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Motivated by very recent experimental observations of the 1/9-magnetization plateaus in
YCu;3(OH)¢, Br;_, and YCu;(OD)g, Brs_,, our study delves into the magnetic-field-induced phase
transitions in the nearest-neighbor antiferromagnetic Heisenberg model on the kagome lattice using the
variational Monte Carlo technique. We uncover a phase transition from a zero-field Dirac spin liquid to a
field-induced magnetically disordered phase that exhibits the 1/9-magnetization plateau. Through a
comprehensive analysis encompassing the magnetization distribution, spin correlations, chiral order
parameter, topological entanglement entropy, ground-state degeneracy, Chern number, and excitation
spectrum, we pinpoint the phase associated with this magnetization plateau as a chiral Z; topological
quantum spin liquid and elucidate its diverse physical properties.
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The kagome lattice is an exceptional platform for
exploring novel many-body states [1-55], owing to its
distinctive lattice and electron structures. In particular, the
spin-1/2 kagome antiferromagnet with only the nearest-
neighbor Heisenberg exchange interactions has attracted
significant interest as a promising candidate for realizing
the quantum spin liquid (QSL). Although many theoretical
studies have suggested that the ground state of this
system is likely a QSL [17-31], there remains a lack of
consensus regarding the precise nature of this QSL state.
On the experimental front, the kagome antiferromagnets
like herbertsmithite [34-37], Zn-barlowite [38—42], and
YCu;(OH)g, Brsy_, [43,44] have shown great promise as
QSL materials. Moreover, when subjected to an external
magnetic field, the spin-1/2 kagome antiferromagnet can
also manifest novel quantum states [45-55], further high-
lighting its potential as an ideal platform for exploring
exotic quantum states of matter.

Very recently, it was reported experimentally
that 1/9-magnetization plateaus were observed in
YCu;(OH)g4, Bry_, and YCu3(OD)4, Bry_, [56-58]. In
contrast to the commonly observed 1/3-magnetization
plateaus characterized by classical spin orders in other
frustrated antiferromagnets with triangular and honeycomb
lattices [59-67], this 1/9-plateau phase is a magneti-
cally disordered state. This suggests that the mechanism
underlying this phase is fundamentally distinct from the
order-by-disorder mechanism that typically gives rise to
the 1/3-magnetization plateaus. However, experimental
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consensus on certain fundamental characteristics of this
phase, such as its gapped or gapless nature, still remains
elusive. Theoretically, despite several numerical studies on
the spin-1/2 kagome antiferromagnetic Heisenberg model
having corroborated the existence of the 1/9-magnetization
plateau [49,51,55], its precise nature remains a subject of
debate. The density matrix renormalization group (DMRG)
calculation has proposed that this plateau phase may
correspond to a Z5 spin liquid [49], whereas the tensor
network methods have provided evidence supporting a
valence bond solid (VBS) interpretation [51,55]. Given
these divergent perspectives, more comprehensive inves-
tigations employing a variety of methodologies are neces-
sary to unravel this exotic magnetic phenomenon.

In this Letter, we investigate the effect of an external
magnetic field on the kagome antiferromagnetic Heisenberg
model using the variational Monte Carlo (VMC) method.
Without a field, our results reveal that the ground state is a
Dirac spin liquid (DSL). This DSL is robust against weak
fields; however, as the field increases beyond a threshold, a
new disordered state emerges. This state has a nonzero chiral
order parameter and triples the primitive cell. Its magneti-
zation directly jumps onto M /M, = 1/9 (M, the saturation
magnetization) and remains constant over a wide range of
field. In this 1/9-plateau phase, the magnetization distribu-
tion is uniform. The topological entanglement entropy
(TEE) is approximately y = 1.05, which is very close to
In3 ~ 1.1 within numerical error. Based on the relation
y = In D = In 3, where D is the total quantum dimension, we
refer to this exotic state as a chiral Z5 topological QSL.
Moreover, the ground-state degeneracy (GSD) is 9, imply-
ing that this state has an Abelian topological order (D* = 9).

© 2024 American Physical Society
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We further unveil the characteristic spin excitation spectrum
of this Z; QSL, providing key signatures to identify it
directly in experiments.

The kagome antiferromagnetic Heisenberg model in an
external magnetic field is written as

H=1JYS;-S;-B)Y &, (1)
@) ,-

where (ij) signifies the sum over nearest-neighbor bonds,
S; represents the spin-1/2 operator at site i (S7 its z
component), J is the exchange interaction, and B, the
magnitude of the magnetic field.

Following the standard VMC framework, we introduce a
fermionic representation for spin operators [68-71], i.e.,

S; = Lyloy, witb w; = (cip.c; )", which adhere to the
local constraint y]y; = 1. We then decouple the model (1)
into a quadratic mean-field Hamiltonian [72],

Hye = > (tywiw;+He) = > wyloww,  (2)
(i) i

where 7;; represents the spinon hopping and u is the
chemical potential that is tuned by the magnetic field.
Our analysis of various possible states with spinon pairings
reveals that such states are not energetically favorable [72],
so the mean-field (mf) Hamiltonian considered does not
include spinon pairing terms. We construct the variational
wave function as [¥(p)) = Pg|GS)s with p = (t;;, )
embodying the variational parameters, P representing the
Gutzwiller projector that imposes the strict single-occupa-
tion constraint, and |GS) s the ground state of H ;. The
optimization of p is achieved through the minimization of
the energy E(p) = (¥(p)|H|¥(p))/(¥(p)[¥(p)), utiliz-
ing the stochastic reconfiguration method [73,74]. For our
main results, we utilize lattice sizes of N = 16 x 12 x 3 for
the DSL and N = 12 x 12 x 3 for the Z; QSL and VBS
states [72], respectively, unless specified otherwise.

In the regime of low magnetic fields, our VMC calcu-
lations reveal that the ground state is a gapless DSL. This
state is characterized within the framework of mean-
field Hamiltonian (2) by uniform spinon hopping ampli-
tudes, accompanied by an alternating flux pattern of 0
and z through the triangular and hexagonal plaquettes, as
depicted in Fig. 1(a). As illustrated in Fig. 1(c), the mean-
field spinon dispersion exhibits characteristic Dirac cones.
This DSL is consistent with the results obtained in previous
theoretical researches [17,21,23,24,27]. Owing to the
vanishing zero-energy density of states for the spinons,
the magnetic field must reach a threshold to produce a
noticeable magnetization response, as shown in Fig. 2(b).
The false plateau with M /M, < 0.01 in Fig. 2(b) is caused
by the finite-size effect, it asymptotically approaches to
zero with increasing system size [72].
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FIG. 1. Mean-field Ansctze and spinon band structures. The
mean-field Ansdtze for the DSL (a) and Z5; QSL (b), with flux
pattern represented by shaded areas, arrows, and corresponding
values. (c) Complete mean-field spinon band structure for the
DSL. (d) Selected mean-field spinon bands (bands 3 to 7) for the
Z5 QSL, using optimal variational parameters derived from VMC
calculations at B,/J = 0.5.

When the field B, exceeds 0.35J/, the DSL is no longer
energetically favorable, as shown in Fig. 2(a). The identified
phase transition point is in quantitative agreement with that
derived from the previous DMRG and tensor network
methods [49,51,55]. However, there was a significant
divergence in previous studies regarding the nature of the
phase after the phase transition, as discussed above. Our
VMC calculations reveal that the ground state for 0.35 <
B,/J < 0.63is a Z3 QSL, whose nature will be discussed in
detail subsequently. In the process to search for the most
energetically favored state, we have carried out a compre-
hensive examination of a variety of gauge-inequivalent
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FIG. 2. Variational energy E (a), average magnetization M /M
(b), and chiral order parameter |y| (c) as functions of B,.
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Ansdtze, including the uniform resonating-valence-bond
state, DSL, chiral spin liquid, Z, QSLs with different spinon
pairings, Z5 QSL, and several VBS states [72]. For the Z;
QSL and VBS states, we extended the unit cell to encompass
nine sites, equivalent to three primitive cells of the kagome
lattice. For the Z3 QSL, the amplitudes of the parameter 7;; in
the mean-field Hamiltonian (2) and the fluxes within each
primitive cell are uniform, making the 3 x 1 and V3 x43
extended unit cells equivalent. Our calculations utilize the
3x 1 extended unit cell, which facilitates setting
the flux in each primitive cell to be 27z/3, as depicted in
Fig. 1(b). To optimize the phases of the parameter
tij = te'%i, we incorporate 15 independent 6, ; into our set
of variational parameters for the sake of generality. Given
that the VBS states can break the translational and rotational

symmetries, both the 3 x 1 and \/§ X \/§ extended unit cells
are used for the VBS states.

The ground-state energy curve depicted in Fig. 2(a)
clearly shows two phase transitions: one from DSL to Z;
QSL at B, /J ~ 0.35, the other from Z3 QSL to a V3 x3
VBS [72] at B,/J ~ 0.63. In Fig. 2(b), the magnetization
ratio M/M, of the field-induced Z; QSL for 0.35 <
B,/J < 0.63 is observed to stabilize at 1/9. This forms a
robust magnetization plateau, which aligns with the exper-
imental findings in compounds YCu;(OH)4, Br;_, and
YCu;3(OD)g, Bry_, [56-58]. From the perspective of
spinons, the first five of the nine available spinon bands
[see Fig. 1(d)] are occupied by spin-up spinons, while spin-
down spinons occupy only the first four, resulting in a
magnetization ratio of M/ M = <NT —N;)/N=1/9. We
also notice that the \/§ X \/§ VBS for B./J > 0.63 exhi-
bits a 1/3-magnetization plateau, consistent with the
experimental observations [56,57]. Furthermore, we
calculate the chiral order parameter defined as |y| =
| ZiEA/V Sil . (Si2 X Si3)|/NA/v [75,76], where the indi-
ces 1, 2, and 3 correspond to vertexes (arranged clockwise)
in an elementary triangle i, and N /v represents the total
number of triangles. As depicted in Fig. 2(c), |y| is found to
be nonzero and constant throughout the 1/9-plateau phase,

while it is zero in the DSL and v/3 x v/3 VBS phases. In
the magnetization process, the only nonzero chirality of this
Z5 QSL can be detected experimentally using polarized
neutron scattering [77].

We then examine the distribution of magnetization
across the lattice for the 1/9-magnetization plateau phase.
As shown in Fig. 3(a), the magnetization M /M at each site
is very close to 1/9. Such uniformity is in stark contrast to
the behavior seen in the magnetization plateau phases of
other frustrated antiferromagnets [59-67], which typically
exhibit a nonuniform magnetization within their expanded
unit cells. On the other hand, though the magnetic moment
distribution superficially resembles that of conventional
ferromagnetic states, the underlying spin-spin correlations
are profoundly different. As depicted in Fig. 3(b), the

(a) Min = 1/9 - 0.006, Max = 1/9 + 0.005
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FIG. 3. (a) Distribution of magnetization M,/M; in the 1/9-
magnetization plateau phase. The black dashed lines highlight the
unit cell for this phase. The sphere diameters correspond to the
magnetization magnitude at each site. Since the magnetization
distribution is almost uniform, we explicitly provide the mini-
mum and maximum values of magnetization. The magnetization
values along a representative direction (indicated by the dashed
blue line) are also shown in the inset. (b) Spin-spin correlation
functions C(r) along three representative directions, as indicated
by the dashed lines with corresponding colors in (a). Here,
C(r) = Z},E{M‘Z}(‘HS’; voirs,|'Y) with Sl = 8L — (W|SI|W), &
being the unit vectors of the three directions and r the distance.

equal-time spatial spin-spin correlation function C(r) in
this phase exhibits a rapid decay to zero with the distance
between pairs of sites. This behavior differs essentially
from the long-range correlations of ferromagnetic order,
where spins at infinitely separated distances remain per-
fectly correlated. The presence of such short-range spin-
spin correlations is a distinguishing characteristic of a QSL.

Our subsequent analysis focuses on the topological
properties of the 1/9-magnetization plateau phase. An
important quantity for characterizing topological properties
is the TEE [78-83]. To obtain the TEE, we partition the
system into two subsystems, A and B, and calculate the
Renyi entropy S, = (1 —n)"'log[Tr(p%)], where p, =
Trp|¥)(¥| and |¥) is the ground-state wave function
[72,83]. For a short-ranged Hamiltonian, the entanglement
entropy is predicted to follow S(L)=aL —y, with L
representing the boundary length of a contractible patch
with codimension-1 boundary. The coefficient a is n-
dependent, while y, the TEE, is independent of n. We
focus on the Renyi entropy with index n = 2, which is
more feasible to compute with our VMC method [72,83].
Moreover, this TEE can reflect the total quantum dimen-
sion D of the topological order, i.e., y = In D. To extract the
TEE, we calculate the entropy S, for varying sizes of the
shaded region and apply a linear extrapolation to L — 0
in order to eliminate the area-law-associated aL term.
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FIG. 4. (a) Entanglement entropy of the 1/9-magnetization
plateau phase as a function of subsystem size. We choose the
shape of the subsystem as a diamond, as indicated by the shaded
area in the inset. The horizontal axis means that the area of the
subsystem is L? times of primitive cell. The best fit to S(L) =
al —y gives y ~ 1.05. (b) Distribution of Berry phase in the
®,-0, space, which is discretized into a grid of 100 plaquettes.
The Berry phase over each small plaquette is approximately
proportional to the Berry curvature. (c) Spin excitation spectrum
for alattice size of 6 x 6 x 3. (d) Energy distribution curves of the
spectra at I and M. The insert shows the momentum path
-M-T"-K-T" used in (c).

As shown in Fig. 4(a), the TEE of the 1/9-magnetization
plateau phase is y ~ 1.05 =~ In 3, suggesting that the total
quantum dimension D should be 3. Therefore, we can infer
that this disordered phase with 1/9 magnetization is a
Z5 QSL.

The nontrivial topological nature of this chiral Z; QSL
can be further characterized by its GSD [84-86]. We
have constructed nine projected ground states by apply-
ing different boundary conditions to the mean-field
Hamiltonian H,, each corresponding to varying magnetic
fluxes threading the two hole of the torus lattice [72]. These
states are denoted as |¥,s) = PG|GS, ) Where the
fluxes a and f take on the values of 2nz/3 with
ne{0,1,2}. The ground-state degeneracy aligns with
the linear independence of these nine variational wave
functions. To elucidate this degeneracy, we computed the
overlaps between each pair of the nine states, assembling an

TABLE 1. Eigenvalues of the 9 x 9 overlap matrix with the
elements Oyp.p = (Yo p|Py p) for the Z5 QSL, calculated with
lattice size N = 12 x 12 x 3 = 432.

overlap matrix [72,87,88]. Analysis of this matrix revealed
that all nine of its eigenvalues are nonzero, confirming that
the GSDis n, = 9, as summarized in Table I. Given that the
total quantum dimension is D?> = 9, it shows that this chiral
Z5 QSL manifests an Abelian topological order, satisfying
the relation D = n,.

Moreover, unlike other chiral spin liquids [8§7-89], the
chiral Z5; QSL discussed here has a topological Chern
number of zero. As shown in Fig. 1(d), the mean-field
spinon dispersion exhibits gaps between any two bands,
thereby the Chern number of each band is well-defined (see
Table II). From the perspective of spinons, the Chern
number arising from the spin-up spinons is C; =

3, C; = —1 for the magnetization ratio M /M, = 1/9,
while the spin-down spinons yield a Chern number
C, = >}, C; = 1. Thus, the total Chern number is zero,
but the spin Chern number C; = (C; — C;)/2 is nonzero,
which is similar to that of quantum spin Hall states [90]. To
verify the zero Chern number beyond the mean-field level,
we construct the projective many-body wave functions
with twisted boundary condition: Citr, 4 = c,-,Te"@f‘ and
Cir,, = ciye”'®, with j=1, 2 indicating the two
primitive lattice vector directions, L; the lattice size
along the j direction, and ®; € [0,27] the twisted boun-
dary phase. The Chern number is calculated by inte-
grating the Berry curvature F(0©;,0,) [72,8791]:
C = (1/2x) [3"dO, [37 dO,F(0,,0,). As depicted in
Fig. 4(b), the Berry curvature has both positive and
negative values, resulting in a net Chern number of zero.
This zero Chern number also implies a zero chiral central
charge [92]. Considering its long-range entanglement and
the GSD of n, =9, we can identify this Z3 QSL as a
topologically ordered phase with a rank 9 topological order,
denoted as 9g in Ref. [92]. Moreover, the nonzero chirality
of this Z5 QSL is also consistent with the existence of two
95 states that break time-reversal symmetry and are mutual
time-reversed states.

Finally, we discuss how to experimentally identify the
Z5z QSL by measuring the spin excitation spectrum.
Figure 4(c) shows the longitudinal dynamic structure factor
D(q, w) [72] calculated using the VMC method [29,93,94].
The excitation spectrum is gapped and manifests as a broad
continuum, originating from the fractionalization of the
S =1 spin excitations. A notable feature is the enhanced
periodicity of its lower edge, as evidenced by the presence
of multiple minima with the same energy in the first

TABLE II. Chern numbers C of the mean-field spinon bands
for the Z5 QSL.

€1 &y &3 &4 E5 [ery &7 €3 &g

Index 1 2 3 4 5 6 7 8 9

3.547 0916 0.901 0.875 0.837 0.825 0.809 0.146 0.144

C I =2 1 1 =2 4 =2 =2 1
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Brillouin zone. This is related to the translation symmetry
fractionalization [95,96], and the unique fractionalization
characteristics of the Z; QSL can be used to distinguish it
from other QSL states [29,94]. Additionally, the w depend-
ence of the spectra at specific momenta can also serve as a
basis for experimental identification of the Z3 QSL. As
shown in Fig. 4(d), the spectra at I" and M exhibit several
characteristic peaks, and they differ significantly from the
spectra of other QSL states in the kagome system [29,94].

In summary, motivated by experimental observations of
the 1/9-magnetization plateaus in YCu;(OH)4, Br;_, and
YCu;3(OD)g, Brs_,, we utilize the VMC method to in-
vestigate the magnetization of the antiferromagnetic
Heisenberg model on the kagome lattice, with a particular
emphasis on elucidating the nature of the 1/9-magnetiza-
tion plateau. By increasing the magnetic field, we observe a
field-induced magnetically disordered phase exhibiting a
1/9-magnetization plateau. Detailed investigations of the
magnetization pattern, spin correlations, chiral order
parameter, and topological entanglement entropy have
led us to identify this 1/9-magnetization plateau phase
as a chiral Z; topological QSL. We also highlight key
features in the spin excitation spectrum that can be used for
the experimental identification of this Z3 QSL. It should be
noted, however, that our model does not include disorder
effects, which are unavoidable in real materials. The
influence of disorder effects on the magnetization plateau
phase is also an important issue that warrants further study.
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