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The extraordinary properties of the Kitaev model have motivated an intense search for new physics in
materials that combine geometrical and bond frustration. In this Letter, we employ inelastic neutron
scattering, spin wave theory, and exact diagonalization to study the spin dynamics in the perfect triangular-
lattice antiferromagnet (TLAF) CsCeSe2. This material orders into a stripe phase, which is demonstrated to
arise as a consequence of the off-diagonal bond-dependent terms in the spin Hamiltonian. By studying the
spin dynamics at intermediate fields, we identify an interaction between the single-magnon state and the
two-magnon continuum that causes decay of coherent magnon excitations, level repulsion, and transfer of
spectral weight to the continuum that are controlled by the strength of the magnetic field. Our results
provide a microscopic mechanism for the stabilization of the stripe phase in TLAF and show how complex
many-body physics can be present in the spin dynamics in a magnet with strong Kitaev coupling even in an
ordered ground state.
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Introduction—In the quantum theory of solids, elemen-
tary excitations can be described as emergent entities
known as quasiparticles [1,2]. Noninteracting quasipar-
ticles have infinite lifetime and well-defined dispersion in
the momentum-energy space. Interaction between quasi-
particles can reduce their lifetime via decays, renormalize
their dispersion, and even drive phase transitions [3,4].
Magnetic insulating systems provide ideal platforms for
investigating interactions between the quasiparticles,
because of their relative simplicity and purity [5].
Magnetic Hamiltonians in such systems are usually

dominated by several nearest-neighbor (NN) couplings
[6], and can often be determined with good fidelity [7].
Moreover, the magnetic field provides a clear nonthermal
control parameter to tune the ground state of the system [8].
The magnon-magnon interaction can be restricted by the

high symmetry of the system [9], making materials with
anisotropic-exchange interactions especially appealing.
Because of the lattice symmetry, the NN exchange matrix
of a triangular-lattice antiferromagnet (TLAF) is parame-
terized by four parameters: isotropic exchange J, XXZ
anisotropy Δ, and two bond-dependent (BD) terms, J��
and Jz� [10,11], as we will detail below. Notably, a linear
combination of J�� and Jz� constitutes the best known
BD interactions—the celebrated Kitaev term, KSαi S

α
j

(α∈ fx; y; zg) [12–14]. The phase diagram of the BD
TLAF has been characterized by analytical and numerical
methods [11,15–18] and is summarized in Fig. 1(a) for
Δ ¼ 1=4. It can be divided into regions of the stripe-x,
stripe-yz, and 120° order, depending on the sign of J�� and
the value of Jz�. In addition, a U(1) quantum spin-liquid
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(QSL) phase has been suggested between the 120° and
stripe phases for 0.7≲ Δ≲ 1 [17].
Such Kitaev-like BD terms arise naturally in magnets

with strong spin-orbit coupling [20,21] when the total
multiplet of a magnetic ion is projected onto the low-energy
pseudo-S ¼ 1=2 model. However, the experimental real-
izations of such terms remain very rare [22,23]. Rare-earth
delafossites represent a promising playground for the
studies of TLAF because of their distortion-free crystal
structure with well-separated triangular layers [24,25]. Yb-
based materials are known to potentially possess QSL [26–
29] or the 120° ordered states [30,31], while Ce [32–34]
and Er [35,36]-based materials order into the stripe phases
[Fig. 1(b)] because of the BD terms. However, there has
been no report on the anomalous spin dynamics caused by
the BD terms in these materials until now.
Here, we focus on CsCeSe2 that orders magnetically into

the stripe-yz phase below TN ¼ 0.35 K [19]. A combina-
tion of crystalline electric field and spin-orbit coupling
splits the J ¼ 5=2 multiplet of Ce3þ into three well-
separated Kramers doublets, with the groundstate doublet
corresponding to an effective S ¼ 1=2 [19,37]. Application
of the magnetic field, Bjja, suppresses the stripe order at a
potential quantum critical point and stabilizes the field-
polarized (FP) state [Fig. 1(e)]. We collect inelastic neutron
scattering (INS) spectra at all relevant fields and our results
reveal the anomalous spin excitations in the ordered stripe
and FP phases. Using these data we refine the spin
Hamiltonian and establish that the BD terms are respon-
sible for the stabilization of the stripe-yz order. Our INS
spectra and exact diagonalization (ED) calculations dem-
onstrate a large broadening of the spectra at intermediate
fields and complete breakdown of magnons at the Γ point
of the Brillouin zone (BZ) just below the critical field
(Bc ¼ 3.86 T). We also find strong repulsion between the
single magnon branch and the two-magnon continuum

(TMC) that is best visible at the Y point of the BZ. Our
results unravel the crucial role of the magnon-magnon
interaction induced by the BD terms in modifying the
excitation spectrum of the TLAF with a magnetically
ordered ground state.
Spin dynamics in CsCeSe2—CsCeSe2 orders into the

two-sublattice stripe-yz phase [Fig. 2(a)] which breaks the
C3 lattice symmetry [19]. The corresponding magnetic BZ
is nested in the crystallographic one [Fig. 1(c)]. As a
consequence, the otherwise-equivalent high-symmetry
points of the BZ become nonequivalent. Below we label
the two M points associated with the ordering wave vector
as M and the four others as M0 [Fig. 1(c)].
Figure 2(b) shows the INS spectrum at zero field. Its

primary feature is a sharp intense excitation at the Γ point.
Away from the zone center, CsCeSe2 exhibits three
spin-wave branches: one nearly gapless acoustic and two
weakly dispersive optical modes. The canted stripe-yz
order has two magnetic sublattices and, in the spin-wave
approximation, CsCeSe2 should feature two magnon
modes at B < Bc. However, in zero field CsCeSe2 is in
a multidomain state, and, therefore, the INS spectrum
consists of the superposition of three domains, IðQ;ℏωÞ ¼
IðQΓ⟶M;ℏωÞ þ 2IðQΓ⟶M0 ;ℏωÞ. This increases the num-
ber of modes up to six, but the two pairs of these modes,
originating from the domains ordered at the M0 points, are
exactly degenerate along the Γ ⟶ M path.
Application of the magnetic field selects one domain

with the ordering wave vector q⊥B, and the spectra
obtained at 1.4 (see Supplemental Material (SM) [39])
and 2.3 T [Fig. 2(c)] yield a weakly dispersive mode around
0.35 meV [56]. At 3 T [Fig. 2(d)] the spectrum exhibits
qualitative modifications: the mode becomes more disper-
sive and the excitation at the Γ point strongly broadens in
energy [Fig. 2(g)]. At 4 T the spectrum demonstrates a low-
energy dispersive mode and an arch-shaped resonancelike
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FIG. 1. (a) Zero-temperature phase diagram of the NN S ¼ 1=2 TLAF (1) with Δ ¼ 1=4 [17]. In the stripe-x phase, spins lie in the ab
plane, parallel to the bonds, while in the stripe-yz phase, they point perpendicular to the bonds and can be canted out of the ab plane.
(b) Crystal and magnetic structure of CsCeSe2. The red arrows represent magnetic moments of Ce3þ. (c) Left: projection of the lattice on
the ab plane with three different bonds marked by different colors. Right: crystallographic (black) and magnetic (red) BZ of CsCeSe2.
(d) Schematic representation of Dirac cones at the Y points, where magnons cross due to the symmetry of the stripe-yz state.
(e) Magnetic B-T phase diagram [19]. The black dashed line represents the phase boundary between the AFM and paramagnetic (PM) or
field-polarized (FP) phase. The white dashed line indicates a crossover between the PM and FP phases.
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feature at E ≈ 0.45 meV, which is localized at a close
proximity of the Γ point [Fig. 2(e)]. The intensity distri-
bution over the low-energy mode is not homogeneous and
it weakens close to the Γ point, just below the high-energy
arch. Further increase of the field stabilizes the FP state and
the spectrum exhibits a sharp mode with a cosinelike
dispersion [Fig. 2(f)]. We note that in the high-field regime,
B ≥ 5 T, the observed excitations are resolution limited,
but broaden considerably in the lower fields [39].
Now we turn to the determination of the Hamiltonian

parameters. The spin Hamiltonian for the NN triangular
lattice reads as [10,11,15,17,57]

H ¼
X

hiji
ST
i ĴijSj − μBgabB

X

i

Sxi ð1Þ

where μB is the Bohr magneton, gab is the in-plane g factor,
B is the magnetic field, and Ĵij is the exchange matrix,
defined as

Ĵij ¼

0
B@

J þ 2J�� 0 0

0 J − 2J�� Jz�
0 Jz� ΔJ

1
CA; ð2Þ

for the bond along the a axis, which transforms according
to the lattice symmetry for the other bonds [11]. The
Hamiltonian (1) has five independent variables, which we
determine by fitting the dispersion in the high-field regime

and using calculations of the low-field spectral response
using ED as is detailed in the SM [39]. Our results safely
exclude considerable next-NN interactions, and the best fit
yields J ¼ 72.5 μeV, Δ ¼ 0.25, J��=J ¼ 0.52, Jz�=J ¼
0.41, and gab ¼ 1.77 [58,60]. These parameters put
CsCeSe2 deep into the stripe-yz phase of the general phase
diagram of the TLAF [Fig. 1(a)] and demonstrate that the
stripe order is stabilized by a combination of the strong
BD terms.
We note that the linear spin-wave theory (LSWT) and

symmetry consideration [61] suggest the Dirac crossing in
the magnon spectrum at the Y points [Fig. 1(d)]. While the
presence of the magnon-magnon interaction may suggest
some exotic interplay of it with the Dirac topology [62,63],
our results presented below are unable to support such a
scenario.
The LSWT calculations of the spin wave for each field

are summarized in Figs. 2(b)–2(f). Clearly, LSWT captures
perfectly the high-field data and reproduces some features
of the dispersion in the low-field regime, B ≤ 2.3 T, with
semiquantitative accuracy. However, accurate comparison
of the intensities clearly demonstrates that at intermediate
field regime 0 < B < Bc, the LSWT simulations do not
provide an adequate description of the observed data
despite the presence of robust magnetic order [19]. To
show that, in Fig. 2(g) we plot the INS data taken at 3 T at
the Γ, Y, andM points together with LSWTand ED results.
According to the LSWT, the spectra at the Γ and M points
contain two sharp modes in clear contrast with the INS
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FIG. 2. (a) Left: representation of the BZ in the ðHK 0Þ plane. The blue arrow indicates the magnetic field direction. Right: projection
of the Ce3þ moments on the ab plane at zero field. (b)–(f) Comparisons of the experimental spectra with results of the LSWT
calculations at different magnetic fields. All INS data were taken at T ¼ 70 mK and integrated by�2.5 r.l.u. along ½0 0L� and�0.1 r.l.u.
along ½H −H=2 0� directions. The black lines on the top of color maps are the mode positions and intensities given by LSWT.
(g) Comparison between the INS data and calculations at different Q points and B ¼ 3 T [38]. The shadow areas are ED and the green
curves are the LSWT results, respectively. The red dashed lines in panels (b)–(g) indicate the instrumental artifact ≈0.54 meV.
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data, which exhibit a very broad response with only a weak
hint of the LSWT-predicted modes, indicating magnon
breakdown due to strong magnon-magnon interactions.
Moreover, the LSWT spectrum at the Y point features a
single mode due to topological protection, while our data
clearly show the two-peak structure, providing strong
evidence that a more sophisticated treatment is required.
To provide an accurate description of the observed INS

data, we utilize unbiased numerical ED calculations on a
finite system size up to N ¼ 32 spins. We note that the
spectral function computed with ED and LSWT are
converted to the INS cross section taking into account
all relevant factors [39]. This allows us to make quantitative
comparisons between INS and ED at three high-symmetry
points (Γ, Y, and M) of the BZ.
First, we consider the spectrum measured at 4 T that

contains the high-energy arch near the Γ point [Fig. 3(a)].
This field is just above Bc [19], and, based on the LSWT,
one would expect a resolution-limited magnon branch.
Indeed, our INS data show the presence of a sharp low-
energy magnon branch which, however, strongly broadens
close to the Γ point. The INS spectrum can be reproduced
by the nonlinear SWT calculation with a semiquantitative
accuracy. It reproduces the high-energy arch around the Γ
point that can be observed clearly, despite its weaker

intensity [Fig. 3(a)]. Our Fig. 3(b) shows the single-
magnon dispersion and the lower boundary of the TMC
versus field obtained by ED [39]. One can see that the
broadening of the single-magnon branch takes place when
the magnon branch enters the TMC. Such an overlap makes
the decay of the single magnon kinematically allowed
below ≈5.5 T and explains the momentum-dependent
broadening of the magnon mode. Our ED calculations
clearly support this scenario and also reproduce the for-
mation of the high-energy resonance feature, which we
interpret as a large density of states within the TMC.
At Bc, the TMC extends to vanishing energy at the Γ

point [64]. This causes a strong broadening of the magnetic
signal at the spectra collected at 2.3 and 3 T where the
experimental spectral weight is smoothly distributed
between 0.1 and 0.4 meV indicating a complete breakdown
of the single-magnon excitation. In contrast, a relatively
sharp Lorentzian-shaped mode is formed at lower fields,
see Fig. 3(b). While the LSWT captures some parts of the
spectral response at 0 T, it fails in the intermediate field
regime, while ED reproduces our INS data with a high
accuracy at all relevant fields, see Fig. 3(c). We speculate
that the failure of the LSWT at intermediate fields is
expected because the spectra are subject to stronger
quantum effects for the canted, noncollinear spin configu-
ration. That allows for a stronger coupling between the
longitudinal and transverse spin excitations via the three-
magnon processes, opening up additional channels for
magnon decays [9].
Now we turn to the description of the data collected at

the Y point. As we discussed above, the LSWT predicts a
topologically protected Dirac point in the stripe-yz phase.
Thus, the spectrum at the Y point should feature one mode
at every field above zero. However, the magnon-magnon
interaction induces strong modifications of the spectrum.
Figures 4(a) and 4(b) show the ED-calculated INS spectra
at different fields. In the FP regime, B > Bc, it shows a
sharp mode that exhibits a nonmonotonic behavior in the
ordered phase B < Bc: first it bends up just below Bc,
qualitatively similar to the predictions of LSWT. However,
at B ≈ 2.5 T it twists in the opposite direction. Moreover,
most of the spectral weight at low fields is transferred from
this mode to the high-energy continuum at 0.3–0.4 meV.
Notably, the position of the intense excitation at low fields
agrees quantitatively with the LSWT predictions.
To rationalize the origin of such a behavior we calculate

the lower boundary of the TMC at the Y point using ED,
shown by the red line in Fig. 4(b). The low-energy mode is
located just below the lower edge of the TMC. Such a
behavior is caused by a repulsion between the single-
magnon branch and the continuum in the avoided quasi-
particle decay scenario [65,66]. Our INS data support this
scenario and show two well-separated INS peaks at 3 T, see
Fig. 4(c). In our setup, we can control and track the strength
of the repulsion by applying a magnetic field, in contrast to
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(c) High-energy arch
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Infinite-size 
behavior
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FIG. 3. (a) The INS spectrum of CsCeSe2 collected at 4 T (left)
compared with nonlinear SWT calculations (right). The black line
is the LSWT dispersion and the red line is the bottom of the TMC
at 4 T. The arrows point to the high-energy “arch” within the
TMC. The intensity of the upper part of the calculated spectrum
(E > 0.4 meV) is multiplied by ×6 for better visual clarity.
(b) Calculated dynamical structure factor at the Γ point and
different fields obtained using ED. The blue open circles are
experimental results. The dark green line is the LSWT results.
The red line is the lower boundary of the TMC. (c) Comparisons
of the experimental and the calculated spin excitation spectra at
the Γ point [38]. The shadow areas are ED calculations, and the
green curves are LSWT results.
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that in Ref. [66], where the repulsion is manifested as a
function of the momentum transfer.
Discussion and conclusion—The interaction between a

quasiparticle branch and a continuum has two opposite
regimes: when the interaction is weak, the quasiparticle
acquires a finite lifetime where the mode enters the
continuum. In the case of strong interactions, a level
repulsion scenario can take place, meaning that the quasi-
particle dispersion will repel from the continuum remaining
sharp in energy. Our spectroscopic study of CsCeSe2
demonstrates the presence of both effects which arise as
a consequence of interactions between the single-magnon
branches and the multimagnon continuum. This interaction
has substantial matrix elements because of the sizable
bond-dependent terms, J�� and Jz�, in the spin
Hamiltonian and, furthermore, its effect can be controlled
by a magnetic field. Specifically, using the 4 T dataset we
demonstrate that once the single-magnon branch enters the
TMC, it exhibits downward renormalization and acquires a
finite lifetime, in agreement with the weak-interacting
scenario, while part of the spectral weight is transferred
to the TMC. The spectra at the Γ point at 2.3 Tand 3 T show
a very broad response indicating a complete breakdown of
the single-magnon excitation which, however, is almost
reestablished in the collinear zero-field phase.
The data collected at the Y point demonstrate anticros-

singlike behavior, where the single-magnon branch is
repelled by the lower boundary of the TMC, remaining

relatively sharp in energy. This behavior is induced by a
strong interaction between the magnon branch and the
continuum, which was observed previously in the excita-
tion spectrum of liquid 4He and in the TLAF Heisenberg
magnet [66–70]. Our results are essential for the under-
standing of the many-body spin dynamics in materials that
combine geometrical and bond frustration.
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