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Conventional approaches for scattering manipulations largely rely on the technique of field expansions
into spherical harmonics (electromagnetic multipoles), which nevertheless is not only nongeneric
(expansion coefficients depend on the origin position of the coordinate system) but also more descriptive
than predictive. Here, we explore this classical topic from a different perspective of controlled excitations
and interferences of quasinormal modes (QNMs) supported by the scattering system. Scattered waves are
expanded into coherent additions of QNMs, among which the relative amplitudes and phases are crucial
factors to architect for scattering manipulations. Relying on the electromagnetic reciprocity, we provide full
geometric representations based on the Poincaré sphere for those factors, and discover the hidden
geometric phase of QNMs that drives the scattering evolutions. Further synchronous exploitations of the
incident polarization-dependent geometric phase and excitation amplitudes enable efficient manipulations
of both scattering intensities and polarizations. Continuous geometric phase spanning 2π is directly
manifest through scattering variations, even in the rather elementary configuration of an individual particle
scattering waves of varying polarizations. We have essentially established a profoundly all-encompassing
framework for the calculations of geometric phase in arbitrary scattering systems that are reciprocal. Our
theoretical model will greatly broaden horizons of many disciplines not only in photonics but also in
general wave physics where geometric phase is generic and ubiquitous.
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The seminal topic of electromagnetic scatterings by
particles has been the cornerstone for investigations of
light-matter interactions and various scattering-related
applications [1–7]. It has recently rapidly merged with
other vibrant branches of singular, topological, and non-
hermitian photonics [8–11]. Despite its rather long history
and the aforementioned multidisciplinary advances, the
central mathematical and physical technique for the field of
particle scatterings remains to be spherical harmonics and
electromagnetic multipolar expansions [1,12]. Indeed many
breakthroughs in this field have been made based on this
technique, such as recent introductions of Poincaré-Hopf
theorem [13], electromagnetic multipolar parity [14], and
duality [15] into Mie theory to reveal its intrinsic topo-
logical and geometric properties [16–20].
Nevertheless, the language of spherical harmonics and

electromagnetic multipoles is more descriptive than pre-
dictive: except for some special scenarios of particles with

ideal spherical or cylindrical symmetries, this technique
describes the already known fields (either the near or
scattered far fields calculated with other numerical meth-
ods) rather than predict them. For example, even for the
elementary case of plane waves scattered by a particle of
arbitrary shape, knowing the multipolar components of one
scattering configuration barely tells anything about the
scatterings of another even neighboring configuration with
a slightly different incident direction and/or polarization.
Moreover, the multipolar expansion coefficients are non-
generic and highly dependent on the origin position of the
coordinate system chosen [1,12,15]. In addition, formal-
isms based on spherical harmonics are usually cumbersome
and tend to obscure rather than clarify the profound
physical picture. To circumvent all those limitations of
the conventional method and further advance this seminal
field, new concepts and techniques have to be introduced.
Here, we investigate the problem of electromagnetic

scatterings from a different perspective of engineered
quasinormal mode (QNM) [21,22] excitations and inter-
ferences. Scattered waves by the particles can be expanded
into QNM radiations, and thus relative amplitudes and
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phases among them would decide the scattering patterns.
Relying on the principle of reciprocity [23], we manage to
provide full geometric representations for the excitation
coefficients and discover the subtle geometric phase
(Pancharatnam-Berry phase) [24–27] of QNMs. We further
exploit the unveiled geometric phase and excitation ampli-
tudes that are both dependent on incident polarizations for
scattering manipulations, such as eliminating total and
directional scatterings and designing directions of polari-
zation singularities. Continuous geometric phases from
0 − 2π are directly manifest through scattering variations,
even in the rather elementary configuration of an individual
particle scattering planewaves of varying polarizations. Our
work has essentially provided an exhaustive framework for
the calculation of geometric phase in scattering systems,
which can potentially accelerate both fundamental explora-
tions and practical applications relying on scatterings, not
only of electromagnetic waves, but also of waves of other
formswhere the geometric phasewould generically emerge.
The eigenmodes supported by an arbitrary open scatter-

ing system, also termed as QNMs, can be directly calcu-
lated and they generally feature finite Q factors and
complex eigenfrequencies [21,22,28]. When the system
is excited by an external source, its scattered (near and far)
fields can be expanded as

EscaðrÞ ¼
X

m

αmEmðrÞ; ð1Þ

where EmðrÞ denotes the radiation of the mth QNM
and αm is the complex expanding (excitation) coefficient.
In the far field, both EscaðrÞ and EmðrÞ are transverse,
and thus Eq. (1) can be reformulated as Escaðr̂ÞJscaðr̂Þ ¼P

αmðωÞEmðr̂ÞJmðr̂Þ. Here, r̂ is unit direction vector
r̂ ¼ r=jrj; Esca and Em are field amplitudes; Jscaðr̂Þ and
Jmðr̂Þ are the corresponding unit Jones (row) vectors [29].
Both scattering intensity and polarization distributions are
dictated by the relative amplitudes and phases among the
excitation coefficients αm, which are then decided by the
incident wave (initial condition) [28]. Except for particles
with high symmetries (such as spherical and cylindrical
particles), conventional calculations of αm rely on near-
field integrations [21,22,30], the complexities of which
have obscured the profound physical picture.
For an incident (along r̂i) plane wave of wavelength λ

and polarization Jones vector Ji, if the scattering system is
reciprocal, it was recently revealed that αm can be alter-
natively calculated in the far field [30],

αm ∝ JiJ
†
mð−r̂iÞ; ð2Þ

where † denotes combined operations of complex con-
jugate and transpose, and thus J†mð−r̂iÞ is the corresponding
column Jones vector for the QNM radiation opposite to the
incident direction. To reveal the central principles, we start

with the simplest scenario of two-QNM (denoted by modes
A and B) excitations and the framework established can be
naturally generalized to deal with multimode cases. To
compact the notations, we simplify JA;Bð−r̂iÞ as JA;B and
the Jones vector for QNM radiation along an arbitrary
direction r̂ as JA;B, with the direction vector r̂ suppressed
for both Jones vectors and field vectors. Then according to
Eqs. (1) and (2), the scattered field is [26,33,34]

Esca ∝ jJiJ†AjEA expðiφAÞ þ jJiJ†BjEB expðiφBÞ: ð3Þ

To geometrize the relative excitation amplitude and phase,
we map the Jones vectors of Ji, JA (JA), and JB (JB) to
points P, AðAÞ, BðBÞ on the Poincaré sphere [26,29,33,34]
of unit radius and parametrized by three Stokes parameters
S1;2;3 [shown in Fig. 1(a)]. Then Eq. (3) can be reduced to a
pure geometric form [28]

Esca ∝ cos

�
1

2
PA
⌢

�
EA þ cos

�
1

2
PB
⌢

�
EB expðiφgÞ: ð4Þ

Here, PA
⌢ðPB⌢Þ denotes the length of the great arc (shorter

segment) connecting PA (PB); for example, when the
incident polarization is orthogonal to that of mode A

(JiJ
†
A ¼ 0), P and A are antipodal points (PA

⌢ ¼ π) and

thus mode A would not be excited [cosð1
2
PA
⌢Þ ¼ 0], being

consistent with the special scenario of single-mode exci-
tations [30,31]. The phase contrast φg ¼ φB − φA can be
expressed as a geometric phase [28]: φg ¼ 1

2
Ω, where Ω

denotes the solid angle of the geodesic circuit PABP [see
Fig. 1(a); Ω is positive (negative) for counterclockwise
(clockwise) circuit viewed above [24–27].
Relying on Eq. (4), the scattering intensity Isca ¼ jEscaj2

[28] and polarization along arbitrary directions can be
calculated. When the scattered field Esca is projected to a
specific polarization [point Q on the Poincaré sphere with
Jones vector JQ; see Fig. 1(a)], such as being analyzed by a
polarizer, we obtain

EQ
sca ∝ JQ

�
cos

�
1

2
PA
⌢

�
cos

�
1

2
AQ
⌢

�
EA

þ cos

�
1

2
PB
⌢

�
cos

�
1

2
BQ
⌢

�
EB exp½iðφgþφ0

gÞ
�
: ð5Þ

Here, the extra geometric phase term comes from the
polarization projection φ0

g ¼ 1
2
Ω0, where Ω0 denotes the

solid angle of the geodesic circuit AQBA [see Fig. 1(a)]
[26,33,34]. The total geometric phase φG ¼ φg þ φ0

g has to
be calculatedly through two separate parts, unless A (B)
and A (B) overlap (QNM polarizations along −r̂i and r̂ are
identical), when it is half the solid angle of the whole
geodesic circuit PAQBP.
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We emphasize that the theoretical framework that has
been so far elaborated on is fully based on the QNMs of
open photonic systems, and thus is broadly applicable to
scattering bodies (individual or clustered) of arbitrary
geometric shapes and optical parameters, requiring only
the reciprocity that guarantees the validity of Eq. (2).
Furthermore, the geometric phase involved consists of
two parts that have different origins: φg originates from
the coupling of incident polarization (P) onto the QNM
radiation polarizations (A and B) along −r̂i [Eq. (2)], while
φ0
g originates from the projections of QNM radiation

polarizations along an arbitrary scattering direction r̂ (A
and B) to any desired polarization of interest (Q). Since the
formalisms have put no constraints on r̂i or r̂, our model is
applicable to arbitrary incident and scattering directions

[28]. For applications that do not involve the scattering
polarization projection, Eq. (4) contains all scattering
information and φ0

g will be absent.
We now turn to a specific bicylinder scattering configu-

ration shown in Fig. 1(b) to verify our theoretical frame-
work (numerical calculations are performed using COMSOL

Multiphysics throughout this work). The cylinders are iden-
tical, perpendicular to each other and consists of gold
(effective permittivity fitted from data in Refs. [28,32]). The
individual cylinder supports an electric dipole (ED) at the
spectral regime of interest [28]. Similar structures consisting
of optical items with spatially varying orientations are
widely employed for various photonic functionalities based
on geometric phase [35–38]. The mostly widely discussed
scattering configuration is shining, for example, left-handed
circularly polarized (LCP and S3 ¼ 1) waves along −z and
then project the forward scattered waves onto right-handed
circularly-polarized (RCP and S3 ¼ −1) states. The conven-
tional pictorial representation of the geometric phase
(φG ¼ π) is shown in the inset of Fig. 1(c) [28]. From the
perspective of our theoretical framework, such a represen-
tation is a reduced approximation of our model with the
following two requirements: (i) each consisting cylinder
supports an ED, with radiation polarizations along�z being
both linear and parallel to the cylinder orientations; (ii) the
couplings between the cylinders are negligible, ensuring that
the EDs supported by both cylinders are also the QNMs of
the bicylinder system. (i) and (ii) results in overlapped A
(B) with A (B) on the equator of the Poincaré sphere, and
thus the conventional representation [28] [inset of Fig. 1(c)]
is merely a special scenario of the our general representation
in Fig. 1(a). However, when the modes supported are not
EDs, the coupling is not negligible, or the incident and
scattering directions are arbitrary, the conventional meth-
odology to calculate geometric phase relying on structural
orientations would break down.
To showcase the superiority of our model, we show in

Fig. 1(c) the evolution of the polarization (in terms of S3)
for the forward scatterings along −z with fixed LCP
incidence while varying intercylinder distance d. For the
conventional approach, the RCP components cancel each
other due to destructive interference (φG ¼ π) and thus the
forward scattered waves maintain to be LCP with fixed
S3 ¼ 1 [28]. Nevertheless, as is manifest in Fig. 1(c), with
decreasing d and thus stronger intercylinder couplings, the
forward scattered waves will contain both RCP and LCP
components, which our model accurately reproduces. For
the extreme case of d ¼ 0, we further show in Fig. 1(d) the
scattering cross section (Csca) spectra to confirm the
excitations of two QNMs (LCP incidence), near fields of
which are shown as insets. The QNM radiations along the
opposite incident direction (þz) are linear [28] and their
positions are indicated in the inset of Fig. 1(e), where we
show the forward scattering polarization evolutions with
varying incident polarizations. Here, P locates on a great

(d)

(e) (f)

(c)

(b)(a)

FIG. 1. (a) Poincaré sphere on which P (Q), A (A) and B (B)
represent respectively the incident (projected) polarization and
polarizations of the mode radiations opposite to the incident
direction (along the scattering direction r̂). The geometric phase
upon incident coupling (scattered polarization projection) is half
solid angle of geodesic ciruit PABP (AQBA): φg ¼ 1

2
Ω

(φ0
g ¼ 1

2
Ω0). (b) A pair of perpendicular gold cylinders. Depend-

ence of S3 for scatterings along −z on inter-particle distance d
(c), and incident polarizations transversing a great circle para-
meterized by β [(e) perpendicular incidence with r̂i along −z;
(f) tilted incidence with r̂i⊥x and ∠r̂iy ¼ π=4]. (d) Scattering
spectra for LCP incidence along −z, where the near fields of the
two QNMs excited are shown as insets. In (d)–(f) d ¼ 0 and in
(c), (e) & (f) the incident wavelength λ ¼ 0.8 μm and A
(B) locates at S1 ¼ 1 (S1 ¼ −1) except that in (f) B locates
at (−0.92, 0.316, −0.236).
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circle parametrized by β (β ¼ 0 for LCP incidence) and

equally bisects AB
⌢

(PA
⌢ ¼ PB

⌢
). We then tilt the incident

direction (r̂i⊥x and ∠r̂iy ¼ π=4) and show the scattering
polarization along−z in Fig. 1(f) for P transversing another

great circle equally bisecting AB
⌢

(see the inset; β ¼ 0

corresponds to state L that locates on AB
⌢

with φg ¼ 0).
Since radiation of mode B opposite to the incident direction
is not linearly polarized anymore, B does not locate on the
equator. For both scenarios of perpendicular and tilt
incidences [Figs. 1(e) and 1(f)], results from our model
agree perfectly well with the simulation results. The results
for the nonperpendicular bicylinder configuration and for
another classical structure consisting of a pair of twisted
split-ring resonators [28] further confirm the validity of our
theoretical model.
In our theoretical framework, the calculation of the

geometric phase has nothing to do with orientations of
the structures, and thus our model is applicable to indi-
vidual particles without any preferred orientations. The
gold particle shown in Fig. 2(a) exhibits fourfold rotation
symmetry that secures a pair of degenerate QNMs [28]. We
shine plane waves along þz and track scattering intensity
distributions on the x-y plane. The radiations of the two
QNMs along −z (opposite to the incident direction) are
almost linearly polarized parallel to x and y [see points A
and B in Fig. 2(b)] [28]. The normalized scattering intensity
distributions [parametrized by the azimuthal angle ϕ as
shown in Fig. 2(a)] are shown in Figs. 2(c) and 2(d), for
four incident polarizations with the corresponding geo-
metric phase [Fig. 2(b)] φg ≈ 0; π (two perpendicular linear
polarizations) and φg ≈ π=2; π=4 (circular and elliptical
polarizations), respectively. In Fig. 2(c), the geometric
phase π is directly manifest through the two distinct
scattering patterns and we note that our demonstration
(with an individual scattering particle) of such classical
geometric phase is even simpler and more direct than the
earliest ones by Fresnel-Arago and Hamilton-Lloyd [27].
As is shown in Fig. 2(c), for φg ≈ 0 the scattering along the
direction ϕ ¼ ϕ0 ≈ 113° is zero. Along this direction,

according to Eq. (4) we have EA ≈ −EB since PA
⌢

≈ PB
⌢

≈
π=2 and φg ≈ 0 [Fig. 2(b)]. With fixed PA

⌢
≈ PB
⌢

while
changing φg, we then have Esca ∝ 1 − expðiφgÞ and thus
scattering intensity along this direction: Isca ∝ jEscaj2 ∝
1 − cosðφgÞ. We then show the evolutions of Iscaðϕ ¼ ϕ0Þ
on such a polarization great circle (S1 ¼ 0) parametrized by
β∈ ½0; 2π�, as shown in the inset in Fig. 2(e). Obviously the
solid angle Ω ¼ 2β and φg ¼ β [Fig. 2(b)], and thus the
evolution observe the relation Iscaðϕ ¼ ϕ0Þ ∝ 1 − cosðβÞ,
which agrees perfectly with the numerical results included
in Fig. 2(e).
The polarization distributions on the x-y plane are

further shown in Fig. 3(a), for linear polarization
(S2 ¼ 1 and φg ≈ 0) and LCP (S3 ¼ 1 and φg ≈ π=2)

incidences. According to Eq. (4), the locations of circularly
polarized scatterings (S3 ¼ �1; circular polarization sin-
gularities [39]) can be directly predicted and even designed
by selecting proper incident polarization and directions. We
show the scattering polarization distributions (simulated
results) on the whole scattering momentum sphere in
Fig. 3(b) for the linear polarization incidence (S2 ¼ 1)
and the predicted locations of polarization singularities are
also marked by crosses, agreeing well with the numerical
calculations.
Also according to Eq. (4), there is a rather interesting

scenario of overlapped A and B: directions along which the
radiation polarizations for both QNMs are the same. For
waves incident opposite to those directions, we have

cosð1
2
PA
⌢Þ ¼ cosð1

2
PB
⌢Þ and φg ¼ 0 [see Fig. 1(a)]. This

results in fixed scattering polarization along any direction,
irrespective of varying incident polarizations. For the
marked direction (ϕ ¼ ϕ0) in Fig. 2(c), as has been
discussed, QNM radiation polarizations are the same.
We denote this direction as r̂A¼B and shine opposite to
it (r̂i ¼ −r̂A¼B) LCP and RCP waves. We then track the
scattering polarization variation on the whole momentum
sphere through the parameter jJLCPsca ðJRCPsca Þ†j, where
jJLCPsca ðJRCPsca Þ†j ¼ 1 means the scattering polarization does

(a) (c)

(d)

(e)

(b)

FIG. 2. (a) A gold particle with fourfold rotation symmetry and
a spherical coordinate system parameterized by r ¼ ðr; θ;ϕÞ.
Scattering intensity distributions on the x-y plane with P locating
at (0, 1, 0) and (0, −1, 0) for (c), which correspond to two
orthogonal incident linear polarizations [polarized along ϕ ¼ π=4
(S2 ¼ 1) and polarized along ϕ ¼ 3π=4 (S2 ¼ −1)]; locating at
(0, 0, 1) and (0,

ffiffiffi
2

p
=2,

ffiffiffi
2

p
=2) for (d), which correspond to LCP

incident and elliptic incident polarization. The geometric phases
are, respectively, φg ¼ 0; π; π=2 and π=4, as shown in (b). In
(c) one direction of zero scattering ϕ ¼ ϕ0 ≈ 113° is speci-
fied. (e) The dependence of Iscaðϕ ¼ ϕ0Þ on β (see the inset).
In (c)–(e) the incident wavelength λ ¼ 2.34 μm.
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not change for RCP and LCP incidences [see Fig. 3(c)]. For
comparison, we also shine circularly polarized waves along
þz (opposite to which the QNM radiations are distinct and
thus A and B do not overlap) and show its jJLCPsca ðJRCPsca Þ†j
distribution in Fig. 3(c), confirming that for general
incident directions the scattering polarizations are depen-
dent on incident polarizations.
Another interesting property for overlapped A and B is

that the incident polarization can be tuned to be orthogonal

to that of both QNMs [cosð1
2
PA
⌢Þ¼cosð1

2
PB
⌢Þ¼0; Esca ¼ 0

in Eq. (4)]. For such an incident polarization, neither QNM
would be excited and thus the particle would become
invisible. For the same incident direction (r̂i ¼ −r̂A¼B), we
show the evolutions of scattering cross sections
with varying incident polarizations in Fig. 3(d). The
incident polarization traverses a great circle, cove-

ring matched polarization (β ¼ PA
⌢ ¼ PB

⌢ ¼ 0), LCP

(β ¼ π=2), orthogonal polarization (β ¼ PA
⌢ ¼ PB

⌢ ¼ π).

According to Eq. (4) with φg ¼ 0 and PA
⌢ ¼ PB

⌢ ¼ β:
Esca ∝ ðEA þ EBÞ cosðβ=2Þ; that is, scattering along any
direction and thus also the scattering cross section would
satisfy Isca; Csca ∝ cos2ðβ=2Þ ¼ ½1þ cosðβÞ�=2, which is
verified by Fig. 3(d). We note that the scattering evolutions

in Fig. 2(e) are driven by changing φg with fixed PA
⌢ ¼ PB

⌢

[as is also the case for those in Figs. 1(e) and 1(f)], while

those in Fig. 3(d) driven by changing PA
⌢

¼ PB
⌢ ¼ β, with

fixed φg ¼ 0.

In conclusion, we have unveiled the hidden and subtle
geometric phase of QNMs and reveal how they drive
scattering evolutions with varying incident polarizations.
The geometric phase can be exploited to efficiently
manipulate the scatterings, such as scattering eliminations
and polarization singularity generations. For the general
scenario of more than two QNMs being simultaneously
excited, the relative amplitude and phase among any two
QNMs can be calculated and then calculations for inter-
ferences among all QNMs become standard procedures.
This means that the theoretical framework we have con-
structed is generic and broadly applicable. We have
essentially established a profoundly comprehensive frame-
work to calculate geometric phases in scattering systems,
and unlocked an extra hidden dimension for electromag-
netic scattering manipulations. Similar dimensions might
be uncovered for waves of other forms for which geometric
phase is generic and ubiquitous, providing new flexibilities
for many physics and interdisciplinary branches that are
related to wave scatterings.
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