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We develop an action formalism to calculate probabilities of rare events in cluster-cluster aggregation for
arbitrary collision kernels and establish a pathwise large deviation principle with total mass being the rate.
As an application, the rate function for the number of surviving particles as well as the optimal evolution
trajectory are calculated exactly for the constant, sum, and product kernels. For the product kernel, we
argue that the second derivative of the rate function has a discontinuity. The theoretical results agree with
simulations tailored to the calculation of rare events.
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The study of cluster-cluster aggregation (CCA), a non-
equilibrium, irreversible phenomenon where particles, or
clusters coalesce on contact to form larger clusters, has a
long history dating back to Smoluchowski in 1917 [1]. It
has been studied extensively because of its occurrence in
diverse physical phenomena such as blood coagulation [2],
cloud formation [3,4], aerosol dynamics [5], coagulation of
dust and gas particles forming Saturn’s rings [6], aggre-
gation of particulate matter in oceans [7], protein aggre-
gation [8,9], charged biopolymers [10,11], ductile fracture
[12], etc. CCA also finds applications in applied fields such
as river networks [13], mobile networks [14], population
genetics [15], and explosive percolation [16,17], etc.
CCA has been analyzed using different approaches. The

most common approach is to solve the deterministic mean-
field Smoluchowski equation that describes the change in
the number of clusters of a given mass due to coagulation
events (see Refs. [18–21] for reviews). The Smoluchowski
equation for the mean mass distribution is exactly solvable
when the rate of collision is independent of the masses
(constant kernel), is the sum of the masses (sum kernel),
and product of the masses (product kernel). For the product
kernel, a sol-gel transition is observed wherein the total
mass is not conserved beyond a gelling time. For the sum
kernel, the gelling occurs at infinite time [20]. In lower
dimensions, spatial density fluctuations become important
and have been studied using both analytical and numerical
techniques [22–25]. These approaches are, however,
restricted to studying the mean or typical mass distribution
and the low order moments of the mean mass distributions
and do not give information about either the probabilities of

rare or atypical events or the trajectories that lead to
atypical events. In this Letter, we present an exact calcu-
lation of these probabilities.
The tails of a probability distribution describe events,

which while rare, are important to study because their
impact may be significant. Examples of impactful rare
events include heat waves [26,27], earthquakes [28],
extreme events in climate and ecosystems, such as the
loss of sea ice in the Arctic region [29], etc. In particular,
examples of rare events in CCA include neurological
disorders such as Alzheimers disease ([30]), mad cow
disease [31], the clustering of raindrops leading to rapid
onset of rainfall [32], etc. The probabilities of rare events is
captured by the large deviation function (LDF) or the rate
function, and falls into the general framework of large
deviation theory. The LDF can be interpreted as a non-
equilibrium generalization of entropy or free energy.
Consider a collection of massive particles which evolves

in time through binary mass-conserving aggregation (also
known as the Marcus-Lushnikov model [33–36]):

Ai þ Aj ⟶
λKði;jÞ

Aiþj; ð1Þ

where Ak denotes a particle of mass k and λKði; jÞ is the
rate at which two particles of masses i and j aggregate. We
note that all the spatial information has been encoded into
the collision kernel, Kði; jÞ. Let NðtÞ denote the number of
particles at time t. Initially, there are Nð0Þ ¼ M particles of
equal mass (set equal to 1). A quantity of interest is the
probability density function PðM;N; tfÞ, of having exactly
N particles remain at time tf. Additionally, we ask what the
most probable trajectory is for a given M;N; tf.
In this Letter, we study the LDF for CCA using the Doi-

Peliti-Zeldovich (DPZ) method [37–42], a path integral
method. The LDF is calculated exactly for the constant,
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sum, and product kernels. For the product kernel, we argue
that the LDF is singular with a discontinuity in the second
derivative, indicating the sol-gel transition. Gelation tran-
sition has been studied using large deviation theory in the
probability literature (see [43] and references within).
These results are based on special factorization properties
of the law of the mass distribution. In contrast, we derive
the pathwise large deviation principle which, at least
formally, is valid for arbitrary kernels. This more general
point of view allows us to determine the optimal evolution
trajectories as solutions to the Euler-Lagrange equations for
effective action functional.
We first express PðM;N; tfÞ in terms of an effective

action [44,45]. Let P̃ðN⃗; tÞ denote the probability of a
system being in a configuration N⃗ at time t, where
N⃗ðtÞ ¼ fN1ðtÞ; N2ðtÞ;…NMðtÞgT, and NiðtÞ is the number
of particles of mass i at time t. Then,

PðM;N; tfÞ ¼
X
N⃗

P̃ðN⃗; tfÞδ
�XM

i¼1

NiðtfÞ − N

�
: ð2Þ

The time evolution of P̃ðN⃗; tÞ is described by the master
equation:

dP̃ðN⃗Þ
dt

¼
X
i;j

λKði; jÞ
2

½ðNi þ 1þ δi;jÞðNj þ 1Þ

P̃ðN⃗ þ I i þ I j − I iþjÞ − NiðNj − δi;jÞP̃ðN⃗Þ�; ð3Þ

where Ik is the M-dimensional column vector whose jth
component equals δjk. The first term in the right-hand side

of Eq. (3) enumerates all possible collisions that lead to N⃗
while the second term enumerates all possible collisions
that lead to the system exiting N⃗.
The DPZ formalism allows one to rewrite the master

equation in the form of a Schrödinger equation in imaginary
time. The corresponding effective Hamiltonian is a poly-
nomial in annihilation and creation operators am; a

†
m of

particles of mass m ≥ 1. These satisfy the canonical com-
mutation relations ½am; a†n� ¼ δmn; ½am; an� ¼ ½a†m; a†n� ¼ 0.
Using the Trotter formula and the complete set of coherent
states fhzi; i ¼ 1; 2;…j; jzj; j ¼ 1; 2;…igz;z∈C, a solution
to the master equation can be constructed in the form of a
path integral. In particular, the probabilityPðM;N; tfÞ, after
substituting ϕ ¼ N=M and τ ¼ Mλtf, can bewritten as (see
[46] for the derivation)

PðM;N; tfÞ ¼
X0k�

ki¼1

Z
Dz̃iDzi
N!

YN
n¼1

zknðτfÞe−MSðϕ;τf ;fzi;z̃igÞ;

ð4Þ
where k� ¼ M − N þ 1, and 0 denotes the constraintP

i ki ¼ M. The variables z; z̃ parametrize the symbol

Hðfzig; fz̃igÞ of the evolution operator. The action S is
given in terms of the effective Hamiltonian H as

S ¼
Z

τf

0

dτ

�XM
m¼1

z̃mżm þHðfzi; z̃igÞ
�
− ln z̃1ð0Þ þ 1; ð5Þ

Hðfzig; fz̃igÞ ¼ −
1

2

X
i;j

Kði; jÞðz̃iþj − z̃iz̃jÞzizj: ð6Þ

The action is invariant under the transformation zm → cmzm
and z̃m → c−mz̃m. Hence, we can set z̃1ð0Þ ¼ 1.
In the limit M → ∞, keeping ϕ and τf fixed, the

functional integral in Eq. (4) is dominated by the minimum
of S, and hence can be calculated using the Laplace
method. The corresponding Euler-Lagrange equations for
zm; z̃m, m ¼ 1…M, are

dzm
dτ

¼ 1

2

X
j

Kðm − j; jÞzjzm−j −
X
j

Kðm; jÞz̃jzmzj; ð7Þ

dz̃m
dτ

¼ −
X
j

Kðm; jÞðz̃mþj − z̃mz̃jÞzj; ð8Þ

with the boundary conditions zmð0Þz̃1ð0Þ ¼ δm;1 and
z̃mðτfÞzmðτfÞ ¼ M−1Pk�

kn¼1 δkn;m. These give M boundary
conditions for zi at τ ¼ 0, andM boundary conditions for z̃i
at τ ¼ τf. The time evolution of n ¼ P

i ziz̃i, the fraction of
particles, is then given by

dn
dτ

¼−
P

i;jKði;jÞninj
2

þE; nð0Þ¼1; nðτfÞ¼ϕ: ð9Þ

For z̃i, zi satisfying the Euler Lagrange equations, it can
be shown that H reduces to 2H ¼ P

i ziðdz̃i=dτÞ. Also, H
is a constant of motion (see [46] for the proof), and we
denote its value by E. We note that Eq. (8) is satisfied by
z̃iðτÞ ¼ 1, in which case, E ¼ 0 [see Eq. (6)]. For this
special case, Eq. (7) for zm is identical to the Smoluchowski
equation for the mean mass distribution, and thus will
correspond to the typical solution for a given time. We now
discuss the general case, E ≠ 0, corresponding to atypical
solutions. Evaluating the integral Eq. (5), we then obtain

PðM;N; τfÞ ∼maxfkig
0YN
n¼1

zknðτfÞe−M½ϕ lnϕ−Eτf �: ð10Þ

Equations (7), (8), and (10) describe the calculation of the
LDF for an arbitrary kernel.
Since N ¼ ϕM, it is clear that in the limit M → ∞,

keeping ϕ and τf fixed, we can define a LDF

fðϕ; τÞ ¼ lim
M→∞

−1
M

lnPðM;Mϕ; τ=MÞ; ð11Þ
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thus establishing a large deviation principle for any
collision kernel. We will now present an exact calculation
of fðϕ; τÞ for the constant, sum, and product kernels.
Constant kernel [Kði; jÞ ¼ 1]—The instanton equation,

Eq. (9), reduces to dn=dτ ¼ −n2=2þ E. Since nðτÞ
decreases with time, E < n2=2. The solution for nðτÞ is
(see [46] for more details)

nðτÞ ¼
( 1

1þτ=2 ; E ¼ 0;ffiffiffiffiffiffi
2E

p
coth

ffiffiffiffi
2E

p ðτ−τ0Þ
2

; E ≠ 0;
ð12Þ

where the constants E; τ0 are determined in terms of ϕ and
τf through the boundary conditions in Eq. (9). For
determining the LDF, we also need to determine zmðτfÞ
and z̃1ð0Þ. Writing zmðτÞ in terms of its generating function,
Yðx; τÞ ¼ P

m zmðτÞxm − nðτÞ, we obtain

∂Y
∂τ

¼ Y2

2
− E; Yðx; 0Þ ¼ y1ð0Þx: ð13Þ

Solving for Y and hence zmðτÞ, we obtain

zmðτÞ ¼

8>><
>>:

4τm−1ðz1ð0ÞÞm
ð2þτÞmþ1 ; E ¼ 0;

2Ez1ð0Þmsinhm−1
ffiffiffiffiffiffi
E=2

p
τ

½sinh
ffiffiffiffiffiffi
E=2

p
τþ ffiffiffiffi

2E
p

cosh
ffiffiffiffiffiffi
E=2

p
τ�mþ1 ; E ≠ 0:

ð14Þ

The maximization over fkig in Eq. (10) is easily done
and leads to a factor ðM−1

N−1Þ. Substituting for zmðτÞ in
Eq. (10), the LDF is

fðϕ;τÞ

¼

8>>>>>><
>>>>>>:

ϕ ln ϕ2

−2Eþϕ2þ lnð1−2EÞ−Eτ; E< 0;

0; E¼ 0;

−Eτ−ϕ ln2E
ϕ2 − ð1−ϕÞ ln sinhτ

ffiffiffiffiffiffi
E=2

p
1−ϕ þ

ð1þϕÞ lnð ffiffiffiffiffiffi
2E

p
coshτ

ffiffiffiffiffiffiffiffi
E=2

p þ sinhτ
ffiffiffiffiffiffiffiffi
E=2

p Þ; E> 0;

ð15Þ

where E < 0, E ¼ 0, E > 0 correspond to final times
τ < τtyp, τ ¼ τtyp and τ > τtyp, respectively, and τtyp is
the typical time for the fraction of particles to reach ϕ.
We demonstrate the correctness of the solution as well as

the procedure by comparing fðϕ; τÞ with results from both
Monte Carlo simulations and the exact expression for
PðM;N; tÞ. The simulations are based on a biased
Monte Carlo scheme for fixed number of particles [47]
that accurately determines the probabilities of rare events
and the instanton trajectory. We generalize the algorithm to
allow for number of particles to fluctuate (see [46] for more
details). For the constant kernel, the reaction rate does not
explicitly depend on the mass distribution and hence it is

possible to write PðM;N; tÞ as a sum over exponentials
[47]. We note that it is difficult to extract the LDF from this
expression, however, it can be evaluated numerically. We
find an excellent agreement of fðϕ; τÞ with the simula-
tions and exact answer both for fixed τ and varying ϕ [see
Fig. 1(a)], and fixed ϕ and varying τ [see Fig. 1(b)]. The
analytical results for the instanton solution [see Eq. (12)]
are also in excellent agreement with the numerical results
for short, typical, and long times [see Figs. 1(c) and 1(d)].
Sum kernel [Kði; jÞ ¼ ðiþ jÞ=2]—The instanton equa-

tion, Eq. (9), reduces to dn=dτ ¼ E − n=2, with solution

nðτÞ ¼ ϕ − e−τf=2

1 − e−τf=2
−
�

ϕ − 1

1 − e−τf=2

�
e−

τ
2: ð16Þ

The Euler-Lagrange equations for zi [see Eq. (7)] can now
be solved (see [46]) to give

ziðτÞ ¼
ii−1ai1
i!

ð1 − e−τ=2Þi−1e−
R

dτ0 inþ1
2 ; ð17Þ

where a1 is a constant. The maximization over fkig in
Eq. (10) is then

X0k�

ki¼1

YN
n¼1

kkn−1n

kn!
¼ eMð1−ϕÞ½1−lnð1−ϕÞ�: ð18Þ

Substituting zmðτÞ and the prefactor in Eq. (10), we obtain
LDF for sum kernel to be

fðϕ; τÞ ¼ −ð1 − ϕÞ ln 1 − e−
τ
2

1 − ϕ
þ τϕ

2
þ ϕ lnϕ: ð19Þ

We find an excellent agreement of fðϕ; τÞ with the
simulations both for fixed τ and varying ϕ [see Fig. 2(a)],

(a) (b)

(c) (d)

FIG. 1. Constant kernel: Comparison of fðϕ; τÞwith simulation
data and exact expression for PðM;N; tÞ for (a) varying ϕ for
fixed τf ¼ 1, (b) varying τf for ϕ ¼ 0.3. The instanton trajectory
in Eq. (12) is compared with simulation data for (c) ϕ ¼ 0.3 and
different τf and (d) τf ¼ 1.6 and different ϕ.
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and fixed ϕ and varying τ [see Fig. 2(b)]. The analytical
results for the instanton solution [see Eq. (16)] are also in
excellent agreement with the numerical results for short,
typical and long times [see Figs. 2(c) and 2(d)].
Product kernel—For the product kernel the

Smoluchowski equation predicts that a gel that contains
a finite fraction of the mass forms at gelling time τg ¼ 1 and
gelling density ϕg ¼ 0.5. In the discussion following
Eq. (9), we showed that E ¼ 0 corresponds to the solution
to the Smoluchowski equation. However, this solution
cannot be correct for τ ≥ 1 as mass is not conserved,
violating the strict conservation of mass in the Marcus-
Lushnikov model. We, therefore, modify the solution for
product kernel as follows.
We rewrite the unscaled Hamiltonian using number

operator n̂i and total mass operator M̂, breaking normal
ordering. To restore normal ordering, we use the relationP

i M̂jψð0Þi ¼ Mjψð0Þi, where jψð0Þi ¼ a†M1 j0⃗i, to
rewrite PðM;N; tfÞ as

PðM;N; tfÞ ¼ hN⃗j ð
P

iaiÞN
N!

e−H
0ðfa†i g;faigÞtf jψð0Þi; ð20Þ

H0 ¼ −
1

2

X
i

X
j

ija†iþjaiaj þ
X
j

ðMj − j2Þa†jaj
2

: ð21Þ

On introducing coherent states, we obtain the Euler-
Lagrange equations to be

żk ¼
1

2

Xk−1
l¼1

lðk − lÞzlzk−l −Mkzk þ
k2zk
2

; ð22Þ

˙̃zk ¼ −
Xk�
l¼1

klz̃lþkzl þ kMz̃k −
k2z̃k
2

: ð23Þ

We note that we could have followed the same procedure of
introducing the operators M̂ and n̂i for the constant and sum
kernels. For these kernels, the extra terms are always
subleading in M and thus, we obtain the same LDF.
However, for the product kernel, the extra terms become
important when a gel is present, and hence cannot be
neglected.
Equation (22) can be solved exactly. Let Gðx; tÞ ¼P
M
m¼1 zmðtÞxm. Then, making the Cole-Hopf transformation

Gðx; tÞ ¼ lnD½pðx; tÞ; t�, where pðx; tÞ ¼ xe−Mt, and solv-
ing the resulting partial differential equation using Knuth
identity [48] (see [46] for details), we obtain zm to be

zmðτÞ ¼
ðeτ=M − 1Þm−1Fm−1ðeτ=MÞMm−1e−mτ

m!
; ð24Þ

where FmðxÞ are the Mallows-Riordan polynomials [34,48].
From Eqs. (22) and (23), we find that

P
i żiz̃i ¼

−E0 −M2=2, where E0 is the value of H0. Substituting
for zi in Eq. (10), and computing the combinatorial prefactor,
we obtain the LDF for the product kernel:

fðϕ; τÞ ¼ ln
ϕϕeτ=2þ1−ϕ

τ1−ϕ
þmin

x
fln x − ϕhðxÞg; ð25Þ

hðxÞ ¼
Xk�
k¼1

xkFk−1ðeτ=MÞ
k!

: ð26Þ

We find an excellent agreement of fðϕ; τ) with the
simulations for both pregelling and postgelling regimes

(a) (b)

(c) (d)

FIG. 2. Sum kernel: Comparison of fðϕ; τÞ with simulation
data for (a) varying ϕ for fixed τf ¼ 1.2, (b) varying τf for
ϕ ¼ 0.5. The instanton trajectory in Eq. (16) is compared with
simulation data for (c) ϕ ¼ 0.4 and different τf and (d) τf ¼ 1.8
and different ϕ.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Product kernel: Comparison of fðϕ; τÞ with simulation
data for (a) fixed τf ¼ 0.6 < τg, (b) fixed τf ¼ 1.4 > τg, (c) fixed
ϕ ¼ 0.3 < ϕg, and (d) fixed ϕ ¼ 0.7 > ϕg. (e) The value of ϕ at
minimum of fðϕ; τÞ is compared with Monte Carlo simulations
of the typical trajectory. (f) d2f=dϕ2 is discontinuous with ϕ.
Inset: the discontinuity becomes sharper with increasing M.
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[see Figs. 3(a)–3(d)]. We also confirm that the minimum of
the action corresponds to the typical solution [see Fig. 3(e)].
Finally, we find that the ∂

2f=∂2ϕ has a discontinuity at a
critical ϕ [see Fig. 3(f)]. The discontinuity becomes sharper
with M [see inset of Fig. 3(f)], suggesting the presence of a
second order phase transition.
In summary, we developed a formalism to calculate the

probabilities of rare events in cluster-cluster aggregation
and demonstrated the existence of a large deviation
principle for any collision kernel. The LDF is calculated
exactly for the constant, sum, and product kernels. The
known sol-gel transition for the product kernel is reflected
as a singular behavior in the LDF. Our general method
allows us to obtain the optimal evolution trajectory corre-
sponding to any rare event. These exact solutions will serve
as a guideline for the numerical investigation of rare events
in aggregation with collision kernels applicable to particu-
lar physical systems.
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