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The skyrmion crystal (SkX) and helix (HL) phases, present in typical chiral magnets, can each be
considered as forms of density waves but with distinct topologies. The SkX exhibits gyrodynamics
analogous to electrons under a magnetic field, while the HL state resembles topological trivial spin density
waves. However, unlike the charge density waves, the theoretical analysis of the sliding motion of SkX and
HL remains unclear, especially regarding the similarities and differences in sliding dynamics between these
two spin density waves. In this Letter, we systematically explore the sliding dynamics of SkX and HL in
chiral magnets in the limit of large current density. We demonstrate that the sliding dynamics of both SkX
and HL can be unified within the same theoretical framework as density waves, despite their distinct
microscopic orders. Furthermore, we highlight the significant role of gyrotropic sliding induced by
impurity effects in the SkX state, underscoring the impact of nontrivial topology on the sliding motion of
density waves. Our theoretical analysis shows that the effect of impurity pinning is much stronger in HL
compared with SkX, i.e., χSkX=χHL ∼ α2 (χSkX, χHL: susceptibility to the impurity potential, α (≪ 1) is the
Gilbert damping). Moreover, the velocity correction is mostly in the transverse direction to the current in
SkX. These results are further substantiated by realistic Landau-Lifshitz-Gilbert simulations.
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Introduction—Density waves in solids represent a preva-
lent phenomenon, particularly in low-dimensional systems
[1,2]. They break the translational symmetry of the crystal,
leading to the emergence of Goldstone bosons, i.e.,
phasons, which remain gapless when the period of density
waves is incommensurate with the crystal periodicity. The
sliding motion of density waves under an electric field E
has been extensively studied. In this context, the impurity
pinning of phasons results in a finite threshold field [1,2]. In
general, exploring the dynamics of pinning and depinning
offers valuable insights into understanding the behavior of
density waves.
The skyrmion crystal (SkX) and helix (HL) phases in

chiral magnets can be recognized as periodic density waves
of spins, as depicted in Figs. 1(a) and 1(b). The HL phase is
stabilized in chiral magnet at small magnetic field regions,
with spins of neighboring magnetic moments arranging
themselves in a helical pattern. SkX is a superposition of
three phase-locked HL and comprises arrays of magnetic
skyrmions, nanoscale vortexlike spin textures characterized
by a nonzero skyrmion number Nsk ¼ ð1=4πÞ R R

d2rs ·
ð∂xs × ∂ysÞ (s being the unit vector of spin). Theoretically
proposed magnetic skyrmions [3–5] were initially observed
in the chiral magnet MnSi under magnetic fields [6–8],
wherein the skyrmion lattice structure produces a sixfold
neutron scattering pattern. Since then, the chiral magnetic

states encompassing SkX and HL states have been the
focus of extensive research [9–13].
The dynamics of SkX in a random environment, spe-

cifically the pinning effects from impurities, are manifested
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FIG. 1. (a),(b) The current-driven motion of the SkX and HL,
respectively. (c) Schematic of the Hall resistivity ρxy and drift
velocity vd versus current density js with pinned (yellow),
creeping (green), and flowing (purple) highlighted. (d) The
collective flow motion of the SkX, where the center of each
skyrmion (red dots) and the impurities (black crosses) are
highlighted.
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through the topological Hall effect. The current dependence
of topological Hall resistivity ρxy was initially explored
theoretically by Zang et al. [14] and experimentally by
Schulz et al. [15]. To illustrate, a schematic plot is
presented in Fig. 1(c). Typically, there are three distinct
regions characterizing the dynamics of SkX: the pinned,
creep, and flow regions. The topological Hall resistivity
decreases when SkX is depinned because the motion of
SkX induces temporal changes in the emerging magnetic
fields Be, subsequently generating emergent electric fields
Ee, and an opposing Hall contribution. Theoretically, the
pinning problem of both SkX and HL was investigated in
terms of replica symmetry breaking [16], revealing a
distinct difference in glassy states between SkX and HL.
The key factor lies in the nontrivial topology of SkX,
contrasting with the trivial topology in HL and most density
wave states. However, this difference has not been theo-
retically explored in the context of sliding or moving
density wave states for chiral magnets.
In this Letter, we systemically study the current-driven

sliding dynamics of the SkX and HL in chiral magnets. We
employ the methodology proposed by Sneddon et al. [17]
in their investigation of charge density waves and apply it to
magnetic materials. This method allows us to investigate
the current-driven dynamics of SkX and HL, considering
both deformation and impurity pinning effects. Through
this method, we reveal that the drift velocity correction
Δvd due to the impurity pinning effects versus the
current density js in the flow region, follows Δvd ∝
ðvd0Þ½ðd−2Þ=2�½−ek þ ðG=αDÞe⊥� for the SkX phase, while
Δvd ∝ −ðvd0Þ½ðd−2Þ=2�ek for the HL phase with the spatial
dimension denoted as d. Here, ek represents the direction of
the intrinsic drift velocity vd0 (the magnitude of vd0 is
proportional to the current density js due to the universal
linear current-velocity relation [18]), G ¼ 4πNsk, D is a
form factor at the order of unity, α ≪ 1 is the Gilbert
damping parameter so that G=αD ≫ 1. Although the
scaling relation ðvd0Þ½ðd−2Þ=2� applies to both SkX and
HL, we can see that the gyrodynamics of the SkX state
induced by its nontrivial topology results in its sliding
dynamics being more robust than in HL and mostly in the
transverse direction. Finally, we explicitly conduct the
micromagnetic simulations on both the SkX and HL
systems, aligning well with our theoretical expectations.
Our work demonstrates the unification of sliding dynam-

ics between spin density waves and charge density waves
within the same theoretical framework. Our results also
vividly illuminate both the similarities and differences in
the sliding dynamics between SkX and HL phases. This
insight significantly enhances our understanding of the
sliding dynamics associated with topological density wave
phenomena, which possesses possible applications in areas
such as skyrmion-based devices [19–21], depinning
dynamics [22–30], Hall responses [14,15,31], and cur-
rent-driven motion of Wigner crystals under out-of-plane
magnetic fields [32–34].

Sliding dynamics for skyrmion crystals—The current-
driven motion of SkX is described by the Thiele equation,
assuming that its shape does not change [18,35,36],

G × ðvs − vdÞ þ Dðβvs − αvdÞ þ F ¼ 0: ð1Þ
Here, the first term on the left represents the Magnus force,
the second term is the dissipative force, and the last term
arises from the deformation and impurity-pinning effects.
Here, vs is the velocity of conduction electrons, α is the
damping constant of the magnetic system, and β describes
the nonadiabatic effects of the spin-polarized current. The
gyromagnetic coupling vector is denoted as G ¼ ð0; 0;
4πNskÞ, and the dissipation matrix Dij ¼ δijD, where
i; j∈ fx; yg. It is noteworthy that the Thiele equation
respects out-of-plane rotational symmetry [Supplemental
Material (SM), Sec. IA [37] ].
To obtain the equation of motion of SkX, the displace-

ment vector field of skyrmions is defined as uðr; tÞ so that
the drift velocity vd ¼ ½∂uðr; tÞ=∂t�, where r is the position
vector, t is the time. The force F can be expressed with
uðr; tÞ as Fðr; tÞ ¼ Fimp þ Fde, where the impurity pinning
force Fimp ¼ −

P
i∇U½rþ uðr; tÞ − ri�ρðrÞ ¼ f imp½rþ

uðr; tÞ�ρðrÞ and the deformation force Fde ¼R
dr0Dðr − r0Þuðr0; t0Þ. Here, Uðr − riÞ is the impurity

potential around site ri, Dðr − r0Þ characterizes the restora-
tion strength after deformation, and ρðrÞ is the skyrmion
density. Based on these definitions, the Thiele equation can
be expressed as an equation of motion,

∂uðr; tÞ
∂t

¼ M̂0vs þ M̂1

Z
dr0Dðr − r0Þuðr0; tÞ

þ M̂1f imp½rþ uðr; tÞ�ρðrÞ; ð2Þ

where M̂0 ¼ ½1=ðG2 þ α2D2Þ�
�
G2þαβD2

GDðα−βÞ
GDðβ−αÞ
G2þαβD2

�
and

M̂1 ¼ ½1=ðG2 þ α2D2Þ�
�
αD
−G

G
αD

�
. Note that each skyrmion

is now considered as a center-of-mass particle, and these
skyrmions form a triangular lattice and move collectively
with scatterings from impurities, as illustrated in Fig. 1(d).
The displacement vector can be expanded around the

uniform motion,

uðr; tÞ ¼ vdtþ ũðr; tÞ: ð3Þ

Here, vd is the dominant uniform skyrmion motion
velocity, ũðr; tÞ characterizes a small nonuniform part.
Using the Green’s function approach to solve the differ-
ential equation Eq. (2), ũðr; tÞ can be obtained as [17,32,37]

ũðr; tÞ ¼
Z

dr0
Z

dt0Gðr − r0; t − t0Þfvd0 − vd

þM1f imp½r0 þ vdt0 þ ũðr0; t0Þ�ρðr0Þg; ð4Þ
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where the intrinsic drift velocity vd0 ¼ M̂0vs, the Fourier
component of the Green’s function G is given by

G−1ðk;ωÞ ¼ −iω − M̂1DðkÞ: ð5Þ

Here, DðkÞ arises from the Fourier transformation of
deformation DðkÞ ¼ R

ddðrÞDðrÞe−ik·r (the spatial dimen-
sion is denoted as d).
In the flow region, ũðr; tÞ in Eq. (4) can be solved

perturbatively. Up to the second order, ũðr; tÞ ≈ ũ0ðr; tÞþ
ũ1ðr; tÞ þ ũ2ðr; tÞ, which, respectively, are obtained by re-
placing the terms in the brackets of Eq. (4) as M0vs − vd,
M1f impðr0 þ vdt0Þρðr0Þ, M1∇f impðr0 þ vdt0Þ · ũ1ðr; tÞρðr0Þ.
Based on this approximation and making use of
hũðr; tÞ=∂ti ¼ 0, the self-consistent equation for the veloc-
ity reads (for details see SM, Sec. IB [37])

vd ¼ vd0þ
X
g

Z
ddq
ð2πÞd jρðgÞj

2ΛðqÞM̂1

×

�
q2x qxqy

qxqy q2y

�
Im½Gðq− g;−q ·vdÞ�M̂1

�
qx
qy

�
; ð6Þ

where ρðgÞ is the Fourier component of ρðrÞ with g
as the reciprocal skyrmion lattice vectors, and ΛðqÞ
arises from the impurity average Uðq1ÞUðq2Þ ¼
ð2πÞdΛðq2Þδðq1 þ q2Þ. The impurity strength and func-
tional profile are encoded in ΛðqÞ. Note that the crucial
aspects for the above method to be valid are (i) the impurity
strength is weak, (ii) the drift velocity is large compared to
the impurity effects and the SkX remains elastic, and
(iii) the deformation within each skyrmion is negligible
so that each skyrmion can be regarded as a point object.
Our consideration here is the crystal flowing limit, while
those chiral magnetic systems with glass flowing [23,28]
are not within the scope of the work.
To proceed further, we adopt the following approxima-

tions. The current-driven distortion is expected to be weak
so that DðkÞ would be dominant by the long-wave limit. In
this case,DðkÞ can be expanded as Kxk2x þ Kyk2y for the 2D
case and as Kxk2x þ Kyk2y þ Kzk2z for the 3D case. On the
other hand, the characterized frequency that enters into the
Green’s function is q · vd ∼ vd=a. Using a reasonable
parameter vd ¼ 10 m=s, the skyrmion lattice constant
a ¼ 25 nm, we estimate vd=a ∼ 0.4 GHz. This frequency
is much smaller compared with the one of Kj, which is
roughly the scale of exchange energy J ∼ 1 meV ∼
240 GHz [14,18]. As a result, the dominant contribution
to the integral is given by the elastic modes vdgj ≈ ωk ≈
DðkÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ α2D2

p
with k ¼ q − g → 0, around which the

imaginary part of Green’s function is the largest.
With the above approximations, we perform the integral

in Eq. (6) and sum over the smallest g vectors: gj ¼ffiffiffi
3

p
κ0fsin½ðj − 1Þπ=3�; cos½ðj − 1Þπ=3�g with j as integers

from 1 to 6 and κ0 ¼ ð4π=3aÞ. Since the Thiele equation
exhibits out-of-plane rotational symmetry, without loss of
generality, we set vd0 along x direction here. After some
simplifications (for details, see SM, Sec. IB), we find the
correction (Δvd ¼ vd − vd0) on the drift velocity due to the
impurity and deformation are given by

Δvd ≈ χSkXd ðvd0Þd−22
�
−ek þ

G
αD

e⊥
�
; ð7Þ

where the susceptibility to the impurity potential χSkXd ¼
½9κ30jρ1j2Λ0αD=4

ffiffiffiffiffiffiffiffiffiffiffi
KxKy

p ðG2 þ α2D2Þ� for d ¼ 2, while

χSkXd ¼ f9 ffiffiffi
3

p
κ7=20 Γ½ðG2 þ α2D2Þ=4α2D2�jρ1j2Λ0ðαDÞ3=2=

π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KxKyKz

p ðG2 þ α2D2Þg for d ¼ 3 (the function
ΓðaÞ ¼ Rþ∞

0 dxfx6=½ðx4 − aÞ2 þ x4�g). Note that we have
replaced ρðgjÞ ¼ ρ1;ΛðgjÞ ¼ Λ0 given the sixfold rota-
tional symmetry of the skyrmion lattice.
The first important aspect in Eq. (7) is that the correction

Δvd is insensitive to vd0 in 2D limit but follows a square
root scaling: ðvd0Þ1=2 in 3D limit. Similar to many scaling
phenomena, the dimension plays a critical role here. The
second important aspect is that the correction along the
transverse direction directly reflects the skyrmion topo-
logical number G with the ratio compared to the longi-
tudinal one as G=αD. These interesting aspects embedded
in Eq. (7) will be further highlighted later.
Helix case—It is straightforward to generalize the above

treatment to the helical spin order. The Thiele equation is
reduced to one dimension,

Dðβvs − αvdÞ þ F ¼ 0: ð8Þ

The essential difference here is the absence of gyrotropic
coupling (G ¼ 0). Following the same procedure (SM,
Sec. II), the self-consistent equation for the drift velocity is
given by

vd¼vd0þ
Z

ddq
ð2πÞd

X
g

jρðgÞj2
α2D2

ΛðqÞq3xIm½Gðq−g;−qxvdÞ�:

ð9Þ

Here, vd0 ¼ ðβ=αÞvs, the flow direction of the HL is
defined as x direction. After adopting the approximation
in the previous section, the analytical expression of the
correction Δvd of the helical magnetic state is

Δvd ≈ −χHLd ðvd0Þd−22 ð10Þ

where χHLd ¼ ½ðKxKyÞ−1=2jρ1j2Λ0g30=4αD�, for d ¼ 2

½ðKxKyKzÞ−1=2jρ1j2Λ0g
7=2
0 =2

ffiffiffi
2

p
πðαDÞ1=2�, for d ¼ 3 with

g0 ¼ ðπ=aÞ. Despite different magnetic state nature, the
Δvd as a function vd0 in Eq. (10) for the HL displays a
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consistent scaling behavior as the one of SkX shown
in Eq. (7).
Numerical evaluation—To further justify our analytical

results, we calculate the Δvd numerically according to
Eqs. (6) and (9). For simplicity, we set the elastic coefficient
Kj as isotropic with K ≡ Kj. Figures 2(a) and 2(b) display
the correction Δvd as a function of vd0 of HL. Note that the
zero-drift velocity limit should be ignored since our
theoretical consideration is for the flow region, where
the drift velocity is far from zero. In the large vd or the
flow limit, where the pinning effect can be treated as a
perturbation, the plots clearly indicate Δvd ∝ ðvd0Þ½ðd−2Þ=2�.
The square root behavior in 3D (d ¼ 3) is explicitly
checked with the log-log plot [inset of Fig. 2(b)].
Figure 2(c) shows that the ratio between the transverse

and longitudinal component is approaching G=αD in SkX
case, being consistent with Eq. (7). This gyrotropic type

correction is inherited from the Magnus forces in the Thiele
equation, and this correction also implies that there exists a
net change on the skyrmion Hall angle due to the
impurities. Moreover, the angular dependence of the total
correction jΔvdj is shown in Fig. 2(e), where the anisotropy
is very small. The Δvd as a function vd0 also displays
distinct scaling behavior between 2D [Fig. 2(c)] and 3D
case [Fig. 2(f)].
Overall, the scaling behavior of SkX is similar to that of

the HL. Moreover, the intrinsic drift velocity vd0 is linearly
proportional to the current density js for both SkX and HL
(vd0 ∝ js) at large js. As a result, we can replace vd0 with js
in the scaling relation, i.e., Δvd ∝ ðjsÞ½ðd−2Þ=2�. It is worth
noting that the charge density wave also respects this
scaling relation [17], despite its distinct microscopic nature.
Physical interpretation—Now we provide a physical

interpretation of the observed scaling behavior:
Δvd ∝ ðvd0Þ½ðd−2Þ=2�. As we mentioned earlier, the domi-
nant contribution to the drift velocity correction arises from
the excitation of elastic modes. Hence, we expect the
correction to be proportional to the number of excited
elastic modes at a fixed vd0. For the SkX case, these
modes follow the dispersion vd0jgjj ¼ DðkÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ α2D2

p
,

which can be rewritten as vd0 ¼ kd=2m0 with m0 ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ α2D2

p
=ð ffiffiffi

3
p

aKÞ. Next, the problem is mapped
to evaluate the density of states of free fermions with an
energy vd0. Recall that the density of states of free fermion
NðEÞ ∝ E½ðd−2Þ=2� at energy E. Hence, it is expected that the
correction follows the same scaling: Δvd ∝ ðvd0Þ½ðd−2Þ=2�
according to this argument. We emphasize that the micro-
scopic nature of the density waves in this argument is not
essential, which mainly stems from the long-wave char-
acteristic of elastic modes. This explains why the HL and
charge density wave also follow the same scaling behavior.
Micromagnetic simulation—We now further validate our

theory through solving the Landau-Lifshitz-Gilbert equa-
tion with the spin transfer torque effect [38–42] (for details,
see SM). The calculated drift velocity vd versus current
density js curves are shown in Fig. 3 for both the SkX and
HL. For simplicity, we mainly focus on 2D SkX and HL
with weak impurities here, where our analytical expres-
sions from perturbation theory are applicable.
Figures 3(a) and 3(c) show vd in the clean and disordered

case with α ¼ 0.2. The correction between these two cases
at both SkX and HL is indeed insensitive to the current
density within the flow limit. It is noteworthy that due to the
gyrodynamics, the SkX exhibits a much smaller depinning
critical current density. Figure 3(b) is to show that the
correction along the transverse direction is obviously larger
than the longitudinal one with the ratio ∼G=αD, being
consistent with Fig. 2(c). Interestingly, the longitudinal
correction versus the damping parameter α of 2D SkX and
HL shows a positive and negative correlation, respectively
[Fig. 3(d)], which is also consistent with results of our

(a) (b)

(d)(c)

(e) (f)

FIG. 2. (a),(b) The correction Δvd versus vd0 (in units of K) for
the 2D and 3D HL state, respectively. (c) shows that the velocity
correction ratio between the longitudinal and transverse direction
in 2D SkX approaches ðG=αDÞ. The blue and red dashed line
regions in (a) and (c) are to highlight the small vd0 regions that
should be ignored (vd0 ¼ 0 point is not reached). (d) The damping
α dependence of the drift velocity correction from the developed
model, where the 2D SkX scales as ½αD=ðG2 þ α2D2Þ� and 2D
Helix scales as ð1=αDÞ. (e) The angular dependence of jΔvdðθÞj,
where θ is the angle of vd0. (f) The velocity correction along the
longitudinal and transverse directions in the 3D SkX. All the
longitudinal components of Δvd in these plots have been nor-
malized so the velocity correction is in arbitrary scale (a.u.). The
used parameters are G ¼ 4π, D ¼ 5π, α ¼ 0.2.
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developed model [see Fig. 2(d)]. It can also be seen that the
impurity correction along the longitudinal direction is typi-
cally much stronger in HL than in SkX as χSkXd =χHLd ∼ α2.
These distinct features between SkX and HL highlight the
importance of the nontrivial topology in the sliding
dynamics of density waves.
Discussions—We have provided a thorough analysis of

the sliding dynamics exhibited by the SkX and HL phases,
highlighting both their similarities and differences in terms
of density waves sliding with distinct topologies. Our
theory could have broader applications. For instance,
one can explore the relationship between the topological
Hall effect and the current density in the flow region. In the
clean limit, the universal linear current-velocity relation
vd0 ∝ js implies that the topological Hall resistivity ρxy,
proportional to jðvs − vd0Þ × Bej=jvsj [15], is expected
to exhibit a plateau in the flow region, as illustrated in
Fig. 1(c). In the presence of impurities, the topological
Hall resistivity is modified to ρxy ∝ jðvs − vd0 − ΔvdÞ×
Bej=jvsj. Considering that Δvd ∝ ðvd0Þðd−2Þ=2, we antici-
pate a modified relation ρxy ¼ aþ bj−2þd=2

s , where a and b
remain independent of the current magnitude js. The
second term, bj−2þd=2

s , represents the correction from
impurities. Consequently, we expect that the ρxy − js

plateau in the flow region will gradually diminish with
increasing disorder. In addition to the topological Hall
measurements, the noise features of moving SkX and HL
can also be distinct and might be employed to distinguish
the SkX and HL phases [24,30,43,44].
It is worth noting that the Thiele equation approach, as a

particle-based approach, is an approximated method.
Despite its simplification, it has been proven to be a
powerful tool in describing the dynamics of spin textures
in many real experiments [45–48]. In our developed model,
the chiral magnets display crystal flowing and the defor-
mation within each SkX is tiny (see SM, Sec. VII). As a
result, the approximation for the Thiele method is justified
in our case. Consistently, we also have used the micro-
magnet simulations to verify the key predictions from the
Thiele equation approach. Moreover, the particle-based
method itself has wide applications in the pinning dynam-
ics of many other systems [30,49,50], such as super-
conducting vortices [51–54], Wigner crystal [32–34].
Hence, the developed theory in this Letter could exhibit
wide implications.
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1010 A=m2) of the 2D SkX and HL at the clean and impurity
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highlighted (red dashed line). The coordinate relation between
different vectors is shown in the inset. (d) The drift velocity
correction as a function of the damping parameter α at js ¼
2 × 1011 A=m2 (only vd;x is used for the SkX). The micro-
magnetic simulation is in agreement with the theoretical expect-
ation (dashed lines). For (a)–(c), α ¼ 0.2 and β ¼ 0.5α are
employed in the simulations.
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