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Rabi oscillations have long been thought to be out of reach in simulations using time-dependent density
functional theory (TDDFT), a prominent symptom of the failure of the adiabatic approximation for
nonperturbative dynamics. We present a reformulation of TDDFT which requires response quantities only,
thus enabling an adiabatic approximation to predict such dynamics accurately because the functional is
evaluated on a density close to the ground state, instead of on the fully nonperturbative density. Our
reformulation applies to any real-time dynamics, redeeming TDDFT far from equilibrium. Examples of a
resonantly-driven local excitation in a model He atom, and charge-transfer in the LICN molecule are given.
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While the balance between accuracy and efficiency makes
time-dependent density functional theory (TDDFT) a suc-
cessful method for predictions of molecular spectra and
response [1-5], the difficulty in obtaining functional approx-
imations that perform reliably beyond the response regime
has dogged its use in applications where the system is driven
far from equilibrium [6,7]. Technological and experimental
advances involving nonperturbative electron dynamics, trig-
gered for example by laser fields or collisions with ions,
give urgency to solving this problem, given the dearth of
alternative computationally feasible methods on complex
systems. TDDFT simulations can provide useful insights
and sometimes match experimental results [8—11], but they
can also produce significant errors, or fail, in scenarios like
scattering [12—14], pump-probe spectroscopy [15-18], Rabi
oscillations [15,19-23], and long-range charge-transfer
dynamics [24-27].

In the nonperturbative regime, TDDFT operates via the
time-dependent Kohn-Sham (TDKS) equations, in which
many-body effects are mapped to a one-body exchange-
correlation (xc) potential. The root of the failures is the
adiabatic approximation to the xc functional [7], which
cannot capture step and peak features that are a signature of
memory dependence of the exact xc functional [28]. While
the exact vxc[n; ¥(0), ®(0)](r, ) depends on the history
of the density n(r, 7 < ), the initial interacting state ¥(0)
and the choice of the initial KS state ®(0), this dependence
is neglected in adiabatic approximations which insert the
instantaneous n(r,?) into a ground-state approximation
v§e[n(1)](r). The nonadiabatic features correct spurious
frequency shifts in spectral peaks of systems driven out of a
ground state [15,17,18,23] that occur in simulations using
an adiabatic approximation. These shifts have a severe
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consequence for resonantly-driven systems, causing the
adiabatic TDKS simulation to detune itself from the driving
frequency. Even an adiabatically-exact approximation,
meaning one where the exact ground-state functional is
used, fails [7,29]. It is in fact surprising that there are
situations where adiabatic TDKS predictions are qualita-
tively reasonable in the nonperturbative regime, given that
the xc functional approximation is being evaluated on a fully
nonequilibrium density where the underlying true and KS
wave functions are typically very far from any ground state.

The search for practical memory-dependent functionals
that contain the requisite nonadiabatic features for non-
perturbative dynamics has so far come up dry [7].
Developing improved functionals for excitations in the
linear response regime has been more successful, e.g.,
incorporating exact exchange improves Rydberg spectra
and charge-transfer excitations [25,30-33], including fre-
quency dependence yields double-excitation frequencies
and oscillator strengths [34-36], including long-ranged
kernels captures excitonic spectra [37-41], and current-
density dependence yields relaxation and dissipation from
electron viscosity [42,43].

We present a reformulation of TDDFT for nonperturba-
tive electron dynamics that requires xc functionals only
in the linear and quadratic response regimes. Instead of
evaluating xc functionals on the fully nonequilibrium
system, they are evaluated close to the ground state, making
them more suitable for adiabatic approximations. For
systems driven far from their ground state, the same
adiabatic functional performs far better in this response-
reformulated TDDFT (RR-TDDFT) than it does in the
traditional TDKS scheme. A special case of this approach
was shown earlier on Ehrenfest dynamics [27], and is
related to how electron-nuclear dynamics with TDDFT is
often implemented, but here we extend the idea to general
nonperturbative problems, resolving the problem of
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missing Rabi oscillations and long-range charge-transfer
dynamics in the TDKS approach, and demonstrate this with
two examples.

The TDDFT theorems [1] state that from the one-body
density n(r, t) one can extract all observables for a system
evolving in the time-dependent many-body Schrodinger
equation

i0,|¥) = (H' + V(1)) ¥): (1)

where HO) =T 4+ W + Vg)(z is the sum of the kinetic
energy operator, electron-electron interaction, and static
external potential due to the nuclei, respectively, and
VP (1) = [ d®rv™P(r, t)A(r) is a one-body local potential
operator representing an externally applied field, with
fi(r) the one-body density operator. We use atomic units
(e* = h = m, = 1) unless otherwise stated. The standard
procedure maps the system to the noninteracting KS system
that reproduces the exact interacting density n(r, ) with
orbitals evolving under the TDKS equations:

[=V2/2 + vg(r, 1)]gh;(x. 1) = i0,;(x. 1), (2)

where vg(r.7) = 0l (r, 1) + v (r, ) + v (r. 1) + vxc(r. )
and n(r,t) = >, |¢:(r,1)|>. Here the Hartree potential
vu(r,t) depends on the instantaneous density, while
vxc(r, 1) = vxc[n; ¥(0), ®(0)](r, #) has memory depend-
ence whose neglect in usual approximations leads to errors
and failures, as discussed earlier.

RR-TDDFT bypasses the solution of the TDKS orbitals
and solves for TD expansion coefficients of the many-
body state without actually finding the state. We expand
the time-dependent physical many-body wave function in
terms of the (unknown) many-body eigenstates: |¥()) =
>, Co(1)|¥,), where |¥,) satisfies the static many-body
equation: HO|¥,) = E,|¥,). Inserting into Eq. (1) gives

iC(1) = EnCpn() + Y _Vilh (1)Cy (1), (3)
where the sum goes over all the eigenstates and
B0 = (LN = [ @), (@)

with  p,,(r) =N [&ry.d®ry¥;,(r,ry.xy) P, (1, 1;.ry)
being the transition density and N the number of electrons
and spin-summation is implied. The time-dependent one-
body density can be extracted from

n(r,1) =Y Ch(t)Co(1)pyn(r). (5)

n,m

We now argue that Egs. (3)—(5) provide a route to obtaining
all observables of a nonperturbative real-time dynamics

from just TDDFT response properties. First, invoking the
Runge-Gross theorem, all observables can be obtained
from the initial state |¥(0)) and the time-evolving density
n(r,t). Equation (5) provides n(r,t), which requires a
solution of the coupled time-evolution equations, Eq. (3)
for the coefficients. Solving these requires (i) the initial
coefficients C,,(0), which are expansion coefficients of the
initial many-body state |¥(0)) in terms of the many-body
eigenstates of H(®). Note that the interacting eigenstates
themselves are not required, only knowledge of which states
are occupied and with what amplitudes, which would be
determined by the initial conditions of the problem. Often
this is just the ground state, Cy(0) =1, C,4(0) =0.
(i1) energies E,, = Ey + w,,, obtained from adding frequen-
cies from TDDFT linear response [44,45] w,, to the ground-
state DFT energy E,, and (iii) the transition-density p,,,, (r),
obtained from linear response TDDFT [44-46] for ground-
excited transitions, and quadratic response for excited-
excited transitions [47].

With the ingredients all obtained from ground-state
DFT, linear and quadratic TDDFT response, the time-
dependent density Eq. (5) can be obtained, and hence all
observables [1]. We again stress that neither the time-
evolving many-body wave function, nor the many-body
eigenstates are needed in this procedure. The idea may be
seen as similar in spirit to the time-dependent configuration
method, but here linear and quadratic response TDDFT
are used to obtain the static electronic structure quantities
and we never actually find the wave function. Figure 1
illustrates the procedure.

A common situation is when the applied field is a laser
modeled by v*P(r,7) = £(7) -r, and the observable of
interest is the dipole moment d(z). Then, Egs. (3)—(5)
simplify to

iC(1) = EnCon(t) + €Y d,, G, (1)
d(1) => > Ca(1)Cu(t)d,, (6)

specify {Cpn(0)} from
physical initial state

compute {wm = Em — Eo},

{pm=0,n(r)} from linear compute
response TDDFT, and e no(r), Eo
{nm(7), Pmzo,nzo(r)} from DFT

from quadratic response

solve coupled Egs. 3 for compute
{Cm(t)} using {ViRhP()} n(r,t) frgm Eq. 5
computed from Eq. 4 ‘ 1

calculate ob-
servables

i

FIG. 1. Flowchart of the RR-TDDFT procedure.
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where d,,_, are the dipole moments of the excited state ¥,
available from response TDDFT [48,49], d,,, are the
transition dipoles between excited states, available from
linear response when one of the states is the ground state,
and otherwise from quadratic response [44-47].

Comparing with the standard TDDFT procedure using
TDKS equations, Eq. (2), the salient advantage of
RR-TDDFT is that the domain on which the adiabatic
xc functional approximations are evaluated (ground states
and their linear and quadratic responses), is far closer to
the domain in which the approximation was derived. In
contrast, the xc functional in TDKS with an adiabatic
approximation,  v4¢[n; ¥(0), @(0)](r, 1) = v§e[n(r)](r),
applies a ground-state functional in a domain on the
left-hand side, which evolves far from any ground state.
Such an approximation is unlikely to be accurate. On the
other hand, in RR-TDDFT, there are three xc objects:
8¢ [ngs ](r) (needed for E, and the KS orbitals and
excitation energies that the linear response builds upon),
fxclngs](r. ¥, ) (the central xc kernel in linear response
TDDFT), and gxc [ng,&](r, r, v, w,®") (the second-order
response kernel). The latter two are related to functional
derivatives of vxc[n, ¥(0), ®(0)](r) evaluated on a ground-
state density, so the domain involves only small perturba-
tions around a ground-state density.

Another fundamental difference is in the role of the
initial state. In the TDKS approach, the physical initial
state W(0) appears only implicitly through the functional
dependence of vxc[n;¥(0),®(0)](r, 7). This initial-state
dependence is unknown and typically neglected in TDKS,
since adiabatic functionals depend only on the instanta-
neous density. However, the exact xc functional varies
significantly when the system starts in different initial states
all with the same one-body density [50,51]. The initial
interacting state plays a more prominent, and conceptually
easier, role in RR-TDDFT than in TDKS since it appears
directly as an initial condition in the evolution equations,
through its expansion coefficients in terms of the many-
body eigenstates, rather than in an unknown functional
dependence; again, note spatial dependences of ¥(0) and
Y, are not required. The initial condition in TDKS is,
instead, the KS initial state ®(0). Different choices of ®(0)
give different xc potentials, and the adiabatic approxima-
tion gives significantly varying errors for different choices
[14,50,52]. These challenges are moot in RR-TDDFT.

Effectively, RR-TDDFT separates out the time and space
dependence of observables, which reduces the complexity
in the xc effects from the inherent entanglement of time and
spatial nonlocality [53,54]. This leads to different numeri-
cal considerations in the two approaches: RR-TDDFT
trades a self-consistent solution of the set of N partial-
differential TDKS equations in space and time, where N is
the number of electrons, for a self-consistent solution of a
set of M ordinary differential equations in time, where M
represents the anticipated number of many-body states that

will be occupied during the dynamics. RR-TDDFT also
requires solving linear response equations for M energies,
densities, and M (M — 1) couplings, some of which need
quadratic response. We can estimate M from properties of
the applied field, such as intensity, frequencies, and polar-
izations. Ultimately, a convergence study may be required
for general nonperturbative situations, adding more states
until observables stabilize. In scenarios where a very large
number of states are likely to be involved, RR-TDDFT may
become unfeasible. But in many scenarios M may be in the
single-digits (e.g., just 2 for resonant driving), regardless of
the number N of electrons, and RR-TDDFT, in addition to
its more reliable predictions, offers a computational ad-
vantage over TDKS due to its ordinary rather than partial
differential equation nature. For computing excited-to-
excited state couplings, we note that quadratic response
may be circumvented by approximating these from linear
response akin to the auxiliary wave function method
employed to compute derivative couplings between excited
states [46,55].

The two following examples demonstrate how adiabatic
functionals achieve Rabi oscillations when used within
RR-TDDFT, while completely failing within TDKS.

Our first example is a one-dimensional (1D) helium atom
(1D He) with soft-Coulomb interactions, studied before in
this context [19-22]: vgg = —2/V1+ x*, contained in a
box of size —40 to 40 a.u. The real-space octopus code [56]
was used in this example. We apply a field £(r) =
0.00667 sin(wt) to the ground state, where @ is resonant
with the first singlet excitation, @ = »** = 0.5336 a.u.
With the transition dipole moment of py; = 1.106 a.u.,
this gives a Rabi period of Tk, where Ty/2=
(7/0.00667uy;) = 425.9 au. The dipole moment,
d(t) = [ xn(x,)dx, where n(x, 1) is obtained from solving
Eq. (2) for TDKS and d(7) from Eq. (6) for RR-TDDFT.
Owing to the spatial symmetry of the ground and first
excited states resulting in a zero permanent dipole moment,
the dipole moment from Eq. (5) [or Eq. (6)] simplifies
to d(r) = 2%(C3(1)C) (1) Jor-

The top left panel of Fig. 2 depicts the dipole moment
dynamics obtained from the exact TDSE solution, with the
expected Rabi oscillation. The top second and third plots
show the result of TDKS evolution with the exact exchange
(EXX) approximation and two different driving frequen-
cies: the driving frequency in the second plot is as in the
exact dynamics, while in the third, it is instead the
excitation frequency predicted by EXX linear response,
@w"¥X = (.5488 a.u. As observed earlier [20], in both
cases a significant deviation from the exact behavior is
evident. The dipole envelopes falsely suggest a Rabi-like
oscillation albeit at wrong frequencies (the expected half-
Rabi period calculated from uf&* = —1.0924 a.u. gives
TEXX /2 = 431.2 a.u.): the density at the minimum of the
envelope is not that of the EXX excited state, see bottom
right panel, discussed more shortly.
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FIG. 2. Resonantly-driven dipole dynamics in 1D He. Top
panels: (left) Numerically exact result calculated using TDSE
with a pulse, £(7) =0.00667sin(w?) and @ = ©™ = 0.5336 a.u.;
(middle) TDKS with EXX functional; (right) TDKS-EXX driven
by XX = 0.5488 a.u. Bottom panels: (left and middle) Dipole
moments calculated from RR-TDDFT with EXX driven at o
and "X, respectively. Also shown in dotted and dashed lines are
the populations of the ground and the first singlet excited states,
|Co(#)|?> and |C;(2)|? (unlabeled). (Right) The exact n, (x) (black
solid) and EXX ngxx(x) (blue dotted) excited-state densities
calculated from static (response) calculations, compared with the
exact time-evolved densities nj, (x, t* = 425.9 a.u.) (orange with
circle) and EXX, ngxx(x, r* = 364.35 a.u.) (green dashed).

Turning now to RR-TDDFT, the first plot in the bottom
panel shows the result of applying the pulse used in the
exact case in Eq. (6), using the energies and transition
densities given by EXX. We observe the expected detuned
Rabi oscillation, and only a partial population transfer, due
to the mismatch of @™*X with the driving @. Applying the
field instead at w"™*X, displays a true Rabi oscillation as
shown in the middle plot. There is full population inversion
at TEXX /2, verified by the densities in the rightmost plot.
The density at this time has the same shape as the excited-
state density, unlike that of the TDKS density at what looks
like its half-Rabi time. This plot also shows the excited-
state density njyy(x) computed from a response calcu-
lation with EXX [48,49], which is very close to the exact
excited state density n*(x). Thus, while EXX failed to
produce a Rabi oscillation when used within TDKS, this
same functional approximation succeeded when used
within RR-TDDFT.

We now turn to the case of the lithium cyanide
(LiCN) molecule, a test system for light-driven dipole
switching [26,57]: the degenerate second (S,) and third (S5)
excited states have a dipole moment along the bond axis (Z)
opposite to that in the ground state. Applying a laser pulse
resonant with the excitation frequency along the X (9)
direction, which coincides with the direction of the tran-
sition dipole to the S, (S3) states, respectively, drives the

transition to the S, (S3) state with a concomitant large
change in the z-dipole moment. The failure of TDKS to
accurately describe this dipole switching highlights the
adiabatic approximation’s limitations [6,7,17,24,26]. Here
we show that the same adiabatic approximations perform
well when applied instead within the RR-TDDFT approach.
We use the NWChem [58] code to perform the real-time
TDKS calculations, and its linear response module to
extract the ingredients in Eqgs. (3)-(5) for RR-TDDFT,
truncated to two states: Sy- and S,-state energies, dipole
moments, and their transition dipole moment.

We take a short enough pulse that the nuclei may be
treated statically during the evolution, fixed at their
equilibrium geometry, Rp;_c = 3.683 a.u. and Rq_n =
2.168 a.u [57]. The applied field is a resonant z-pulse [59]
along the X direction,

VPP (r, 1) = xfosin? <;—;> sin(wr), (7)

where o is the excitation frequency of the S, state, o is
the half-width of the pulse envelope, and the amplitude
fo = (m/olpos,|) with pgs.,, the x-transition dipole
moment between states S, and S,. (For a two-state
problem, this pulse achieves population inversion by time
T = 50 fs). We will take the reference (“exact”) calculation
as the time-dependent CISD(10,15)/6-31G* simulation of
Fig. 3 in Ref. [26], which applied this 7 pulse at resonant
frequency w®* = 6.8 eV, close to the linear response CISD
value of 6.77 eV, and ¢ = 25 fs, such that a full population
inversion is achieved at around 38 fs.

The top panel of Fig. 3 shows the z-dipole moment y,
when driven by the z-pulse of Eq. (7), as predicted from
TDKS and our RR-TDDFT, using adiabatic PBE [60] and a
tuned BNL (tBNL) [61,62] functional, both using the same
6-31G* basis set as the reference CISD. The resonant
frequencies predicted by linear response with these func-
tionals are w™BE = 4.31, and o = 6.80 eV, where we
tuned the range-separation parameter ygy;, = 0.8 in order
to align the excitation energy of S, state with the applied
frequency. The complete failure of both TDKS simulations
is evident in the figure, similar to what was observed in the
earlier work [26,63], and in model system analogs of the
problem [24,25,29] (which used a flat envelope rather than
a sm-pulse). In particular, despite the close agreement of
the tBNL linear response frequency with the reference, the
TDKS calculation of the dynamics is miserable. In contrast,
RR-TDDFT with this functional (RR-tBNL in the figure) is
excellent. RR-TDDFT using PBE still fails, with even less
of a response than TDKS-PBE, as shown in the inset. This
is because the PBE frequency is severely understimated due
to the charge-transfer nature of the excitation, and with
such a weak field, off-resonant to any system frequency, the
system is barely disturbed.
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FIG. 3. Resonantly-driven charge transfer in the LiCN mol-

ecule: Top panel: Dipole moment computed from TDKS,
and RR-TDDFT, using PBE and tBNL functionals within the
6-31G* basis set. The applied z-pulse has the parameters
0P = p* =68¢eV, 6 =25fs and f,=0.01019 and the
results are compared with the reference TD-CISD from Ref. [26].
Lower panel: As above, but with pulse parameters determined by
the corresponding electronic structure.

Instead, RR-TDDFT with PBE achieves dipole switching
for a pulse that is resonant with the PBE frequency. This is
shown in the lower panel of Fig. 3, where we again show
TDKS and RR-TDDFT with PBE and tBNL functionals,
but with the frequency and transition dipole that enter into
the resonant pulse Eq. (7) obtained from the corresponding
underlying electronic structure. If we did not have a
reference calculation, and were relying on the PBE (or
tBNL) functional for our description of the system, these
would be the z-pulse parameters we would use to achieve
the resonant charge transfer. Now we see that, due to
functionals being evaluated on a domain closer to the
ground state, RR-TDDFT with either the PBE or tBNL
functional reproduce the dipole-switching well, while these
same functionals used in the real-time TDKS scheme fail.

In summary, our response reformulation of real-time
TDDFT significantly improves electron dynamics far from
the ground state with standard functionals. These func-
tionals fail to produce Rabi oscillations in the TDKS
scheme but succeed in the RR-TDDFT framework because
the xc functionals in RR-TDDFT are evaluated on densities
close to the ground state, aligning with their derivation
domain.

RR-TDDFT allows us to compute nonperturbative elec-
tron dynamics with as much confidence as TDDFT is
used in the response regime. We note that, like TDKS,
RR-TDDFT is exact in principle, and need not be limited
to using adiabatic approximations. RR-TDDFT with an
adiabatic approximation will work poorly in cases where
these approximations are known to fail in linear [34,36]
as well as quadratic [64,65] response regimes, but since it
has been clearer to identify such cases, and to develop
improved nonadiabatic response functionals, RR-TDDFT
promises to overcome the reliability challenges of TDDFT
in the nonperturbative regime. Finally, we note that the
RR-TDDFT framework could be used in conjunction with
any method that provides excited state energies, densities,
and transition densities.
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