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We present a scheme for investigating arbitrary thermal observables in spatially inhomogeneous
equilibrium many-body systems. Extending the grand canonical ensemble yields any given observable as
an explicit hyperdensity functional. Associated local fluctuation profiles follow from an exact hyper-
Ornstein-Zernike equation. While the local compressibility and simple observables permit analytic
treatment, complex order parameters are accessible via simulation-based supervised machine learning
of neural hyperdirect correlation functionals. We exemplify efficient and accurate neural predictions for the
cluster statistics of hard rods, square-well rods, and hard spheres. The theory allows one to treat complex
observables, as is impossible in standard density functional theory.
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Classical density functional theory is a powerful frame-
work for describing the collective behavior of a wide
variety of relevant many-body systems [1–5]. Topical
applications to soft matter [6] range from studies of
hydrophobicity [7–11] to investigations of the molecular
structure of liquids [11–13] and of electrolytes [14–16].
The central variable of density functional theory is the
position-resolved one-body density profile. In recent devel-
opments, the local compressibility [8,9,17] and more
general fluctuation profiles [18–20] were shown to be
further useful indicators for collective phenomena, e.g.,
when systematically analyzing drying that occurs near
substrates and around solutes [8,9,17,20]. A further broad
spectrum of observables, including recent multibody cor-
relation functions [21–23], are relevant for the study of
complex systems.
The use of statistical mechanical sum rules [1,4,24,25] is

often decisive in the description of soft matter, as sum rules
not only provide unambiguous consistency checks, but also
as they encapsulate physical constraints, which ultimately
facilitates to trace physical mechanisms and identify under-
lying causes for the emerging collective effects. In line with
further topical uses of the Noether theorem in statistical
mechanics [26–32], the recent thermal Noether invariance
theory [33–35] allows one to systematically generate and
classify a significant body of exact sum rules. The proper-
ties of general observables can be addressed via the recent
hyperforce theory [35], which is similar in spirit to
Hirschfelder’s hypervirial generalization [36] of the stan-
dard virial theorem [4].
Machine learning techniques see a rapidly increasing use

in soft matter research across topics that range from
characterization [37] to engineering of self-assembly
[38], detection of colloidal structure [39], and the study
of effective colloidal interaction potentials [40,41]. In the
context of density functional theory, machine learning was

used for the construction of workable representations for
the central functional both in the classical [42–55] and in
the quantum realms [55–63]. The recent neural functional
theory [50–52] constitutes a hybrid method that is based on
many-body computer simulation data used to train a neural
network, which then acts as a central numerical object that
mirrors the functional structure prescribed by classical
density functional theory.
Here we return to fundamentals and present a generali-

zation of classical density functional theory that allows one
to investigate the behavior of virtually arbitrary observables
and their locally resolved fluctuation profiles. We specifi-
cally develop a general variational formalism based on an
extended thermal ensemble [64,65]. While the theory is
formally exact, we demonstrate as one way forward that the
relevant functional dependencies are amenable to super-
vised machine learning. We present model demonstrations
for what we argue is a stand-alone and practically relevant
computational scheme for the investigation of soft matter.
Our approach rests on the Mermin-Evans functional map
[1,66], which ascertains that any equilibrium quantity can
be expressed as a density functional.
Density functional theory [1,4] puts the one-body

density distribution,

ρðrÞ ¼ hρ̂ðrÞi; ð1Þ

at center stage. Here we have defined the one-body density
“operator” in its standard form ρ̂ðrÞ ¼ P

i δðr − riÞ, with
δð·Þ denoting the Dirac distribution, r is a generic position
variable, ri is the position of particle i ¼ 1;…; N, and h·i
indicates the thermal average as specified below in detail.
In the following we consider a general observable that is
represented by a phase space function ÂðrNÞ, which in
general depends on the position coordinates rN of all
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N particles, as well as possibly on additional parameters.
Following its occurrence in the hyperforce theory [35], in
generalization of the one-body fluctuation profiles of
Refs. [8,9,18–20], and borrowing the terminology from
the hypervirial theorem [36], we consider a corresponding
hyperfluctuation profile χAðrÞ as the covariance of the
density operator and the given observable. Together with
the mean A we hence define

A ¼ hÂi; ð2Þ

χAðrÞ ¼ covðρ̂ðrÞ; ÂÞ; ð3Þ

with the standard covariance covðX̂; ŶÞ ¼ hX̂ Ŷi − hX̂ihŶi
of two phase space functions X̂ and Ŷ.
Specifically, we consider classical many-body systems of

N particles of identical mass m. The Hamiltonian has the
standard form H ¼ P

i p
2
i =ð2mÞ þ uðrNÞ þP

i VextðriÞ,
where the sums run over all particles i ¼ 1;…; N, the
momentum of particle i is denoted by pi, the interparticle
interaction potential is uðrNÞ, where rN ≡ r1;…; rN is a
shorthand for all position coordinates, and VextðrÞ is an
external potential, here written as a function of the (generic)
position coordinate r. We work in the grand ensemble
at absolute temperature T and chemical potential μ.
The classical “trace” operation is defined as Tr · ¼P∞

N¼0ðhdNN!Þ−1 R drNdpN ·, where h denotes the Planck
constant, d the spatial dimensionality, and

R
drNdpN indi-

cates the phase space integral over all position coordinates
and momenta.
To incorporate the observable ÂðrNÞ into the framework,

we consider an extended ensemble [64,65] that is here
defined by the extended equilibrium many-body proba-
bility distribution e−βðH−μNÞþλÂ=Ξ, where λ is a coupling
parameter that acts as a conjugate variable to ÂðrNÞ; here
β ¼ 1=ðkBTÞ with kB denoting the Boltzmann constant.
The extended grand partition sum is given as Ξ ¼
Tr e−βðH−μNÞþλÂ and the corresponding grand potential is
Ω ¼ −kBT lnΞ. Thermal averages are obtained via
h·i ¼ Tr · e−βðH−μNÞþλÂ=Ξ. An alternative and equivalent
view of the extended ensemble can be based on rather
considering an extended Hamiltonian HA ¼ H − λÂ=β and
formulating its associated standard grand ensemble.
Despite the generalization, we remain only interested in

the properties of the original system with Hamiltonian H,
recovering its standard grand ensemble for the case of
vanishing coupling constant, λ → 0. Throughout, we
assume that ÂðrNÞ is of a form such that the statistical
ensemble generated via HA is well defined in this limit and
that indeed HA → H recovers the original Hamiltonian
(which specifies our above restriction to “virtually” arbi-
trary observables Â).

The thermal average A and the hyperfluctuation profile
χAðrÞ, as respectively defined via Eqs. (2) and (3), are
generated via the following partial derivatives with respect
to the coupling parameter λ:

A ¼ −
∂βΩ
∂λ

; ð4Þ

χAðrÞ ¼
∂ρðrÞ
∂λ

: ð5Þ

The state point μ, T and the form of the external potential
VextðrÞ are thereby fixed upon differentiating. That Eqs. (4)
and (5) hold can, respectively, be verified by elementary
calculations taking into account that −βΩ ¼ lnΞ and the
definition (1) of ρðrÞ. Equation (5) is also rapidly derived
from the standard expression [1,4] of the density profile as a
functional derivative, δΩ=δVextðrÞ ¼ ρðrÞ, together with
Eq. (3) and the recent [19] general identity−δA=δβVextðrÞ ¼
covðρ̂ðrÞ; ÂÞ ¼ χAðrÞ. The latter relation is also straightfor-
ward to show by explicit calculation and it lends much
physical meaning to χAðrÞ as the response function of the
average A against changes in the shape of the scaled external
potential −βVextðrÞ.
The Euler-Lagrange equation of classical density func-

tional theory [1–4], applied to the extended Hamiltonian
HA, has the standard form

c1ðr; ½ρ�Þ ¼ ln ρðrÞ þ βVextðrÞ − βμ; ð6Þ

where c1ðr; ½ρ�Þ is the one-body direct correlation func-
tional corresponding to HA, i.e., for a system of particles
that interact via the extended interparticle interaction
potential uðrNÞ − λÂðrNÞ=β. In Eq. (6) we have set the
thermal de Broglie wavelength to unity and we denote
functional dependence by square brackets throughout. As
Eq. (6) holds for any value of λ, provided that ρðrÞ is the
corresponding equilibrium density profile, we can differ-
entiate the equation with respect to λ and retain a valid
identity. The result is the following hyper-Ornstein-Zernike
relation:

cAðr; ½ρ�Þ ¼
χAðrÞ
ρðrÞ −

Z
dr0 c2ðr; r0; ½ρ�ÞχAðr0Þ; ð7Þ

where c2ðr; r0; ½ρ�Þ ¼ δc1ðr; ½ρ�Þ=δρðr0Þ is the two-body
direct correlation functional [1–4]. The left-hand side of
Eq. (7) constitutes the hyperdirect correlation functional
cAðr; ½ρ�), as is obtained from parametrically differentiating
the left-hand side of Eq. (6) at fixed density profile,

cAðr; ½ρ�Þ ¼
∂c1ðr; ½ρ�Þ

∂λ

����
ρ

: ð8Þ

It remains to express the thermal expectation value A via
relation (4) as the parametric derivative of the extended
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grand potential, taken while keeping μ, T and the shape of
VextðrÞ fixed. Crucially, instead of considering explicit
many-body expressions, we adopt the classical density
functional perspective [1–5] in order to find A½ρ�. We hence
work with the grand potential in its density functional form:
Ω½ρ� ¼ Fid½ρ� þ Fexc½ρ� þ

R
drρðrÞ½VextðrÞ − μ�. Thereby

the ideal gas free energy functional is Fid½ρ� ¼
kBT

R
drρðrÞ½ln ρðrÞ − 1� and Fexc½ρ� denotes the excess

(over ideal gas) free energy functional.
Differentiating Ω½ρ� with respect to λ at fixed VextðrÞ

gives one direct contribution and one term arising
from the induced changes in ρðrÞ. The latter term,R
drδΩ½ρ�=δρðrÞjVext

∂ρðrÞ=∂λ, vanishes due to the statio-
narity of the grand potential, δΩ½ρ�=δρðrÞjVext

¼ 0. The
direct contribution is the derivative at fixed density,
−∂βΩ½ρ�=∂λjρ¼−∂βFexc½ρ�=∂λjρ, where we have exploited
that the ideal, external, and chemical potential contributions
to Ω½ρ� are independent of λ. From recalling Eq. (4), we
obtain A½ρ� ¼ −∂βFexc½ρ�=∂λjρ.
Functional calculus allows one to rewrite this formal

expression for A½ρ� as a functional integral [1,2,52]. Using
the standard relation c1ðr; ½ρ�Þ ¼−δβFexc½ρ�=δρðrÞ together
with the definition (8) of the hyperdirect correlation func-
tional cAðr; ½ρ�Þ gives

cAðr; ½ρ�Þ ¼
δA½ρ�
δρðrÞ ; ð9Þ

A½ρ� ¼
Z

D½ρ�cAðr; ½ρ�Þ: ð10Þ

The functional derivative (9) gives much further signifi-
cance to the hyperdirect correlation functional cAðr; ½ρ�Þ as
measuring changes of the thermal mean A against local
perturbation of the density profile ρðrÞ. Equation (10) is the
inverse of Eq. (9) upon standard functional integration
[1,2,52]. One can efficiently parametrize the functional
integral, e.g., as A½ρ� ¼ R

drρðrÞ R 1
0 dacAðr; ½aρ�Þ, where

the scaled density profile aρðrÞ is obtained by multiplica-
tion of ρðrÞ with the parameter 0 ≤ a ≤ 1. Equation (10)
allows one to express the thermal average of a given
observable as an explicit density functional A½ρ�, provided
that the density functional dependence of cAðr; ½ρ�Þ is
known.
As an initial test of this framework, we let the considered

observable simply be the particle number ÂðrNÞ ¼ N,
which we recall is a fluctuating variable in the grand
ensemble. According to Eq. (3), we have χAðrÞ ¼
covðρ̂ðrÞ; NÞ and from Eq. (4) we obtain N ¼ −∂βΩ=∂λ.
Furthermore Eq. (5) yields χAðrÞ ¼ ∂ρðrÞ=∂λ. These are all
key properties of the local compressibility χμðrÞ ¼ βχAðrÞ
[8,9,17–20] with the coupling parameter λ playing the role
of the scaled chemical potential βμ. Hence, for more

general observables Â, we conclude that χAðrÞ can be
viewed as a corresponding generalization of χμðrÞ.
We next address significantly more complex forms of Â.

We therefore return to the hyper-Ornstein-Zernike equa-
tion (7) and consider the accessibility of the terms on its
right-hand side on the basis of direct simulations and the
methods provided by the recent neural functional theory
[51,52]. Both the standard density profile ρðrÞ and the
hyperfluctuation profile χAðrÞ can be sampled for given μ,
T, and VextðrÞ, recall ρðrÞ as the average (1) and χAðrÞ as
the covariance (3). For the given bare Hamiltonian H, the
neural functional theory allows one to construct a neural-
network-based representation of the direct correlation
functional c1ðr; ½ρ�Þ [51,52]. Automatic differentiation then
straightforwardly provides a numerically efficient and
accurate neural functional representation of c2ðr; r0; ½ρ�Þ
which is ready for use in Eq. (7). Evaluating the right-hand
side of Eq. (7) then only requires the numerical integration
over r0.
Hence, for given μ, T, and VextðrÞ, the hyperdirect

correlation function cAðrÞ that is specific for the considered
inhomogeneous system can be computed explicitly via
Eq. (7). This facilitates the generation of a training dataset
from many-body simulation results. We do not invoke the
functional dependence of cAðr; ½ρ�Þ for this task yet and
require only standard grand canonical Monte Carlo sim-
ulation techniques [67–69] with no need to implement the
extended ensemble explicitly.
Following the neural methodology for standard density

functionals [51,52], this puts us in the position to machine
learn the hyperfunctional map

ρðr0Þ → cAðrÞ; ð11Þ

where the density at positions r0 removed from r will
contribute with a range of nonlocality that is specific to the
form of the observable ÂðrNÞ. We proceed in analogy to
Refs. [51,52] in constructing a neural network representa-
tion of cAðr; ½ρ�Þ via supervised machine learning on the
basis of randomized training datasets, where at fixed
temperature T, the value of μ and the shape of VextðrÞ
are varied. An illustration of the principal workflow is
shown in Fig. 1 as applied to the following physical setup.
We first choose one-dimensional systems with either

pure hard-core interactions or additional square-well attrac-
tion. We solely work on the basis of neural functionals to
demonstrate the independence from the availability of
analytic free energy functionals. We have checked that
using Percus’s exact free energy functional for hard rods
[70,71] instead of its neural representation [52] generates
no relevant numerical changes. The density profile under
the influence of an external potential follows from numeri-
cal solution of the Euler-Lagrange equation (6) for λ ¼ 0,
using the respective neural one-body direct correlation
functional. As an order parameter with genuine many-body
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character, we investigate cluster properties and therefore
define two particles i and j as bonded if their positions xi
and xj are within a bonding cutoff, jxi − xjj < xc, where we
choose xc ¼ 1.2σ, with the hard-core particle diameter σ.
For each microstate of positions xN ¼ x1;…; xN , we
construct an instantaneous histogram that gives the number
of clusters with (integer) size m, where a cluster consists of
all particles that are bonded directly or mediated by other
bonded particles. This is a standard criterion that is
independent of dimensionality and used in studies of
gelation [72,73].
Specifically, we choose Â as the size of the largest cluster

in a given microstate. We find studying and comparing the
behavior of hard-core and square-well attractive rods to be
a crucial test, as there is no way to assess the respective
clustering properties via conventional density functional
methods. Exemplary profiles are shown in Fig. 1 together
with the numerical predictions from the neural functional
A½ρ�, as evaluated via the functional integral (10). The
neural predictions are highly accurate with a relative error
consistently below ∼1% as compared to the simulation
reference.
On the basis of the availability of the neural hyperdirect

correlation functional, we can formulate a template for
stand-alone application of the hyperdensity functional
theory to predict inhomogeneous states of a given fluid
model, with no reliance on further simulation data. We

require trained neural network representations for cAðr; ½ρ�Þ
and c1ðr; ½ρ�Þ. Automatic functional differentiation of the
latter yields a neural representation of c2ðr; r0; ½ρ�Þ.
First, in a conventional density functional setting the

solution of the Euler-Lagrange equation (6) at given μ, T,
andVextðrÞ yields the shape of the equilibrium density profile
ρðrÞ. This form is then used to evaluate the hyperdirect
correlation functional cAðr; ½ρ�Þ as well as c2ðr; r0; ½ρ�Þ. The
resulting functions turn the hyper-Ornstein-Zernike relation
(7) into a concrete integral equation for determining the
hyperfluctuation profile χAðrÞ. Predictions for the mean
value A in the considered system are obtained from calculat-
ing A½ρ� at the known equilibrium density profile via
numerical functional integration (10).
Figure 2 shows results from this strategy applied to the

cluster statistics of both the hard rod and square-well
system (potential range 0.2σ and depth βϵ ¼ 1) [74]. We
consider confinement between two hard walls, but with no
further disturbing influence as was present during training.
This clean situation tests the genuine extrapolation capabil-
ity of the neural functionals. The results shown in Fig. 2
achieve excellent agreement with reference simulation data.
This successful application demonstrates that we have
developed a systematic functional approach that allows
one to address the equilibrium behavior of general observ-
ables. The statistical mechanical many-body problem is
thereby cast into functional form, which we have shown to

(a) (b)

(e)

(f)

(g)

(c)

(d)

FIG. 1. Overview of hyperdensity functional theory. The observable Â is chosen as the number of particles belonging to the largest
cluster in hard rods of size σ. (a) A local chemical potential βμlocðxÞ ¼ βμ − βVextðxÞ creates spatially inhomogeneous systems. Shown
are representative examples from 512 grand canonical Monte Carlo simulations with both randomized values of βμ and forms of
βVextðxÞ. (b) Corresponding scaled density profiles ρðxÞσ sampled via Eq. (1). (c) Corresponding scaled hyperfluctuation profiles
χAðxÞσ obtained via Eq. (3). (d) Two-body direct correlation function c2ðx; x0; ½ρ�Þ, as obtained via automatic differentiation from
c1ðx; ½ρ�Þ [51,52]. (e) Hyperdirect correlation functions cAðxÞ obtained by solving the hyper-Ornstein-Zernike equation (7). Using the
density profile as input and the simulation results for cAðxÞ as target, supervised training yields a neural network that represents the
hyperdirect correlation functional cAðx; ½ρ�Þ. (f) Predicted values A½ρ� ¼ R

D½ρ�cAðx; ½ρ�Þ from functional integration according to
Eq. (10). For a test set of 256 systems not encountered during training, the predictions of A½ρ� are compared against reference simulation
data Asim. (g) The relative numerical error of the predicted mean size A of the largest cluster is smaller than ∼1%.
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be accessible via simulation-based training of neural net-
works that can be applied efficiently in predictive tasks.
We demonstrate that the demands for training the neural

functionals c1ðr; ½ρ�Þ and cAðr; ½ρ�Þ are not prohibitive for
studying complex order parameters in realistic fluid models
by successful application of the cluster analysis to the
hard sphere system in three dimensions, as shown in
Supplemental Material [75]. As all quantities in the frame-
work have physical interpretations, with χAðrÞ generalizing
the prominently used local compressibility χμðrÞ [8,9,17–20]
and thermal susceptibility χTðrÞ [18–20], it seems feasible
that existing density functional methods [1–4] could be
applied in analytical hyperfunctional construction. The ease
with which neural hyperfunctionals can be trained can
motivate such work. Analytical treatments of simple one-
and two-body forms of ÂðrNÞ, the relationships to a static
version of the countoscope [76] and to force-density func-
tional theory [77], along with a description of the role of
χAðrÞ as the local compressibility and in the hyperforce

theory [35] are given in Supplemental Material [75]. While
we have focused on dependence on position, we see no
formal problems in incorporating orientational degrees of
freedom. The increase in complexity could be alleviated by
the use of molecular density functional methods [11–13].
Investigating deeper relationships with functional thermo-
dynamics [65], thermal Noether invariance [33–35], and
power functional theory [5] is worthwhile.
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