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The longitudinal nonreciprocal charge transport (NCT) in crystalline materials is a highly nontrivial
phenomenon, motivating the design of next generation two-terminal rectification devices (e.g., semi-
conductor diodes beyond PN junctions). The practical application of such devices is built upon crystalline
materials whose longitudinal NCT occurs at room temperature and under low magnetic field. However,
materials of this type are rather rare and elusive, and theory guiding the discovery of these materials is
lacking. Here, we develop such a theory within the framework of semiclassical Boltzmann transport theory.
By symmetry analysis, we classify the complete 122 magnetic point groups with respect to the longitudinal
NCT phenomenon. The symmetry-adapted Hamiltonian analysis further uncovers a previously overlooked
mechanism for this phenomenon. Our theory guides the first-principles prediction of longitudinal NCT in
multiferroic ε-Fe2O3 semiconductor that possibly occurs at room temperature, without the application of
external magnetic field. These findings advance our fundamental understandings of longitudinal NCT in
crystalline materials, and aid the corresponding materials discoveries.
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Introduction—Nonreciprocal charge transport (NCT) is a
phenomenon for which a material with oppositely flowed
electric currents exhibits unequal resistances [1–3]. This
phenomenon naturally occurs in semiconductor PN junc-
tions, and yields two-terminal junction diodes as the
building blocks in modern electronics [2–5]. Recent work
indicates that crystalline materials with broken inversion
and time-reversal symmetries (e.g., noncentrosymmetric
semiconductors [5–9], metallic magnets [10,11], and topo-
logical materials [12–15]) may host NCT as well [3,16].
Such an NCT in crystalline materials is comprised of a
transversal part and a longitudinal part [10,17]. The latter is
reminiscent of the magnetochiral anisotropy effect
[3,12,15,18,19], and opens an entirely new route to design
novel two-terminal rectification devices (see, e.g.,
Refs. [5,6,14,20]). For instance, the longitudinal NCT in
crystalline semiconductors motivates the design of next-
generation semiconductor diodes, resembling the diodes
based on PN junctions but without involving any junction
[5,6,14,20]. Designing such devices and enabling their
practical applications rely on crystalline materials with

longitudinal NCT at room temperature and under low
magnetic field, while these types of materials are rare
and elusive. To guide materials discovery, a theory captur-
ing the essential physics of longitudinal NCT in crystalline
materials is of high necessity. But, unlike the case of PN
junctions, the longitudinal NCT phenomena in crystals are
rather complicated [3,5]—the aforementioned theory
remaining lacking.
Here, we develop a general theory for longitudinal NCT

[21] in ferromagnetic, antiferromagnetic, and nonmagnetic
crystalline materials, within the framework of Boltzmann
transport theory. We perform symmetry analysis and
provide a classification of the complete 122 magnetic point
groups (MPGs) regarding longitudinal NCT. Specifically,
we identify 42 MPGs that host intrinsic longitudinal NCT
(without involving magnetic field), where the longitudinal
NCT stems from the magnetic order parameter. This
resembles the magnetochiral anisotropy effect demon-
strated in, for instance, Refs. [3,12,18,19]. We also find
20 MPGs that accommodate the extrinsic longitudinal NCT
induced by external magnetic field, namely, the magneto-
chiral anisotropy effect. The longitudinal NCT in crystal-
line materials is further illustrated by constructing effective
Hamiltonians. The effective Hamiltonian analysis helps to
identify a previously overlooked mechanism responsible
for the longitudinal NCT. Motivated by the design of
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intrinsic semiconductor diodes and guided by our theory,
we predict by first-principles simulations that multiferroic
ε-Fe2O3 semiconductor showcases intrinsic longitudinal
NCT occurring at room temperature.
The longitudinal NCT from second-order nonlinear charge

current—To begin with, we briefly overview the magneto-
chiral anisotropy effect in crystalline materials (see, e.g.,
Refs. [3,12,18,19]). Under an external magnetic field B, a
crystalline material with electric current I gains an unidirec-
tional magnetoresistance RðB; IÞ ¼ ξBI [3,5,18,19,22,23].
The sign of RðB; IÞ is reversed by flipping I or B, and this
corresponds to the NCT phenomenon. In the following, we
shall demonstrate that such an NCT phenomenon generally
occurs in materials with a spontaneous or induced magnetic
order parameterL (e.g., magnetization or Néel vector), where
L plays the role as B in RðB; IÞ ¼ ξBI.
Under relaxation time (τ) approximation, nonlinear

Drude (τ2 dependence) [3,10,24] and quantum metric (τ0

dependence) [14,15] are two possible mechanisms for
longitudinal NCT—Berry curvature dipole merely contrib-
uting transverse transport and being irrelevant to longi-
tudinal NCT [15,25]. The nonlinear Drude is associated
with effective masses and group velocities of Bloch
electrons [5,6,10,11]. Yet, the quantum metric is ascribed
to the interband Berry connection [14,15]. Such a mecha-
nism remained long hidden and was only recently revealed
by two seminal works [14,15]. Despite their different
microscopic origins, the symmetry restrictions for the
nonlinear Drude and quantum metric contributed longi-
tudinal NCT are identical [15]. In this Letter, we focus on
longitudinal second-order nonlinear Drude conductivity
and perform symmetry analysis accordingly. This simpli-
fies our discussion and enables the generalization of our
symmetry arguments to the quantum metric contributed
longitudinal NCT (see the symmetry analysis section).
Under a direct electric field, the longitudinal second-order

charge current density Jð2Þα is expressed as [10]

Jð2Þα ¼ e3τ2E2
α

8π3ℏ3
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where ϵnðkÞ≡ ϵn is the band dispersion, k≡ kααþ kββþ
kγγ the wave vector (α, β, and γ being three orthogonal unit
vectors), n the band index, ℏ the reduced Planck constant, e
the elementary charge, f0ðϵnÞ the Fermi-Dirac distribution
at ϵn, and Eα the electric field along α direction (see e.g.,
Refs. [5,6,10,11,14,15] and Sec. I of the Supplemental
Material [26] which includes Refs. [27–54] as well).
To show that Jð2Þα arises from the asymmetric band

dispersion [3,10,24], we consider a symmetry operation
that transforms k¼kααþkββþkγγ to k0 ¼ −kααþ κ̃ββþ
κ̃γγ, such that ϵnðkααþ kββþ kγγÞ ¼ ϵnð−kααþ κ̃ββþ
κ̃γγÞ—the band dispersion ϵnðkÞ being symmetric with
respect to kα. This implies that ∂ϵnðkÞ=∂kα at k and k0 are

opposite numbers, while the other two quantities [i.e.,
∂
2ϵnðkÞ=∂k2α and df0ðϵnÞ=dϵn] are identical. Associated
with each ϵn, the integral function in Eq. (1) cancels out

over the integration region, and this yields null Jð2Þα . To

achieve nonzero Jð2Þα , the linkage between kα and −kα must
be broken, namely, ϵnðkααþ kββþ kγγÞ is never symmet-
rically related to ϵnð−kααþ κ̃ββþ κ̃γγÞ no matter what κ̃β
and κ̃γ are selected. In view of this, Jð2Þα only occurs in
materials with specific symmetry constraints. For example,

materials with time-reversal symmetry 10 do not host Jð2Þα ,
because 10 links kααþ kββþ kγγ with −kαα − kββ − kγγ.
On the contrary, materials with magnetic order parameter L
(i.e., broken time-reversal symmetry) might be compatible

with Jð2Þα [55]. As analyzed in Sec. I of the Supplemental

Material [26], Jð2Þα is a function of L, and the nonlinear

longitudinal Drude conductivity σð2Þααα is given by

σð2Þααα ¼ ζðLÞe3τ2
8π3ℏ3
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where ζðLÞ ¼ �1 and ζð−LÞ ¼ −ζðLÞ indicate the

dependence of σð2Þααα on L [56]. We now show that σð2Þααα

contributes to longitudinal NCT, by examining the current

density Jα ¼ σð1ÞααEα þ σð2ÞαααE2
α [11,23], with σð1Þαα being the

linear conductivity; In first approximation, the electric field

is expressed as Eα ≈ Jα=σ
ð1Þ
αα . This suggests that Jα=Eα ¼

σð1Þαα þ σð2ÞαααEα ≈ σð1Þαα þ σð2ÞαααJα=σ
ð1Þ
αα ≡ σð1Þαα þ ξαJαζðLÞ (ξα

being a coefficient). The term ξαJαζðLÞ resembles RðBÞ ¼
ξBI as follows: reversing L or Jα changes the sign of σð2Þααα,
where L and Jα play the roles as B and I, respectively. In

other words, the nonlinear conductivity σð2Þααα characterizes
the longitudinal NCT along α direction.
Symmetry analysis—We move on to carry out symmetry

analysis regarding the longitudinal NCT. We use the m0m20
magnetic point group (MPG) to demonstrate our basic
ideas. This MPG contains four symmetry operations,
namely, 1, my, m0

x, and 20z. The 1 symmetry operation is
the identity, and has no effect on ðkx; ky; kzÞ≡ kxxþ kyy þ
kzz (x, y, z being unit vectors along the Cartesian x, y, z
directions). The my operation is a mirror plane
perpendicular to y, and it transforms ðkx; ky; kzÞ to
ðkx;−ky; kzÞ. The m0

x operation, the mirror plane
perpendicular to x followed by a time-reversal operation,
transforms ðkx; ky; kzÞ to ðkx;−ky;−kzÞ. Finally, ðkx; ky; kzÞ
is transformed to ðkx; ky;−kzÞ by 20z, the twofold rotation
along z followed by a time reversal. On balance, the
symmetry operations of the m0m20 MPG (i) link ky with
−ky by my or m0

x, (ii) link kz with −kz by m0
x or 20z, and

(iii) provide no linkage between kx and −kx. This means
that the longitudinal NCT in m0m20 MPG is symmetrically
allowed along the x direction.
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In this way, we conduct symmetry analysis on the
complete 122 MPGs (see Sec. II of the Supplemental
Material [26] for details). These groups are composed of 32
type-1 MPGs, 32 type-2 MPGs, and 58 type-3 MPGs
[57,58], where type-2 MPGs contain time-reversal sym-
metry 10, but type-1 and type-3 MPGs do not have 10 [59].
Among type-1 and type-3 MPGs, 42 cases host symmet-
rically allowed longitudinal NCT (see Table I). As for
type-2 MPGs, the time-reversal symmetry therein forbids
longitudinal NCT; Nonetheless, magnetic field breaks time-
reversal and other symmetries in type-2 MPGs, possibly
yielding longitudinal NCT. Regarding this, we analyze the
magnetic field induced symmetry breakings in type-2
MPGs, and identify 20 cases in which magnetic field
enables longitudinal NCT (see Table II) [60].
Tables I and II, obtained with respect to nonlinear Drude

conductivity σð2Þααα ∝ τ2, are also valid for quantum metric

contributed conductivity σ̃ð2Þααα ∝ τ0, since σ̃ð2Þααα is rooted in
the asymmetry between kα and −kα as well [14,15]. That is,
an MPG allowing σð2Þααα naturally enables σ̃ð2Þααα (vice versa),
and the measured longitudinal NCT along α direction

should be a mixture of σð2Þααα and σ̃ð2Þααα. Depending on
materials, nonreciprocal conductivity from nonlinear
Drude may be primary or secondary compared with that
from quantum metric. For instance, nonreciprocal con-
ductivities in two-layer-thick MnBi2Te4 are mainly con-
tributed by nonlinear Drude, while those in four-layer-thick
MnBi2Te4 are mostly from quantummetric [15]. Moreover,
nonlinear Drude conductivity (∝ τ2) can be significantly
enhanced by improving carrier relaxation time τ (via, e.g.,
the optimization of carrier concentration [61]).

Effective Hamiltonians for longitudinal NCT—In this
section, we explore the role of magnetic order parameter L
in band asymmetry and longitudinal NCT. For this purpose,
we derive the minimal two-band effective Hamiltonians for
the 42 MPGs listed in Table I, involving the magnetic order
parameter L, the wave vector k, and the electronic spin
σ ≡ ðσx; σy; σzÞ—σ being Pauli matrix vector. The results
are summarized in Tables S3 and S4 of the Supplemental
Material [26]. The effective Hamiltonians (around the
center of the Brillouin zone) for these 42 MPGs are
generally written as

Hðk; LÞ ¼
X

α;β¼x;y;z

μαβkαkβσ0 þ ζðLÞΛðkÞσ0

þ λðkÞ · σ þ ζðLÞΔ · σ; ð3Þ

where μαβ, ΛðkÞ, λðkÞ, and Δ characterize the effective
mass, band asymmetry, spin-orbit field, and Zeeman field,
respectively (σ0 being 2 × 2 identity matrix). The effective
mass terms and band asymmetry terms appear in the effec-
tive Hamiltonians of all these 42 MPGs. Furthermore,
MPGs lacking the parity-time symmetry (i.e., inversion
followed by time reversal) may also have spin-orbit field
terms, while MPGs compatible with ferromagnetism extra
gain Zeeman field terms. Of particular interest is the
ζðLÞΛðkÞσ0 band asymmetry term, with ΛðkÞ being an
odd function of kχ . Such a term describes the band
asymmetry with respect to kχ as well as the longitudinal
NCT along the χ direction. As for the spin-orbit field and
Zeeman field terms, the situation becomes quite compli-
cated. This will be discussed in the following paragraphs.
We now take a few representative MPGs to perform our

Hamiltonian analysis. Our first example is the 6mm:1MPG
with its effective Hamiltonian given by H1ðk;LÞ¼
μxxðk2xþk2yÞσ0þμzzk2zσ0þζðLÞΛzkzσ0þλxyðkxσy−kyσxÞ.

TABLE I. The 42 MPGs that allow the longitudinal NCT. For
each MPG, the ✓ and ✗ indicate that longitudinal NCT along the
α direction is symmetrically allowed and forbidden, respectively.
Here, α ¼ x, y, z marks the direction in the Cartesian frame. The
conventions regarding the coordinate system for these MPGs are
shown in Table S1 of the Supplemental Material [26].

MPGs x y z MPGs x y z MPGs x y z

1.1 ✓ ✓ ✓ 1̄0 ✓ ✓ ✓ 2.1 ✗ ✗ ✓

20 ✓ ✓ ✗ m:1 ✓ ✓ ✗ m0 ✗ ✗ ✓
20=m ✓ ✓ ✗ 2=m0 ✗ ✗ ✓ 20202 ✗ ✗ ✓
mm2.1 ✗ ✗ ✓ m0m20 ✓ ✗ ✗ m0mm ✓ ✗ ✗
4.1 ✗ ✗ ✓ 4̄0 ✗ ✗ ✓ 4=m0 ✗ ✗ ✓

42020 ✗ ✗ ✓ 4mm:1 ✗ ✗ ✓ 4̄020m ✗ ✗ ✓

4=m0mm ✗ ✗ ✓ 3.1 ✓ ✓ ✓ 3̄0 ✓ ✓ ✓

32.1 ✓ ✗ ✗ 320 ✗ ✓ ✓ 3m:1 ✗ ✓ ✓
3m0 ✓ ✗ ✗ 3̄0m ✗ ✓ ✓ 3̄0m0 ✓ ✗ ✗

6.1 ✗ ✗ ✓ 60 ✓ ✓ ✗ 6̄:1 ✓ ✓ ✗

6̄0 ✗ ✗ ✓ 60=m ✓ ✓ ✗ 6=m0 ✗ ✗ ✓

60220 ✓ ✗ ✗ 62020 ✗ ✗ ✓ 6mm:1 ✗ ✗ ✓
60mm0 ✗ ✓ ✗ 6̄m2.1 ✗ ✓ ✗ 6̄0m20 ✗ ✗ ✓

6̄m020 ✓ ✗ ✗ 6=m0mm ✗ ✗ ✓ 60=mmm0 ✗ ✓ ✗

TABLE II. The magnetic field induced longitudinal NCT in 20
type-2 MPGs. The Bx, By, and Bz mark the x, y, and z
components of the magnetic field, respectively. The directions
for longitudinal NCT are labeled by x, y, and z (Cartesian frame).
The conventions regarding the coordinate system for these MPGs
are shown in Table S1 of the Supplemental Material [26].

MPGs Bx By Bz MPGs Bx By Bz

1.10 x, y, z x, y, z x, y, z 2.10 x, y x, y z
m:10 z z x, y 222.10 x y z
mm2.10 y x � � � 4.10 x, y x, y z
4̄:10 x, y x, y � � � 422.10 x y z
4mm:10 y x � � � 4̄2m:10 x y � � �
3.10 x, y, z x, y, z x, y, z 32.10 x y, z y, z
3m:10 y, z x x 6.10 x, y x, y z
6̄:10 z z x, y 622.10 x y z
6mm:10 y x � � � 6̄m2.10 z � � � x
23.10 x y z 432.10 x y z
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This Hamiltonian contains the effective mass terms, the
band asymmetry term, and the spin-orbit field terms (no
Zeeman field terms). Some other MPGs may have effective
Hamiltonians with only effective mass terms and band
asymmetry terms. For instance, the effective Hamiltonians
for 4=m0mm and 60=mmm0 MPGs are H2ðk; LÞ ¼
μxxðk2x þ k2yÞσ0 þ μzzk2zσ0 þ ζðLÞΛzkzσ0 and H3ðk; LÞ ¼
μxxðk2x þ k2yÞσ0 þ μzzk2zσ0 þ ζðLÞΛyyykyð3k2x − k2yÞσ0, res-
pectively. The role of L on the band asymmetry and
longitudinal NCT can be illustrated by numerically solving
H2ðk; LÞ and H3ðk; LÞ, with various groups of selected
model parameters. As shown in Fig. 1(a), the nonzero
ζðLÞΛz results in band asymmetry along the kz direction,
where the −L and þLmagnetic order parameters yield two
versions of bands (red and blue lines) being mirror copies
of each other with respect to kz ¼ 0. This is responsible for

the longitudinal nonreciprocal σð2Þzzz electric conductivity,
whose sign is reversed by switching magnetic order
parameters between L and −L [Fig. 1(b)]. When removing
the magnetic order parameter L [i.e., ζðLÞ ¼ 0], both the

band asymmetry and longitudinal σð2Þzzz conductivity vanish
[see Figs. 1(a) and 1(b)]. As for H3ðk; LÞ, the
ζðLÞΛyyykyð3k2x − k2yÞσ0 term is cubic in ky, which yields
the band asymmetry and longitudinal NCT along y [see
Figs. 1(c) and 1(d)]. Various MPGs (e.g., 1̄0,m0mm, and 3̄0)
have effective Hamiltonians similar to H1ðk; LÞ,H2ðk; LÞ,
or H3ðk; LÞ, that is, with band asymmetry terms and
without Zeeman field terms. In such Hamiltonians, the
longitudinal NCT is solely governed by the band asym-
metry terms, which is spin independent.
The m0m20 is another exemplified MPG with an effec-

tive Hamiltonian H4ðk; LÞ ¼ ðμxxk2x þ μyyk2y þ μzzk2zÞσ0þ
ζðLÞΛxkxσ0 þ ζðLÞΔyσy þ λxykxσy þ λyxkyσx. Such a
Hamiltonian contains the effective mass terms, the spin-
orbit field terms, a band asymmetry term, and a Zeeman
field term. Regarding H4ðk; LÞ, there are two mechanisms
responsible for the longitudinal NCT. First of all, the
ζðLÞΛxkxσ0 term suggests a longitudinal NCT along the
x direction. This mechanism has already been discussed in
the last paragraph. The second mechanism comes from the
combination of spin-orbit field term λxykxσy and Zeeman
field term ζðLÞΔyσy, which gives rise to band asymmetry

along kx and longitudinal σð2Þxxx conductivity [see Figs. 1(e)
and 1(f)]. This situation likely occurs when the spin-orbit
field and Zeeman field cooperatively break the sym-
metric linkage between kx and −kx. Without λxykxσy or
ζðLÞΛxkxσ0, ζðLÞΔyσy cannot solely generate band asym-
metry or longitudinal NCT [see Figs. 1(e) and 1(f)].
Previous studies usually consider spin-orbit field terms
and Zeeman field terms, but neglecting the ζðLÞΛðkÞσ0
term (see, e.g., Refs. [5,6,9,23,62]). Even though the
combination of ζðLÞΔασα and λαðkÞσα might capture
the longitudinal NCT, there are no reasons to ignore
ζðLÞΛðkÞσ0.
For type-2 MPGs (Table II), the effective Hamiltonians

are generally HðkÞ ¼ P
α;β μαβkαkβσ0 þ λðkÞ · σ, where

time-reversal 10 forbids band asymmetry and Zeeman field
terms. The λðkÞ · σ in HðkÞ may contain a nonzero
λβðkαÞσβ term, with λβðkαÞ being an odd function of kα
[54]. In this situation, applying magnetic field Bγ creates
ΔβðBγÞσβ and ΛβγαΔβðBγÞλβðkαÞσ0 couplings, where
ΔβðBγÞ is an odd function of Bγ . This yields the longi-
tudinal NCT along the α direction.
The longitudinal NCT in ε-Fe2O3—Tables I and II guide

the discovery of materials with longitudinal NCT. We are
motivated by the design of intrinsic semiconductor diodes,
and decide to seek semiconductors with longitudinal NCT.
Searching from the MAGNDATA database [63], we iden-
tify multiferroic ε-Fe2O3 as a promising candidate. ε-Fe2O3

FIG. 1. Band structures and longitudinal NCT obtained from
various Hamiltonians. (a) and (b): H2ðk;LÞ¼μxxðk2xþk2yÞσ0þ
μzzk2zσ0þζðLÞΛzkzσ0 with Λz¼0.3eVÅ. (c) and (d): H3ðk;LÞ¼
μxxðk2xþk2yÞσ0þμzzk2zσ0þζðLÞΛyyykyð3k2x−k2yÞσ0 with Λyyy ¼
5.0 eVÅ3. (e) and (f): H4ðk;LÞ ¼ ðμxxk2x þ μyyk2y þ μzzk2zÞσ0þ
ζðLÞΛxkxσ0 þ ζðLÞΔyσy þ λxykxσy þ λyxkyσx, with Λx ¼
0.0 eV Å, λyx ¼ 0.3 eV Å, p ¼ 0.2 eV Å, q ¼ 0.01 eV, and
ζðLÞ ¼ 1. ζðLÞ ¼ 1 and ζð−LÞ ¼ −1 corresponds to L and −L,
respectively. As for H2ðk; LÞ, H3ðk; LÞ, and H4ðk; LÞ, μxx, μyy,
and μzz are set as μxx ¼ μyy ¼ μzz ¼ ℏ2=2m ¼ 7.62 eVÅ2,
where m ¼ 0.5m0 and m0 is electron rest mass. The unit of

σð2Þzzz=τ2, σ
ð2Þ
yyy=τ2, and σð2Þxxx=τ2 is 1023 Ω−1 V−1 s−2. The thermal

smearing with a temperature of 300 K is adopted during the
conductivity calculations. The legends for (b), (d), and (f) are
valid for (a), (c), and (e), respectively. Note that the band
minimum associated with the red or blue curve in (a), (b), (e),
and (f) is below μ ¼ 0 eV.
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is the metastable phase of Fe2O3 [64–67]. Recently, single
crystals of ε-Fe2O3 were experimentally synthesized [66].
At room temperature, ε-Fe2O3 has the polar m0m20 MPG,
with the magnetic order parameter schematized in Fig. 2(a)
[63–65]. According to Table I, the longitudinal NCT along
the x direction is symmetrically allowed in ε-Fe2O3.
Figure 2(b) demonstrates ε-Fe2O3’s band asymmetry

along kx. In Fig. 2(c), we show the nonlinear Drude

conductivity σð2Þxxx for ε-Fe2O3 [68]. We find that σð2Þxxx is
negligible in the absence of spin-orbit interaction. The role

of spin-orbit interaction for σð2Þxxx is thus self-explanatory.
With spin-orbit interaction, the nonlinear Drude conduc-

tivity σð2Þxxx becomes finite, and is reversible by flipping the
magnetic order parameter L. This verifies our aforemen-
tioned symmetry arguments on ε-Fe2O3. Our calculations,
although based on the ground state of ε-Fe2O3, correctly
reflect the MPG of such a material at room temperature.
This suggests that ε-Fe2O3 may host room-temperature
longitudinal NCT that is driven by its intrinsic magnetic
order parameter (i.e., without the application of external
magnetic field).
As shown in the symmetry analysis section, the longi-

tudinal NCT in ε-Fe2O3 is contributed by nonlinear Drude

conductivity σð2Þxxx and quantum metric conductivity σ̃ð2Þxxx. At

300 K, we estimate ε-Fe2O3’s σð2Þxxx as several tenths of
mA=V2 by selecting a typical relaxation time of τ ¼ 60 fs
[61]. Decreasing temperature or improving relaxation time

may enhance σð2Þxxx. Furthermore, σð2Þxxx conductivity is dis-

tinguishable from σ̃ð2Þxxx due to their different scaling
behaviors with respect to τ [14,15]. The detailed discussion
is shown in Sec. V of the Supplemental Material [26].
Summary and perspective—In summary, we have devel-

oped a general theory guiding the discovery of crystalline
materials with longitudinal NCT. Within the framework of

Boltzmann transport theory, the longitudinal NCT along α
direction in crystalline materials resides in the asymmetry
between kα and −kα. Based on this, we provide a
comprehensive symmetry classification of 122 MPGs with
respect to longitudinal NCT (see Tables I and II). By
constructing and analyzing effective Hamiltonians, we
identify two mechanisms for longitudinal NCT, that is,
the band asymmetry ΛðkÞ, and the combination of spin-
orbit field λðkÞ and Zeeman field Δ [see Eq. (3)]. Our
theory, together with first-principles simulations help to
identify ε-Fe2O3 as a candidate that possibly showcases
intrinsic longitudinal NCT at room temperature.
Beyond this, our theory also suggests another research

avenue. As shown in Figs. 1 and 2, the longitudinal NCT
severely depends on the magnetic order parameters. For a
specific material with MPG listed in Tables I and II, the
measurement of nonlinear longitudinal conductivity
reflects its intrinsic magnetic ordering or the external
magnetic field applied to it. In this regard, the longitudinal
NCT together with second-order transverse Drude transport
and second-order anomalous Hall effect (i.e., second-order
nonlinear transport) open a door for the electrical detection
of magnetic states [10,69,70], being important for design-
ing spintronic devices [71–74]. Interested readers are
referred to Refs. [15,69,70,75] for some detailed discussion
on second-order nonlinear transport. As an outlook, our
theory can not only provide in-depth insights into the NCT
phenomena in condensed matter, but also guide the
materials discovery and device design related to such a
phenomenon.
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