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The quantum Hall (QH) effect is one of the most widely studied physical phenomenon in two
dimensions. The plateau-plateau transition within this effect can be comprehensively described by the
scaling theory, which encompasses three pivotal exponents: the critical exponent κ, the inelastic scattering
exponent p, and the universal exponent γ. Prior studies have focused on measuring κ and estimating γ,
assuming a constant p value of 2 across magnetic fields. Here, our work marks a significant advancement
by measuring all three exponents within a single graphene device and a conventional two-dimensional
electron system. This study uniquely determines p at low magnetic fields (weak localization region and
well outside the QH regime) and high magnetic fields (in the vicinity of the QH regime). Employing a
comprehensive analytical approach that includes weak localization, plateau-plateau transitions, and
variable range hopping, we have directly determined κ, p, and γ. Our findings reveal a distinct variation
in p, shifting from 1 in the low magnetic field regime to 2 in the QH regime in graphene.
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Introduction—The quantum Hall (QH) effect, which
is a widely studied phenomenon across various two-
dimensional (2D) systems, transcends the constraints of
material specifics and disorder types. In the QH regime,
electronic states are quantized into Landau levels, charac-
terized by delocalized states at their centers and localized
states at their boundaries. Scaling theory, serving as a
fundamental framework [1,2], conceptualizes transitions
between QH plateaus as localized-delocalized transitions,
typifying quantum phase transitions with universal critical
behavior.
According to the scaling theory, the localization length ξ

diverges near the center of a Landau level (Ec), following a
power-law relation ξ ∼ jE − Ecj−γ , where γ represents the
universal exponent [1,2]. This relationship extends to
variations in the applied magnetic field B, transforming
into ξ ∼ jB − Bcj−γ. In real systems, this behavior is
observable in the broadened density of states, as reflected
in longitudinal and Hall resistivities (ρxx and ρxy). The finite
scaling theory is formulated as ðBmax − BcÞ ∼ Tκ [Ref. [3] ]
and dρxy=dB ∼ T−κ, where Bmax is the peak magnetic field
position at different temperatures T, Bc is the critical

magnetic field, κ ¼ p=ð2γÞ is the critical exponent, and
p is the inelastic scattering exponent, with Lϕ ∼ T−p=2 at
finite temperatures representing the inelastic scattering
length or phase coherence length [1,4].
Previous studies have rigorously examined critical

behaviors in the plateau-plateau (P-P) transition, proposing
their description through the scaling theory [1,2]. The
critical exponent κ, subject to spin or valley degeneracy,
has been reported as 0.42� 0.04 in spin-split systems [1,2]
and 0.21� 0.02 in spin-degenerate systems [5]. Under the
assumption that p equals 2 and is independent of B, the
universal exponent γ has been determined to be 4=3 for
classical percolation [6,7] and 7=3 for quantum percolation
[8–10]. However, this assumption of p ¼ 2 is debated [11],
as it lacks justification in scenarios other than the clean
limit, where p ¼ 1 might be more appropriate. Moreover,
those samples are high mobility and no signature of weak
localization (WL) at low magnetic fields has been reported,
hindering any possible measurements on the inelastic
scattering exponent p in the low magnetic field regime
[1,2,5]. Subsequent research revealed a broad spectrum of κ
values 0.15 ≤ κ ≤ 0.81 [Refs. [12–17] ], challenging its
universality and suggesting influences from varying dis-
order correlation lengths [13,14]. Recent theoretical work
elaborates on the correspondence and highlights similar
localization physics in the integer and fractional quantum
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Hall regimes [18]. Moreover, seminal work further
addresses the nonuniversal κ in some plateau-plateau
transitions in the fractional quantum Hall regime [19],
pointing out several possible origins which deserve future
investigations. Importantly, the exact value of p, particu-
larly in high magnetic fields, has remained elusive, with its
determination dependent on the mechanism of inelastic
scattering of delocalized electrons.
Theoretical investigations predict diverse temperature

dependencies under different physical conditions, leading
to variations in the relationships among κ, γ, and p [20]. In
diffuse transport [6,21], the relationship is κ ¼ 1=ð2γÞ. For
electron-electron scattering in pure metals, κ ¼ 2=γ is
observed [22], while for electron-phonon scattering, κ ¼
p=γ with p ranging from 1.0 to 4.0 is proposed [6,21,23].
In scenarios involving noninteracting electrons, the quan-
tum percolation model with Coulomb interaction suggests
κ ¼ 1=γ [24], a relation also indicated for graphene,
scattering on short-range potentials in variable range
hopping conduction within Landau level (LL) tails broad-
ened by disorder [25].
Here, we report significant contributions to the afore-

mentioned research areas by unequivocally determining the
inelastic scattering exponent p at low magnetic fields using
WL analysis and at high magnetic fields near the QH
regime using variable-range hopping (VRH) analysis, all
within a single device. In order to achieve this, clear
temperature-independent points in ρxx and σxy [26] as well
as negative magnetoresistance near zero magnetic field are
required. At low magnetic fields, the observation of
negative magnetoresistivity, indicative of WL, facilitates

the extraction of Lϕ and the inelastic scattering exponent
p ¼ 1, aligning with that in the dirty limit. Conversely, at
high magnetic fields in the QH regime, a clear crossing
point in the measured resistivity allows VRH analysis of the
conductivity peak tail [27] to lead to the determination of γ.
Notably, we draw upon recent important work reporting a
substantially higher universal exponent (γ ≈ 2.6 instead of
7=3) of the Anderson transitions in the integer quantum
Hall regime [28]. Combined with κ, derived from scaling
analysis of P-P transitions, we ascertain the high-magnetic-
field inelastic scattering exponent p ¼ 2, characteristic of
the clean limit. This variation in p underscores a transition
of the device from the dirty limit to the clean limit,
providing novel insights into the QH effect and its under-
lying mechanisms.
Experimental results—In our experiments, we employed

epitaxial monolayer graphene grown on a semi-insulating
4H-SiC(0001) substrate. The graphene sample was shaped
into a Hall bar geometry, with a length of 2000 μm and a
width of 400 μm. Such a large-size sample is advantageous
for studying weak localization and the QH effect. At
T ¼ 2 K, the carrier density and mobility of our graphene
sample are determined to be 2.66 × 1011 cm−2 and
8950 cm2 V−1 s−1, respectively.
Magnetotransport measurements—As presented in

Fig. 1(a), we extracted the symmetric and antisymmetric
components to accurately probe these properties and avoid
potential mixed contributions of ρxx and ρxy [29,30]. This
extraction reveals a clear crossing point at Bc ¼ 2.03 T in
the longitudinal resistivity. (The measured magnetoresis-
tivities are shown in Fig. S1 of the Supplemental Material

FIG. 1. (a) ρxyðBÞ and ρxxðBÞ at different temperatures (b) σxyðBÞ and σxxðBÞ at various temperatures.
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[31]). In the absence of a magnetic field, ρxx increases with
decreasing temperature, indicative of insulating properties
typical of the diffusive regime.
Upon increasing the magnetic field, we observe a notable

decrease in the slope of ρxx as ρxy approaches h=ð6e2Þ,
signaling the onset of the ν ¼ 6 QH state. As the magnetic
field is further increased beyond 3.5 T, a clear emergence of
the ν ¼ 2 plateau is observed, signifying a transition from
the ν ¼ 6 to the ν ¼ 2 QH state.
Figure 1(b) displays the magnetoconductivities, σxx ¼

ρxx=ðρ2xx þ ρ2xyÞ and σxy ¼ ρxy=ðρ2xx þ ρ2xyÞ at different
temperatures T. The observed temperature dependence
of the Hall slope δρxy=δB is attributed to electron-electron
interactions [33], which significantly influence the trans-
port properties of the system [Fig. 1(a)]. Notably, a
temperature-independent crossing point at Bc ¼ 2.03 T
is also observed in Hall conductivity [Fig. 1(b)], consistent
with the crossing point identified in longitudinal resistivity
[Fig. 1(a)].
In Fig. 2(a), we present the converted magnetoconduc-

tivity, Δσxx ¼ σxxðBÞ − σxxð0Þ, plotted against magnetic
field. This data are analyzed using the formula derived by
McCann et al. [34]:

ΔσxxðBÞ ¼
e2

πh
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where FðzÞ ¼ ln zþ ψð0.5þ z−1Þ and ψðxÞ is the
digamma function. Here, Lϕ, Li, and L� represent the
phase coherence length, elastic intervalley scattering
length, and elastic intravalley scattering length, respec-
tively. Utilizing Eq. (1), we extracted the temperature
dependence of these characteristic lengths, as depicted in
Fig. 2(b). Our analysis, refined through the three-parameter

fit results, emphasizes the importance of the first term
associated with Lϕ in our methodology. This approach
allows for the accurate extraction of Lϕ, essential for
calculating the inelastic scattering exponent p from the
temperature dependence of coherence, as demonstrated in
Fig. 2(c). While Li and L� are integral to our theoretical
model, in our fitting regime, their precise values are
secondary to our study’s main objective. The linear
dependence of L−2

ϕ on temperature (T) aligns with the
relation τ−1ϕ ¼ βkBT ln g=ℏg, where τϕ ¼ L2

ϕ=D and g ¼
σxxh=e2 [35]. The T dependence of L−2

ϕ suggests that
electron-electron scattering is the dominant mechanism for
inelastic scattering, leading to an inelastic scattering length
exponent p ¼ 1. This result aligns with predictions for the
dirty limit [36] and corroborates previous findings in both
monolayer [37–39] and bilayer graphene [40].
Scaling analysis of the P-P transition—To investigate the

scaling behavior associated with the ν ¼ 6 to v ¼ 2 P-P
transition, we analyzed two critical parameters plotted
against temperature on a logarithmic scale, as shown in
Fig. 3, including the maximum slope of the Hall resistivity
ðdρxy=dBÞmax and the magnetic field width of the transition
ΔB ¼ Bmax − Bc [3].
In our scaling analysis of the P-P transition, our findings

indicate a critical exponent κ of 0.31� 0.01. This value of κ
was derived from both the magnetic field width of the
transitionΔB and the maximum slope of the Hall resistivity
ðdρxy=dBÞmax, shown in Figs. 3(a) and 3(b), respectively.
Notably, our observed value of κ deviates from the
commonly referenced universal value of approximately
0.42. This departure highlights the distinct scaling behavior
observed in our study, setting it apart from previous
findings. It is worth noting that this universal value of
κ ≈ 0.42, has been corroborated by Shen et al. [29], who
interpreted their results as being consistent with the
pioneering work by Wei et al. [1]. This deviation could
be attributed to LL mixing effects in graphene [41]. Our

FIG. 2. (a) The converted magnetoconductivity in a low magnetic field regime. The solid symbols denote the experimental data, while
the solid curves represent the theoretical fits based on the weak localization model. (b) Temperature dependence of three key lengths: the
inelastic scattering length (Lϕ), elastic intervalley scattering length (Li), and elastic intravalley scattering length (L�), showcasing how
each varies with temperature. (c) The squared inverse of the inelastic scattering length (L−2

ϕ ) as it varies across different temperatures,

demonstrating a linear relationship that follows the form Lϕ ∼ T−p=2.
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results on a wide range of κ in epitaxial graphene on SiC
(0.31 ≤ κ ≤ 0.74; also see Supplemental Material [31])
may suggest a nonuniversal κ, and importantly, provide the
first test of the theoretical model [3] in graphene.
Variable range hopping analysis—VRH analysis stands

as a pivotal component of our study, offering a contrast to
previous methodologies that relied on size-dependent
measurements, such as those utilized in GaAs=AlGaAs
heterostructures [42]. Those earlier methods could be
limited by the sample’s dimensions when deducing the
inelastic scattering exponent p. Our approach, utilizing
VRH, allows for the determination of p without such
sample size constraints, making it applicable to a wide
variety of samples across different 2D systems, though
clear T-independent points in ρxx and σxy at Bc are needed.
At low temperatures, where VRH becomes the predomi-

nant transport mechanism in localized regions, the
Coulomb interaction between localized electrons notably
creates a Coulomb gap in the density of states near the
Fermi level [43]. This behavior is described by the
following expression:

σxxðTÞ ∝
1

T
e−

ffiffiffi
T0
T

p
; ð2Þ

where

kBT0 ¼ C
e2

4πεε0ξðBÞ
: ð3Þ

In Eq. (3), T0 denotes the characteristic temperature, withC
as a constant of order unity and ε representing the
permittivity of the sample. In our analysis of the ν ¼ 6
to v ¼ 2 transition of σxx (Refs. [24,43–45]), we scrutinize
the tail of the conduction peak (2.7 T < B < 3.5 T) to
extract the scaling exponent γ [27,46]. This methodological
choice, while traditionally employed for its direct approach
in scaling analyses, acknowledges the nuanced role of LL
mixing across the studied magnetic field range.
In Fig. 4(a), we plotted σxxT against T1=2 for various

magnetic fields, observing high linearity at higher temper-
atures with a slope corresponding to − ffiffiffiffiffi

T0

p
.

Deviations at lower temperatures (T < 5 K) may be
attributed to high T0 values relative to T. Utilizing scaling
theory, where ξ is proportional to jB − Bcj−γ , we derived
γ ¼ 3.19� 0.03 from a logarithmic plot of T0 against
1=Bc − 1=B, as shown in Fig. 4(b). This value deviates
from the expected universal value of 7=3 predicted by the
quantum percolation model [47]. The observations of
higher γ and lower κ values, consistent with other studies
[48], and the deviation of κ from its universal value could
be attributed to factors such as LL mixing [41].

FIG. 3. (a) The magnetic field width of the transition ΔB. (b) The maximum slope of the Hall resistivity ðdρxy=dBÞmax versus T.

FIG. 4. (a) Semilogarithmic plot demonstrating the T−1
2 dependence of σxx · T, specifically focusing on the tail region of the ν ¼ 2 to

ν ¼ 6 transition peak. (b) The characteristic temperature T0, extracted from the slopes observed in part (a) as a function of 1=Bc − 1=B.
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Remarkably, our VRH analysis facilitates the estimation of
p ≈ 2 through the relationship κ ¼ p=ð2γÞ, a significant
contrast to the value p ¼ 1 observed at lower magnetic
fields.
Discussion and conclusion—In this final section, we

contextualize our experimental results with the broader
research spectrum on various 2D systems such as
InGaAs=InP and AlxGa1−xAs=GaAs heterostructures.
Wei et al. [1] studied InGaAs/InP heterostructures and
initially proposed the concept of universal scaling in two
dimensions. They suggested that with a fixed p ¼ 2, the
critical exponent κ should be a universal constant, inde-
pendent of LL.
In contrast, Koch et al. [12] examined low-mobility

AlxGa1−xAs=GaAs heterostructures, revealing scaling
behavior with nonuniversal κ values dependent on mobility.
These variations could stem from long-range interactions
[14] or differences in the inelastic scattering exponent p
across samples [42]. They aligned their findings with the
quantum percolation model, showing a possible universal
exponent ν ¼ 2.3� 0.1 at the lowest LLs and varied p
values ranging from 2.7� 0.3 to 3.4� 0.4 determined
through size-dependent methods.
In addition to the work on graphene Corbino device [48],

earlier studies on GaAs-based heterostructures [49] mea-
sured κ ¼ 0.50� 0.03 and extracted γ ≈ 2 using VRH.
Despite deviating from expected norms, these values were
rationalized within scaling theory, assuming p ¼ 2. The
dominance of different VRH mechanisms, such as Efros-
Shklovskii (E-S) VRH and Mott VRH, under varying
magnetic field conditions was noted [50].
Addressing concerns from a previous study [14] regard-

ing nonuniversal values potentially arising from nonopti-
mal temperatures or self-heating effects due to high
excitation currents, we ensured that our experimental setup
and conditions were robust against such issues. Notably,
self-heating was rigorously verified not to significantly
impact our measurements (detailed in Supplemental
Material, Sec. II [31]).
In our study, we have innovatively advanced method-

ologies to extract three critical scaling exponents within a
single device, a contrast to previous approaches [42]. This
advancement allows for the precise and reliable determi-
nation of the inelastic scattering exponent p at low
magnetic fields outside the QH regime and at high
magnetic fields within the QH regime, a capability pre-
viously unattainable.
Our analysis reveals a distinct value of p ¼ 1 in the low

magnetic field regime, determined through WL analysis.
Importantly, our study extends to examine two additional
graphene devices that exhibit the insulator-quantum Hall
transition [51], offering further support for our conclusions
(see Supplemental Material, Sec. III for details [31]). This
finding contrasts with p ≈ 2 in the high magnetic field
regime, highlighting a significant transition from the dirty

limit to the clean limit. Within the QH region, the observed
inelastic exponent p ≈ 2 underscores notable differences in
scattering mechanisms between the low magnetic field
regime and the tail of LLs, where carrier transport pre-
dominantly occurs through edge states and the inelastic
scattering rate of electrons is markedly suppressed [52].
Conversely, our investigations of the GaAs=AlGaAs

heterostructure [53] revealed a consistent value of p ≈ 1
at high magnetic fields within the QH regime, as detailed in
Supplemental Material, Sec. IV [31]. For low magnetic
fields, we used WL analysis outside the QH regime. This
variation underscores the need for a meticulous derivation
of p value within the QH regime, considering its sensitivity
to magnetic field strength. For clarity, the exponents
between graphene and GaAs are compared as outlined
in Table I.
The distinctive p values observed in studies by Koch

et al. [12] and Wei et al. [1,5] are rationalized in this
context, acknowledging the varying influence of the bulk
state on transport, contingent on the strength of electron-
electron scattering [20,48,54]. It is worth noting that while
many studies typically assume p ¼ 2, several works have
determined p through size-dependent measurement or
approximation methods. Therefore, Table II summarizes
these results, illustrating the variance in p values across
different mobilities in GaAs-based 2DEG devices.
While Lϕ and its power-law dependencies have been

well characterized in the critical regime for QH systems, a
comprehensive study of p within the quantum critical
regime has been somewhat limited. Our systematic efforts
in this study address this research gap by probing p at low

TABLE I. Comparison of inelastic scattering exponents p in
epitaxial graphene and GaAs-based 2DEG under different mag-
netic field conditions.

Low magnetic fields High magnetic fields

Epitaxial graphene p ≈ 1 p ≈ 2
GaAs-based 2DEG p ≈ 1 p ≈ 1

TABLE II. Comparison of inelastic scattering exponents p in
GaAs-based 2DEG across different mobilities.

Method μðcm2=VsÞ p Ref.

Using p¼2κγ 1.01×104 p¼1 This work
Using p¼2κγ 1.5×105 p¼2 [49]
Using p¼2κγ 4.1×105 p¼2 [41]
Sample-size dependence
measurement

1.5×105 p¼3.0−3.4
[42]

5.8×104 p¼2.7−3.3
Assumption of zero
temperature fluctuations

2.9×105 p¼1.5−2.1 [30]

Sample-size dependence
measurement

≈106 p¼2 [22,23]
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magnetic fields outside the QH regime and at high
magnetic fields within the QH regime. Conducted on
monolayer graphene, a true 2D system, our results are
not influenced by long-range interactions [13,14], enabling
us to focus exclusively on the mechanisms of electron
scattering. Various systems may be useful for further
investigations [55–57].
In conclusion, our investigation into the QH P-P tran-

sition and the extraction of three critical exponents provide
substantial experimental insights into scaling behavior and,
specifically, inelastic scattering in two dimensions. While
reviewing experimental and theoretical works, we observe
that κ and p may deviate from conventional values, and
propose that the nonuniversal scaling behavior is still
governed by the relation κ ¼ p=ð2γÞ. Variations in expo-
nents could be attributed to differences in sample character-
istics, such as impurity type, distribution, and geometry
[58]. Central to our findings is the inelastic scattering
exponent p, determined by the dominant mechanism of
electron scattering and undiminished by the perturbative
effects, including possible LL mixing. A significant
achievement of our current study is the extraction of these
exponents within a single device across two distinct 2D
systems. This accomplishment not only highlights the
essence of our work but also sets a new benchmark for
future research in this field. Our findings pave the way for
further exploration and a deeper understanding of the
complex behaviors in 2D material systems.
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