all cases with sufficient
data, there appears to be a consistent correlation between
strain and changes in stability.

(a)

(b)
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FIG. 1. Strain calculated using AF-predicted structures correlates with ΔΔG. (a) AF-predicted structure of thermonuclease from
staphylococcus aureus (NUC)—the most common protein in TMDB. Residues are colored according to pLDDT (AF-predicted
confidence score). (b) pLDDT per residue. (c) Distribution of 491 mutation sites along the sequence, and corresponding changes in
stability ΔΔG. (d) Strain upon mutation (A176G, ΔΔG ¼ 2.4 kcal=mol) per residue; the mutated site is indicated by the black dashed
line. The strain calculation either includes (dotted line) or excludes (solid line) residues with pLDDT < 70, and uses either a single pair
of structures (green) or pairs of averaged structures (orange). (e) Strain as a function of distance from the mutated site, δi, for single pairs
and ensemble-averaged pairs of structures. (f)–(g) Empirical ΔΔG vs strain at the mutated site, Sm (f), and the sum of strain over all
residues within 15 Å of the mutated site, Sn (g). Solid line shows the median; Spearman’s ρ, Pearson’s r, and corresponding p values are
shown; circles are shaded by density.
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Determinants of strain-stability correlation—To better
understand why strain is correlated with changes in
stability, we examine the correlations between strain at
individual residues Si (not necessarily the mutated ones)
and ΔΔG, and compare this with the number of neighbors
within 10 Å of each residue i. For NUC, we find that
mutations in buried regions (those with many neighbors)
tend to have an outsize impact on stability [Fig. 2(c)], as
expected, given the standard paradigm of buried residues
having low mutation rates [36]. In general, one expects
mutations of buried residues to affect more bonds and
therefore inflict larger stability changes. Indeed, across the
five most common proteins in the TMDB, we see a clear
trend whereby the residues with the highest strain-stability
correlations are amongst the most buried within that protein
[Fig. 2(d)].
Evidently, when only a few points are sampled, the

resulting correlation is not particularly informative. Also, in
a large protein, more points are needed to achieve sufficient

sampling. This is demonstrated most clearly in IgG-binding
protein G (IgGb, P06654): this protein has a length
L ¼ 448, so even though we have 225 samples, many
buried residues do not correlate with stability changes
[Fig. 2(d)]. This is because many regions have no mutations
sampled from them, so deformation remains low no matter
how buried the residues are. Another complication arises
from the abundance of disordered regions (Supplemental
Material, Fig. 3 [29]) in which AF appears to have little
capacity to predict mutation effects, while well-folded
regions are small. As a result, for IgGB the link between
number of neighbors and effect on stability is weak. This
case highlights the need for a nuanced approach to under-
standing the relationship between strain and changes in
stability.
Range of informative residues—We find that the Sn −

ΔΔG correlation increases with γ, the radius of neighbor-
hood used to calculate Sn, up to about 10 ≤ γ ≤ 20 Å,
depending on the protein family [Fig. 2(e)]. This optimal

(a) (b)

(d)

(e)

(c)

FIG. 2. When and why does Sn correlate with ΔΔG? (a) Change in stability ΔΔG against strain near mutated residue Sn for four
proteins (the second to fifth most common in TMDB; the most common one, NUC, is shown in Fig. 1); Spearman’s ρ, Pearson’s r, and
corresponding p values are shown; black line is the median; circles are shaded by density. (b) Sn − ΔΔG correlation for each of the 40
most common proteins in TMDB as a function of the number of samples; results with p < 0.05 are shown by dark circles. (c) Si − ΔΔG
(Pearson’s) correlation for each residue i as a function of the number of neighbors (for NUC only). (d) Distributions of numbers of
neighbors, grouped by Si − ΔΔG Spearman’s correlation, for the five most common proteins. (e) Sn − ΔΔG (Pearson’s) correlation for
each residue i as a function of the neighborhood threshold value γ for calculating Sn, for both pairs of single structures and averaged
structures, for five proteins.
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length scale of ∼15 Å, could be the outcome of two
possible effects:
First, we note that the residues that are most informative

of stability changes are the most buried ones [Fig. 2(c)], and
not necessarily the mutated residues. Hence, the optimal γ
needs to be large enough to include some of these infor-
mative, buried residues in the Sn calculation. In TMDB, for
example (Supplemental Material Fig. 4 [29]), the average
distance between buried and mutated residues is 10 Å. This
length scale can be rationalized by a simple geometric
argument: the average distance to the center of a sphere
(the most buried part) of diameter d is r0 ¼ ð3=8Þd; the
average volume of an amino acid is ∼144 Å3 [37], so in a
folded, approximately spherical domain of ∼100 amino
acids, r0 ∼ 11.3 Å.
Second, when we compare pairs of single AF-predicted

structures, which exhibit significant noise unrelated to
mutations (Supplemental Material Fig. 1 [29]), strain-
stability correlations reach a maximum as a function of
γ and then decrease; this decrease is not observed for
averaged structures [Fig. 2(e)]. This is consistent with
reports that AF strain predictions are usually indistinguish-
able from noise after about 15 Å, while this range could be
extended to 25 Å (and noise reduced by a factor of 4) by
averaging over structures [14,22].
In summary, we propose that the reason for the maxi-

mum information from strain around a range of 15 Å is due
to both the need to increase γ to include buried residues
and also because long-range mutation effects may be
masked by prediction noise. In this context, we note that
conformational dynamics of proteins were reported to
exhibit correlations with similar and even longer ranges,
as demonstrated by normal mode analysis [22,38,39].
However, one needs to remember that displacement and
strain—the tensorial derivative of the displacement—may
show different correlation lengths [22].
Strain correlates withΔΔG across protein families—We

find a moderate correlation (ρ ¼ 0.36) between Sn and
ΔΔG when comparing all the measurements together
[Fig. 3(a)]. This correlation is expected to be limited due
to the inability of strain to differentiate between stabilizing
and destabilizing mutations. Since Eq. (B1) measures the
absolute relative change in distances, S ≥ 0 by definition,
and thus the strain is invariant to reversing the reference and
target structures. Indeed, we find a somewhat higher
correlation (ρ ¼ 0.41) between Sn and the magnitude of
stability changes, jΔΔGj [Fig. 3(b)]. This indicates that
more generally, large structural changes lead to large
stability changes, independent of the sign of the change.
We do not expect a simple mapping between Sn and

ΔΔG, given the complexity of protein structures and
intramolecular interactions. We obviate protein size effects
to an extent by only looking at mutation effects within
γ ¼ 15 Å, but there are other protein-specific factors—
such as the degree of disorder, protein shape, flexibility, and

amino acid packing—that may alter the relationship be-
tween strain and ΔΔG for different proteins. Nonetheless,
the strain-stability correlations shown here indicate that
strain due to mutation contains considerable information
about stability changes that may be leveraged in subsequent
development of predictors of ΔΔG.
Strain correlates with ΔΔG almost as well as tailored

ΔΔG predictors—To put the strain-stability correlations in
context, we compare them with two state-of-the-art ΔΔG
predictors, DDMut and FoldX (Appendix C) [40,41].
FoldX predicts ΔG from structure using empirical
energy-based potentials; it is used to calculate ΔΔG by
first a generating structure for the mutant based on a
reference WT structure, which enables calculation of ΔG
for both WT and mutant structures. DDMut uses a neural
network to predict ΔΔG, using a reference structure and a
mutation as input.
We find that Sn − jΔΔGj correlations are almost as high

as correlations obtained using FoldX on average, but lags
behind the more recent algorithm, DDMut (Fig. 4). We
were genuinely surprised by this performance since strain is
a simple general measure of deformation and not designed
specifically for stability, in contrast to FoldX and DDMut.
However, there is clearly room for improvement: simply by
counting the number of neighbors at the mutation site we
see a correlation of ρ ¼ 0.30 [Fig. 4(d)]; the mean absolute
error obtained from a linear fit is 1.2 kcal=mol for both Sn
and DDMut (Supplemental Material Fig. 5 [29]). We note
that our aim here is not to use strain to predict ΔΔG,
but rather to see whether the strain predicted by AF is
informative about stability changes. But given the surpris-
ingly high correlation, we speculate that AF-predicted
structures can be leveraged to produce even better ΔΔG
predictors.
We expected that since FoldX calculates ΔG for a

structure, it would give us a more accurate estimate of
ΔΔG than strain if we use it on AF-predicted structures.
Surprisingly, we find that this method (AF-FoldX)

(a) (b)

FIG. 3. Sn − ΔΔG correlations across protein’s. Strain near
mutated site Sn vs ΔΔG (a) and magnitude of stability change
jΔΔGj (b) for all mutations in our reduced TMDB sample of
2499 unique mutants. Pearson’s r, and corresponding p values
are shown.
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performs worse than strain in this case (ρ ¼ 0.26).
Likewise, we find that calculating strain using the struc-
tures generated by FoldX results in a lower correlation with
ΔΔG (ρ ¼ 0.30, Supplemental Material Fig. 6 [29]). We
considered also the possibility that AF-predicted structures
are not as accurate as FoldX-generated structures. How-
ever, we find that strain calculated using FoldX structures
is not correlated with distance from the mutated site
(Supplemental Material Fig. 7 [29]), indicating that
FoldX is less accurate than AF in predicting the effect
of mutations on structure. These results suggest that there is
a promising path for generation of new energy-based
methods for ΔΔG prediction using AF-predicted
structures.
Can AF be used to predict stability changes?—We

emphasize that our aim here is not to outright develop a
ΔΔG predictor but rather to investigate whether AF
predictions are informative of stability changes. We have
found that a general measure of deformation, strain,
correlates quite well with ΔΔG. Although it was not
designed to be a ΔΔG-predictor, Sn appears to be almost
as good at predicting the magnitude of stability changes as
state-of-the-art ΔΔG predictors. Of course, this needs to be
tested on a larger set of measurements, and more structures
are needed for experimental validation of the relationship

between strain and stability (Supplemental Material,
Sec. 1C [29]). We also note that higher correlations have
been observed for these predictors on different datasets, so
this analysis should be repeated on larger sets of ΔΔG
measurements [40,42]. Yet, within these limitations, it
seems clear that there is sufficient information in AF-
predicted structures to make ΔΔG predictions. It stands
to reason that new physics-based models can be developed
to achieve even better predictions, off the back of AF-
predicted structures. Alternatively, these structures could be
used to reparametrize existing force fields such as FoldX.
The recent explosion of high-throughput measurements
[28,43] will certainly lead to more machine-learning and
sequence-based approaches. Nevertheless, we feel that
physics-based methods are essential to offer a detailed
view into the mechanistic effects of mutations on stability.
The breakthrough by AF in structure prediction might offer
the key to this future.
Strain-energy relation—Our predictions allow us to

deduce an effective strain-energy relation by modeling
the protein as an elastic spring network (as detailed in
Supplemental Material, Sec. 2 [29]) [23,25]. Within this
framework, mutation can be seen as introducing a point
defect that perturbs the network [26], thereby inducing
energy change ΔΔG, which includes contributions from
entropy, changing topology (breaking and forming bonds),
and energy release in prestressed frustrated bonds [44]. The
energy change is quadratic in the strain, with average effec-
tive spring constantsK ranging between 1–10 kcal=mol=Å2

(Supplemental Material, Fig. 9 [29]). These typical values
of K [27] estimate the average curvature of the high-
dimensional energy landscape [45]. K varies widely in
and between protein families, reflecting the anisotropic
geometry and heterogeneity of the landscapes.
Advice for using AF to predict mutation effects—A

previous study examined the same ThermoMutDB dataset,
yet they concluded that AF cannot be used to predict
stability. This is due to using changes in pLDDT to measure
mutation effects, which does not appear to be reliable for
this purpose (Supplemental Material, Fig. 10 [29]) [14]. We
recommend using strain as a more robust measure of the
effect of mutations on structure, particularly when using
averaged structures. We recommend using about 10 to 20
(i.e., 5 models, 2–4 repeats) structures to get averages,
as there are diminishing returns on performance gains
(Supplemental Material, Fig. 11 [29]). Finally, we tested
the strain predicted by the recently released AlphaFold3
[46] in three TMDB mutants by comparing with AF2
predictions (Supplemental Material, Fig. 12–13 [29]),
finding no major differences, except in loops and disor-
dered regions.
We have studied the correspondence between AlphaFold

(AF) predictions of mutation effects on structure (measured
using strain) and changes in stability. We find that strain
correlates well with ΔΔG, almost as well as state-of-the-art

(a) (b)

(c) (d)

FIG. 4. Comparison with state-of-the-art algorithms. (a)–
(c) Correlation (Spearman’s ρ; linear correlations are shown in
Supplemental Material, Fig. 8 [29]) between strain Sn and
magnitude of stability change jΔΔGj, vs correlation between
ΔΔG and predictions of DDMut (a), FoldX (b), and FoldX using
AF-predicted structures (c); separate points are shown for each of
the 40 most-common proteins. (d) Correlations (as above) for the
full sample of 2499 unique mutants. Correlation between number
of neighbors within 10 Å of the mutated site is shown as
“buried.”.
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ΔΔG predictors. Altogether, our findings suggest that new
algorithms can be developed to extract more information
from AF structures to produce accurate physics-based
models of stability change upon mutation. Furthermore,
quantitative mapping of the energy landscape may pave the
way for more realistic modeling of functional conforma-
tional dynamics of protein machines, beyond coarse-
grained elastic-network models [22,47].
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End Matter

Appendix A: Stability data—We select all proteins
from ThermoMutDB (TMDB) [21] with sequence length,
50 ≤ L ≤ 500, and measurements for single mutants
made within 293 ≤ T ≤ 313 K and 5 ≤ pH ≤ 8; this
amounts to 5078 out of 13 337 measurements. One
problem we found with TMDB is that the indices in
mutation codes can be associated with either Protein Data
Bank (PDB) [51], Uniprot [52], or “unsigned,” yet we
wanted to match mutations to Uniprot sequences. Hence,
if indices were matched to PDB indices that differed from
Uniprot indices, we used a custom script to convert the
mutation codes to the correct Uniprot indices. This script
only works when the mutation code index refers to the
“_atom_site.label_seq_id” entry of the mmCIF file; we

excluded many cases where the TMDB mutation indices
refer to idiosyncratic indexing (i.e., not starting from one)
in the “_atom_site.auth_seq_id” entries in the mmCIF
files. Out of caution, if no correct matches were found for
a protein we excluded all TMDB entries that were related
to this protein (i.e., if they have the same value in the
“PDB_wild” column). We excluded “unsigned,” since
these were ambiguous, and we discovered that some of
these were labeled with incorrect Uniprot accession ids.
After this procedure we are left with 3236 measurements.
When multiple ΔΔG measurements are available we
report the average ΔΔG across all measurements. We
leave out a mutant if the standard deviation of the ΔΔG
measurements is higher than 1 kT; this occurred in only
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about 2% of cases. We examined why some of these
cases had such high variance, and found occasional errors
where the ΔΔG sign differed from the reference it was
taken from. A full list of errors and corrections can be
found in Supplemental Material, Sec. 1D [29]. The final
set of ΔΔG measurements includes 2499 unique mutants.
We study correlations within individual wild-type (WT)
proteins (and their single mutants), and across the full set
of measurements.

Appendix B: Structure analysis—We use the
ColabFold implementation of AF to predict protein
structures [53]. We run all 5 models, without using
templates, and using 6 recycles, and minimization using
the Amber forcefield. We run 10 repeat predictions for
each sequence, for each model, and create averaged
structures following [14]. We calculate effective strain,
ES, which measures the deformation between mutants
and WT proteins, for both averaged and nonaveraged
structures. ES can be described simply as the average
relative change of Cα − Cα distances between
neighboring residues; we define neighbors as residues
whose Cα positions are within 13 Å. We calculate
ES as [14],

Si ¼
�jΔrijj

jrijj
�

¼ 1

ni

X
j∈Ni

jrij − r0ijj
jrijj

; ðB1Þ

where rij is the distance vector between Cα positions in
residue i and neighbor j in a reference structure, r0ij is
the corresponding distance vector in a target structure
which has been aligned to rij, Ni is the set of
neighbors, and ni ¼ jNij is the number of neighbors. We
refer to ES measured at the mutated site m as Sm. We
also calculate the neighborhood sum of strain Sn over
residues whose distance to the mutation site δi, is
shorter than some threshold γ,

Sn ¼
X
δi≤γ

Si: ðB2Þ

We mainly use γ ¼ 15 Å. We typically only include AF-
predicted residues in strain calculations if pLDDT > 70,
and treat the rest as disordered, except where other-
wise noted.

Appendix C: ΔΔG predictors—We use two state-of-
the-art methods to predict ΔΔG: FoldX 5 [54], and
DDMut [40]. We use the API for the DDMut web
server to predict ΔΔG. For FoldX, we use the
BuildModel command to generate structures of the WT
and mutant sequences and ΔΔG predictions. We use
five runs as recommended, and report average values of
ΔΔG. For each algorithm, we provide the top-ranked
(by pLDDT) AF-predicted WT structure as an input,
along with a list of all mutants for that protein.
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