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Discovering novel emergent behavior in quantum many-body systems is a main objective of
contemporary research. In this Letter, we explore the effects on phases and phase transitions of the
proximity to a Ruelle-Fisher instability, marking the transition to a collapsed state. To accomplish this, we
study by quantumMonte Carlo simulations a two-dimensional system of soft-core bosons interacting through
an isotropic finite-ranged attraction, with a parameter η describing its strength. If η exceeds a characteristic
value ηc, the thermodynamic limit is lost, as the system becomes unstable against collapse. We investigate the
phase diagram of the model for η≲ ηc, finding—in addition to a liquid-vapor transition—a first-order
transition between two liquid phases. Upon cooling, the high-density liquid turns superfluid, possibly above
the vapor-liquid-liquid triple temperature. As η approaches ηc, the stability region of the high-density liquid is
shifted to increasingly higher densities, a behavior at variance with distinguishable quantum or classical
particles. Finally, for η larger than ηc our simulations yield evidence of collapse of the low-temperature
fluid for any density; the collapsed system forms a circular cluster whose radius is insensitive to the number
of particles.
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A first-order transition between two liquid phases is an
uncommon, still elusive phenomenon that challenges our
understanding of the fluid state of matter [1]. In pure
systems, a liquid-liquid phase transition (LLPT) is found in
tetrahedral liquids [2,3], where, however, it falls in the
supercooled region. A LLPT may occur in parallel with a
change in the chemical nature of the constituent particles,
like in hydrogen [4], where a molecular liquid is trans-
formed under pressure into an atomic liquid. In equilib-
rium, a LLPT has been observed in phosphorus [5,6] and in
sulfur [7], between liquids characterized by a different
degree of polymerization. There also exist (controversial)
examples of LLPT in complex molecular fluids (e.g., in
triphenyl phosphite [8]). The situation is clearer in models,

where a genuine LLPT occurs in classical particles inter-
acting through isotropic core-softened potentials [9–11] or
anisotropic potentials [12–14]. The mechanism commonly
invoked for the onset of a LLPT is the existence of two
distinct repulsive length scales in the effective interparticle
potential.
We here introduce a new paradigm of LLPT with no

classical counterpart—that is, a structural transition not
involving a change in the elementary constituents and/or
interactions. To this aim, we push our system (a bosonic
fluid) close to its stability threshold, such as existing for
particles that interact via a finite repulsion augmented with
a strong enough attraction. We will highlight the nontrivial
role of quantum indistinguishability, without which the
LLPT simply vanishes. In the same system, we also
document a first-order transition from liquid to superfluid,
a possibility which has remained unexplored so far.
While bare interatomic forces are strongly repulsive at

short distances, an effective steplike repulsion can be
induced at larger separations, in the nanometer to micro-
meter range. This is achieved, for instance, in ultracold
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bosonic gases, by means of a weak laser coupling of the
atomic ground state to a highly excited Rydberg state
[15,16]. Such “soft-core” bosons are an ideal playground
for the study of supersolidity [17–19], which in this kind of
systems is promoted by cluster-crystal ordering of particles
at high density [20–23].
We consider the scenario (which could become feasible

in future experimental protocols) in which a finite-range
attraction of tunable strength is added to a soft-core
repulsion. As the strength of attraction grows a Bose fluid
eventually undergoes the collapsing transition predicted a
long time ago by Ruelle and Fisher [24,25] and observed in
classical fluids [26–29].
For a stable interaction (see p. 33 of Ref. [25]), the grand-

canonical partition function cannot grow faster than
expðcVÞ as a function of the system volume V, where c
depends on the temperature and the chemical potential.
When stability is violated, the grand partition function is
instead divergent, even for finite V, while a system with a
fixed number N of particles collapses to a compact cluster
or blob with a potential energy proportional to N2. Ruelle
and Fisher derived analytic criteria [24,25] to ascertain
whether a bounded potential with an attractive component
leads to collapse in a classical system. For a large class of
regular potentials, they also proved [24] that classical
instability and quantum instability are reciprocally implied
in the case of bosons. However, the behavior of a quantum
fluid near and beyond the stability threshold is largely
unexplored, and can certainly be elucidated by numerical
simulation. From the experimental standpoint, the physics
of a quantum system near collapse is relevant, for example,
to cold dipolar assemblies [30,31].
In this Letter, we present the results of a numerical

investigation of a two-dimensional (2D) system of identical
particles of spin zero, hence obeying Bose statistics,
interacting via a double-Gaussian (DG) potential [28]:

uðrÞ ¼ ϵ
�
e−ðr=σÞ2 − ηe−ðr=σ−3Þ2

�
; ð1Þ

with η > 0 [we also set a cutoff distance rc ¼ 6σ, beyond
which u ¼ 0 in Eq. (1)]. This potential is known to
characterize a fluid near collapse; it has the advantage that
the collapsing threshold can be exactly determined (see
below). Henceforth, we take ϵ and σ as units of energy and
length, respectively. Moreover, the temperature T is
expressed in units of ϵ (we set Boltzmann’s constant
kB ¼ 1).
For an isotropic potential uðrÞ of finite strength, a

sufficient condition for thermodynamic instability is
ũð0Þ < 0 [25], where ũðkÞ is the Fourier transform of
uðrÞ; on the other hand, if ũðkÞ ≥ 0 for all k, then the
system is stable [24]. This implies that, with the DG
potential [Eq. (1)], a system is thermodynamically stable
for η ≤ ηc ¼ 0.094 031…, unstable for η > ηc.

We carried out Monte Carlo simulations of the DG fluid
with the aim of exploring—well beyond the usual dilute
limit—the route toward Ruelle-Fisher instability in a
quantum system, contrasting the system behavior with that
of its classical counterpart. By simulating the system
beyond the collapse threshold, we also searched for
indications of subextensive scaling of the emerging cluster.
Our study is completed by an analysis of the structure and
superfluidity of the collapsed system, also in comparison
with a liquid droplet in equilibrium with vapor.
To set the stage for subsequent analysis, it is useful to

investigate first the classical DG fluid as a function of η.
We employ Gibbs-ensemble Monte Carlo (GEMC) simu-
lations [32,33] to determine liquid-vapor coexistence and
isothermal-isobaric MC simulations to locate the stability
region of the triangular crystal. To this purpose, a large-size
crystal is heated isobarically until a jump is observed in the
values of the number density (ρ) and energy (E).
Liquid-vapor coexistence points for a number of η values

close below ηc are plotted in Fig. 1 left. Up to η ≈ 0.09 the
shape of the binodal line is usual. As η approaches ηc,
however, the coexistence region becomes wider and wider
near zero temperature, thus progressively eroding the solid
region (whose boundaries are less sensitive to η [34,35]). In
particular, notice the substantial increase in width of the
two-phase region on going from η ¼ 0.094 to η ¼ 0.094 03
(a value only 3 × 10−5 higher), suggesting that the liquid
density diverges as η → ηc and T → 0 simultaneously. For
η ¼ 0.0935, where the density of the saturated liquid is
around 1, the solid is confined to a tiny region close to
T ¼ 0 (Fig. 1 right), which would shrink even further for

FIG. 1. Phase diagram of the two-dimensional classical DG
model on the ρ-T plane. Left: liquid-vapor coexistence data for a
few values of η < ηc and various choices of the initial numbers of
particles in the two simulation boxes (in the legend). Right:
magnification of the low-temperature region for η ¼ 0.0935. The
triangular solid (S) is stable in a small density window, bounded
to the left by the vapor (V) and to the right by the liquid (L). The
dashed line marks the triple temperature.

PHYSICAL REVIEW LETTERS 133, 096001 (2024)

096001-2



larger η. We did not observe a hexatic phase, whose
existence is possible in an extremely narrow temperature
range (no more than 10−4 wide) above the solid phase [36],
and thus tentatively assume a first-order melting transition.
We found no evidence of cluster solids, consistently with
the predictions of Ref. [37]. More results for the classical
DG fluid, including a survey of the structure of two-
phase coexistence at low temperature, are presented in
Supplemental Material [38] (see also Refs. [39–41]
therein).
For the simulations of the quantum system, we used the

continuous-space worm algorithm [42,43]. If periodic
boundary conditions are adopted,we compute the superfluid
fraction fs using the winding-number estimator [44];
otherwise, in a droplet regime, we employ the area esti-
mator [45,46]. The relative importance of quantum effects is
embodied [47,48] in the parameterΛ ¼ ℏ2=ðmϵσ2Þ,mbeing
the particle mass. We find that, for η ¼ 0.09 and Λ ¼ 0.02,
the pair correlation function (PCF) at a density ρ ∼ 1 and at
temperature T ∼ 0.1 is nearly indistinguishable from that of
the classical system. Unless otherwise specified, we use this
value of Λ in our simulations (we also present, for com-
parison, some results obtained with Λ ¼ 0.04).
A sample of raw simulation data for η ¼ 0.0935 is

reported in Fig. 2. Here, we plot the pressureP as a function
of ρ at T ¼ 0.08; as evidenced by the two van der Waals
loops in PðρÞ, upon compression the vapor undergoes two
first-order phase transitions. The liquidlike character of the
two denser phases, referred to as L1 and L2, is demon-
strated by the PCF (see Fig. 2 inset), which is less
structured for the phase of higher density (L2).
Figure 3 shows the computed phase diagram of the

quantum DG model for three values of η (0.093, 0.0935,
and 0.0938) with Λ ¼ 0.02, and for η ¼ 0.0935 with
Λ ¼ 0.04. The phase behavior of distinguishable quantum

particles (black dots in Fig. 3) mimics that of classical
particles. On the other hand, the Bose system displays a
much richer phase diagram. Far away from ηc [panel (a)]
the only phase transition present is between vapor and
liquid, with the liquid becoming superfluid below the
Berezinskii-Kosterlitz-Thouless (BKT) line, very much
like, e.g., two-dimensional 4He [49,50]. Close to ηc, a
second liquid phase appears (L2), which coexists with the
low-density liquid (L1) between a temperature Tt and an
η-dependent critical temperature Tc [panels (b) and (c)].
Below Tt, the L2 phase instead coexists with the vapor, and
a cusp on the saturated L2 line at the triple temperature Tt
marks this change. The L2 phase acquires superfluid
properties below the BKT line, which hits the saturated
L2 line close to Tt (we have to say more on this later). As ηc
is approached more and more closely, the L2-L1 and
L2-vapor regions become increasingly wider, pushing the

FIG. 2. Pressure versus density for the quantum DG model with
η ¼ 0.0935 at T ¼ 0.08. The gray bands are phase-coexistence
regions, located by applying the equal-area rule to the P vs 1=ρ
curve. Inset: PCF of L1 and L2 at a few densities (between 1 and
1.75 for L1; between 3 and 3.75 for L2).

FIG. 3. Phase diagram of the two-dimensional quantum DG
model for Λ ¼ 0.02 and three values of η: 0.093 (a), 0.0935 (b),
and 0.0938 (c). In panel (d), Λ ¼ 0.04 and η ¼ 0.0935. The
circles are coexistence points which are colored differently
depending on the phase and the transition involved (see text).
Black dots refer to distinguishable particles. Also shown are the
straight lines T ¼ Λρ (see text). A few points on the BKT line are
plotted as triangles. The solid phase, if it exists at all, would only
be stable at temperatures lower than 0.01.
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entire saturated L2 line toward higher densities. This
feature is enhanced in a system with more significant
quantum effects, i.e., characterized by a greater value of Λ
[panel (d)]. An analysis of the structure and superfluidity of
L2 droplets in vapor is reported in [38]. Furthermore, we
found no trace of cluster solids, in accordance with
numerical simulations of Gaussian-core bosons in 2D [51].
A first-order LLPT is unusual for one-component Bose

fluids with isotropic interaction, if not even novel. It is an
exquisitely quantum phenomenon made possible by par-
ticle indistinguishability and favored (at temperatures
slightly larger than Tt) by the disparity in structure between
a normal liquid of nonoverlapping particles (L1, ρ ≈ 1) and
a denser, almost structureless liquid (L2). As long as cluster
crystals are absent, we expect that a LLPTwill be a generic
occurrence in a Bose fluid near collapse.
Next, we explore the quantum nature of the L2 liquid as

a function of temperature, by computing the superfluid
fraction along a number of isochores. Typical results are
plotted in Fig. 4, reporting fs data for a few sizes in the case
η ¼ 0.0935, Λ ¼ 0.04, and ρ ¼ 4. The standard way of
estimating the superfluid transition temperature TBKT is by
using the BKT recursive relations [see, for instance,
Ref. [49]). In two different cases (corresponding to the
two lower panels in Fig. 3) we find that the BKT line is well
approximated by the expression TBKT ≈ Λρ (reduced
units), which is based on the well-known “universal jump”
condition [52] and has been shown to afford quantitatively
accurate predictions of TBKT in rather different 2D Bose
systems, even in the presence of long-ranged interactions
[53,54]. This criterion suggests the BKT line will in some
cases intersect the saturated L2 line above Tt, e.g., for η ¼
0.0935 and Λ ¼ 0.04, where in a range of temperatures
above Tt the DG model would then exhibit a first-order
liquid-to-superfluid transition. This exciting finding raises
the prospect of a coexistence between normal-liquid and

superfluid states, which, to our knowledge, has hitherto
never been observed in a (real or model) quantum fluid.
As for the behavior of the model in the unstable regime,

we consider the case η ¼ 0.2. For the classical model, at
T ¼ 1 or larger we find the same phenomenology described
in Ref. [28], that is, the existence of a characteristic density
ρ×ðTÞ, increasing with T, marking the crossover from a
region of full-blown instability on the high-density side,
where the collapse of a fluid sample occurs very fast, to a
region of apparent stability, where the system remains
homogeneous for times longer than the duration of the
simulation (see more in [38]). Considering then the
quantum DG fluid at T ¼ 0.1, collapse of the sample into
a compact cluster invariably occurs, even at a density as low
as 0.0001. The final cluster looks indistinguishable from a
circular droplet in equilibrium, were it not for the scaling of
its size and energy with N: while the area of ordinary
droplets is an extensive property, the radius of the cluster
emerging from the decay of an unstable fluid is almost
independent of N; simply, the cluster grows in density
when N is increased, while its total energy scales as
N2 [38].
In conclusion, we consider a strongly interacting, two-

dimensional Bose fluid in the proximity of collapse. To
achieve this, the interparticle potential must be finite at the
origin and have an attractive component of adequate
strength. To prevent the occurrence of cluster crystals at
high density we assume a DG interaction (as representative
of a broader class of potentials with the same characteristics
[38]). We find that the phase behavior of the nearly unstable
system is unusual, in that it undergoes an unprecedented
type of LLPT. The denser liquid (L2) becomes superfluid
when cooled below the BKT line; on the other hand, the
low-density liquid (L1) is only stable above the BKT line,
therefore the BKT transition only occurs for L2. As the
interaction potential is tuned toward the stability threshold,
the L2 phase is shifted to higher and higher densities.
Finally, the physics of the DG fluid can be observed in a
system of ultracold bosons weakly dressed with a Rydberg
state; specifically, the atoms should be tailored, in a
range of distances well beyond the atomic diameter, with
a Qþ-type repulsion [37] and a short-range attraction of
generic shape. In this case, stability is recovered, but in an
interval of densities below freezing the liquid phase will
exhibit essentially the same features present in the DG
fluid. We look forward to seeing this scenario realized in
future cold-atom platforms.
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FIG. 4. Superfluid fraction vs temperature for η ¼ 0.0935, Λ ¼
0.04 and ρ ¼ 4. Data for various sizes are compared (see legend).
The dashed line is a fit through the data for the biggest size. The
continuous line is an extrapolation to infinite size based on
Kosterlitz-Thouless theory (see, e.g., Ref. [49]).
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