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New phases or new phenomena are often observed near-zero temperature phase transitions. These new

effects represent nature’s way of avoiding quantum critical phase transitions. Here, we look at the quantum

tricritical point (QTCP), the special case where two transitions are driven to zero temperature at the same

time. Unlike the case of quantum critical points, the avoidance of quantum tricritical points has yet to be

demonstrated. Using chemical substitution and a magnetic field, we drive LaCrSb; toward a quantum

tricritical point. For the first time near a QTCP, we observe the emergence of a new magnetic phase and the
avoidance of the QTCP via a first order phase transition.

DOI: 10.1103/PhysRevLett.133.096701

With pressure, strain, chemical substitution, or magnetic
fields, one can sometimes drive a magnetic phase transition
toward a quantum critical point (QCP), i.e., a second order
transition at 0 K. Before such a QCP can be reached,
however, new phases often appear. The antiferromagnetic
(AFM) QCEP, for example, is avoided by the appearance of a
superconducting dome in the cuprate, Fe-based, and heavy
fermion superconductors [1-4], resulting in the phase
diagram sketched in Fig. 1(a).

The ferromagnetic (FM) QCP can also be avoided by a
superconducting dome [5,6], but other phenomena are also
possible. For example, there can be a tricritical point where
the FM transition changes from second to first order. In
such a case, quantum criticality is not completely sup-
pressed and can reappear under a magnetic field. When a
magnetic field is applied along the easy axis of magneti-
zation, tricritical wings emerge, as illustrated in Fig. 1(b)
[7-10]. The wings are bounded by second order lines that
can terminate at 0 K at quantum wing critical points
(QWCPs). In contrast to a QCP, no symmetry is broken
at a QWCP. If the wing is accompanied by a Lifshitz
transition, it will terminate at a marginal quantum critical
point (MQCP) [11]. The FM-QCP can also be avoided by
the appearance of an antiferromagnetic phase (AFMy)
[7,12-23]. The avoidance of the FM-QCP by tricritical
wings or by the appearance of an AFM, phase is
theoretically expected to be a generic result for metallic
quantum ferromagnets [7,24-29], with the exception of
systems that are noncentrosymmetric [30-32] or one-
dimensional [33,34] or that have disorder [35,36].

The avoidance of an FM-QCP by an AFM, phase
can lead to yet another type of quantum criticality: if
the wing terminates within the AFM,, dome, there could
be a quantum tricritical point (QTCP) as depicted in
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Fig. 1(c) [17,37-42], where the zero-temperature transition
from AFM,, to a field-polarized state changes from the
first to the second order. At a QTCP, both FM and AFM
fluctuations are expected to diverge simultaneously. In
contrast to FM or AFM-QCPs, few studies are aimed at
approaching QTCPs. A QTCP was proposed in the phase
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FIG. 1. Schematic phase diagrams of avoided quantum critical
points (QCP). (a) Antiferromagnetic (AFM) case with the
emergence of superconductivity (SC). (b)-(d) Ferromagnetic
(FM) cases with the emergence of (b) ferromagnetic wings under
magnetic field H and the possibility of a quantum wing critical
point (QWCP) or a marginal quantum critical point (MQCP),
(c) a modulated magnetic phase AFM, and the possibility of a
quantum tricritical point (QTCP). Panel (d) illustrates the case
where the QTCP is avoided: the zero-temperature field-induced
transition remains of the first order and a new phase emerges.
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diagram of NbFe, by finely tuning the Nb-Fe ratio [37],
and in the phase diagram of CeTiGe; by applying high
pressure [17]. In both of these cases, however, further
multiprobe investigation is limited by their experimentally
restrictive tuning parameters, so the possibility remains that
the QTCP is also avoided, that the zero-temperature field-
induced transition remains of the first order, and that new
phases appear as illustrated in Fig. 1(d).

In this Letter, we report on a new system that is easily
tunable toward a QTCP. We study the Fe-substituted
LaCrSb; system and demonstrate that a QTCP is
approached, but ultimately avoided, and that a new mag-
netic phase appears above the putative QTCP. The use of
chemical substitution instead of pressure allows for easier
investigation of the magnetic order. Using neutron diffrac-
tion, we identify the new magnetic phase as a canted AFM
order (cAFM). This is the first example of an avoided
QTCP, providing further support for the idea that quantum
criticality is ubiquitously avoided.

LaCrSbs is a ferromagnet (7 ~ 125 K [43]; orthorhom-
bic crystal structure, Pbcm No. 57) with intricate magnetic
properties. It does not obey the Curie-Weiss law above T'¢
and has a smaller saturation moment than free ionic Cr,
suggesting some degree of itinerant magnetism [44-47].
Giant anomalous Hall conductivity was recently reported
and arises from Cr-d dominated nearly dispersionless bands
in the vicinity of the Fermi level [48,49]. Neutron dif-
fraction revealed the spontaneous reorientation of moments
from c to b at T = 95 K. We will refer to the ground state
phase as FM,,, although there is a small AFM component
resulting in a tilt (18°) of the moments toward the ¢ axis that
subsists at least up to 7 T [50]. Its complicated magnetic
structure involving both FM and AFM interactions makes
LaCrSb; a natural candidate for achieving a QTCP.
Pressure studies revealed a robust ferromagnetic ordering,
requiring 26.5 GPa to be suppressed [51,52]. On the other
hand, the magnetic order can be modified by various
chemical substitutions [51,53-55]. Somewhat counterin-
tuitively, given that Fe often enhances FM interactions,
Fe substitution causes the most dramatic change in the
magnetization and appears to strengthen AFM interactions
in this system [53].

For this study we grew single crystals of LaCr;_,Fe, Sbs
with nominal substitutions between 0 and 0.6 in steps of
0.05 following Ref. [51]. Energy-dispersive x-ray spec-
troscopy (EDX) was used to determine the Fe content that
appeared to follow a linear function xgpx = 0.575X,0minal
(see [56] Notes 1 and 2, Fig. S1). The x values discussed in
this Letter are calculated from this linear relationship.
We map the temperature-chemical substitution-magnetic
field (T — x — H) phase diagram with bulk magnetization
and resistivity measurements (experimental details given
in [56]). Fe substitution suppresses Tc; however, an
FM-QCP is avoided by the appearance of a tricritical point
(TCP) at which the transition becomes of the first order and

by the appearance of an AFM phase. The TCP can be
driven to lower temperatures upon increasing Fe content
and magnetic field. A QTCP, however, is avoided as the
transition remains of the first order at low enough temper-
ature. A new canted magnetic phase (cAFM) appears
above the putative QTCP region. The phase diagram of
LaCr;_,Fe,Sby provides a road map for discovering
magnetic canting in other materials due to the emergence
of a cAFM phase near an avoided FM-AFM QTCP.
Phase diagram—Figure 2(a) shows the T — x phase
diagram of LaCr;_,Fe Sb; determined from low-field
(0.1 T) M(T) measurements that are consistent with zero
field p(T) (see [56] Note 5, Fig. S6). When x < 0.09,
the ground state is FM, [Fig. 2(b)]. As substitution is
increased, the FM transition becomes of the first order
(see [56] Note 6). When x > 0.12, the M(T') curve exhibits
a precipitous downturn in M, indicating the appearance of
an AFM,, state where the b components of the moments are
now antiferromagnetically aligned [Fig. 2(c)]. We deter-
mined the magnetic structure of the AFM, phase with
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FIG. 2. (a) The temperature vs Fe-substitution phase diagram
showing the ferromagnetic (FM,; and FM,), and antiferromag-
netic (AFM,, and AFM,,) regions. The lines are guides to the eye.
The dashed line indicates a first order transition. (b)—(c) Repre-
sentative magnetization as a function of temperature, M(T),
curves of the (b) FM,,, as well as the (c) AFM,, and AFM,, phases
measured at 0.1 T.
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FIG. 3. (a) Magnetization as a function of applied magnetic

field, M(H), at 20 K and 80 K for x = 0.12. Red arrows indicate
increasing and decreasing field directions. Green and blue regions
indicate the antiferromagnetic (AFM,,) and ferromagnetic (FM,,)
phases, respectively. (b) The hysteresis widths extracted from
similar M(H) measurements as a function of temperature for
different x values. (c) Red squares indicate the x dependence of
the temperature of the tricritical point (TCP). The position of the
avoided QTCP is marked by the black open square. Orange
crosses represent the maximum and minimum temperature
between which the cAFM phase is observed. Each point is
observed at a different field. (d) M(H) at 2 K for x = 0.20. The
green, orange, and blue regions denote the AFM,,, cAFM, and
FM,, phases, respectively. Black arrows schematically represent
the alignment of magnetic moments in each region.

single crystal neutron diffraction (see [56] Note 7). The
easy moment direction changes to the a axis for x > 0.29
(AFM,) [Fig. 2(c)].

The TCP at which the FM transition changes from
second to first order exists at zero magnetic field, but is
better revealed under field. Figure 3(a) shows M (H) curves
for x = 0.12. At low temperatures, the spin-flip transition
between the AFM, and polarized FM, states exhibits
hysteresis indicating the first order nature of the transition.
This hysteresis is also observed in p(H) (see [56] Fig. S7).
Increasing the temperature causes the magnitude of the
hysteresis to diminish. The hysteresis vanishes at 80 K,
taken as the temperature of the TCP (Ttcp). The temper-
ature dependence of the hysteresis for 0.12 < x < 0.29 is
shown in Fig. 3(b). With increasing x, the hysteresis
is reduced and the temperature at which the hysteresis
disappears shifts to lower temperature, indicating a
decrease of Trcp. Figure 3(c) shows Trtcp as a function
of x and reveals an almost perfectly linear trend toward zero
temperature where a QTCP is expected to occur. If a QTCP
were to exist in the LaCr,_,Fe,Sb; system, substitutions
beyond the x of the QTCP are expected to have a line of
AFM-QCPs without hysteresis [Fig. 1(c)]. Instead, for
x > 0.23, the hysteresis remains and 7tcp slowly increases,
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FIG. 4. The temperature-chemical substitution-magnetic field
(T — x — H) phase diagram for the LaCr;_,Fe Sb; system. The
green and orange domes enclose the AFM,, and cAFM phases,
respectively. The dashed blue line indicates a first order tran-
sition. The black squares denote tricritical points (TCPs) that are
joined by the red tricritical line. The black dot is a placeholder for
the putative position of the avoided QTCP. The diagram without
the cAFM phase region is shown on the top right.

indicating the persistence of a first order transition and
therefore the avoidance of a QTCP.

Figure 3(c) also depicts the canted AFM (cAFM) phase
surrounding the tricritical line. The orange region in
Fig. 3(d) defines the cAFM phase that is characterized
by aregion of linearly increasing M (H) between the AFM,,
and FM,, states. The cAFM state also appears as a broad
bump in p(H) (see [56] Fig. S7) as well as a kink in the
M(T) curve. The alignment of the magnetic moments in
these different phases was determined by neutron diffrac-
tion (see [56] Note 7) and is shown schematically by the
black arrows. While the hysteresis and 7Ttcp diminish with
increasing x up to x = 0.23, the cAFM phase expands and
appears to bury the putative QTCP.

The resulting three-dimensional 7 — x — H phase dia-
gram of LaCr_,Fe Sb; is shown in Fig. 4. The T — H
phase diagrams that were compiled to create this three-
dimensional phase diagram are shown in [56] Fig. S15.
From these phase diagrams, as well as the M (H) curves, we
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can see the growth of the cAFM dome as substitution is
increased. Although a cAFM phase can be viewed as a
combination of FM and AFM orders, it is interesting to note
that the cAFM phase is not observed at low fields near the
boundary between the FM and AFM regions. Instead, it
only emerges near the tricritical line, when the TCP is
driven toward lower temperatures. This suggests that the
cAFM dome might originate from the putative QTCP, even
though the latter is ultimately avoided. The experimental
study of quantum fluctuations across the phase diagram
will shed light on the question of the relationship between
cAFM and QTCP.

Discussion—The  magnetic  phase diagram  of
LaCr;_,Fe, Sb; shows an FM-QCP avoided by a first order
FM transition and the subsequent appearance of a modulated
magnetic phase. Both features have been observed exper-
imentally in other compounds [13,16] and studied theoreti-
cally [7,25,29,38]. The use of chemical substitution instead
of pressure, and the fact that relatively large single crystals
can be grown, make LaCr,_,Fe, Sb; an ideal platform for
multiprobe investigations of quantum criticality.

LaCr,_,Fe,Sbs is the first example of an avoided QTCP.
Previous experiments have suggested the existence of a
QTCP in Nb;_,Fe, , [37] and CeTiGe; [17]. The com-
plication of high pressure and limited range of substitution
in these systems, however, restricted detailed studies in the
proximity of the QTCP. As a consequence, it is possible
that the QTCP is also avoided in these cases. The scenario
in which achieving quantum criticality was initially
reported, but later found to be avoided, has occurred for
both AFM and FM-QCPs. For a long time, YbRh,Si, was
believed to be a clear example of an AFM-QCP [64,65],
then a superconducting phase was discovered in place of
the QCP upon reaching temperatures below 7 =2 mK
[66,67]. ZrZn, was once believed to be an example of an
FM-QCP [68], until tricritical wings were observed upon
reaching lower temperatures in higher quality samples
[8,10,69,70]. If samples beyond x = 0.23 were not pro-
duced, or if the hysteresis in the AFM-FM transition did not
appear above T =2 K, or if magnetization and neutron
measurements revealing the cAFM phase could not be
performed easily, one would have concluded the existence
of a QTCP in LaCr,_,Fe Sbs.

The mechanism behind the emergence of superconduc-
tivity near quantum critical points remains unknown. In the
case of the appearance of AFM,, phases instead of FM
QCPs, the importance of quantum effects [24,26,27,
71-73], the influence of magnetic anisotropy [14,27], or
specific band structure features have been proposed
[28,74,75], but distinguishing between them is difficult
[26]. The fact that some of these phases subsist up to
relatively high temperatures is at odds with a purely
quantum effect. In the case of the cAFM phase observed
here, it is likely that multiple effects contribute simulta-
neously to the avoidance of quantum criticality. Further
studies will tell whether a QTCP can be obtained under

special crystalline symmetries or disorder, as proposed for
FM-QCP [30-32,35,36].

Finally, we note that our results provide a route to drive a
system toward canted AFM phases. Magnetic canting has
recently attracted attention as a way to tune the anomalous
Hall effect (AHE) due to the scaling relation of the AHE
with magnetization [76,77], or to induce a chiral Hall effect
and corresponding chiral magneto-optical effects [78].
Noncollinear antiferromagnets can display an intrinsic
AHE from nonzero Berry curvature [79]. When the canting
is small, the sign of the Hall effect can be switched easily,
which could enable new spintronic applications [80].
The canted magnetization also gives rise to novel magneto-
thermoelectric effects [81]. The phase diagram of
La(Cr, Fe)Sb; where the emergence of a cAFM phase is
observed in the vicinity of a FM-AFM QTCP provides a
general guide to induce magnetic canting in other magnetic
materials. In the past, the pursuit of AFM-QCP led to the
discovery of unconventional superconductivity. Similarly,
our results show that following the FM-AFM tricritical line
can lead to the discovery of complex spin textures.
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