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Rydberg atoms in optical lattices and tweezers is now a well-established platform for simulating
quantum spin systems. However, the role of the atoms’ spatial wave function has not been examined in
detail experimentally. Here, we show a strong spin-motion coupling emerging from the large variation of
the interaction potential over the wave function spread. We observe its clear signature on the ultrafast many-
body nanosecond-dynamics of atoms excited to a Rydberg S state, using picosecond pulses, from an
unity-filling atomic Mott-insulator. We also propose an approach to tune arbitrarily the strength of the spin-
motion coupling relative to the motional energy scale set by trapping potentials. Our work provides a new
direction for exploring the dynamics of strongly correlated quantum systems by adding the motional degree
of freedom to the Rydberg simulation toolbox.
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Quantum simulation platforms, such as ion crystals [1],
polar molecules [2], ultracold neutral atoms [3], and
Rydberg atoms [4], offer remarkable opportunities to study
various many-body problems, of which one important
category are localized spin models, see e.g., [5–9]. To
mimic pure spin systems, two energy levels in the internal
degrees of freedom (d.o.f.) are identified as an effective
spin-1=2, and approximations are then applied onto the full
Hamiltonian describing a given experimental platform,
notably to decouple the external motional d.o.f. (position
and momentum) from the spin dynamics. Recently, new
proposals are emerging to purposely use spin-motion
coupling (i.e., a state-dependent force) and open new
regimes of quantum simulation with Rydberg atoms
[10–15]. In this work, based on the ultrafast Rydberg
quantum platform [16,17], we report on the experimental
realization of an extreme regime of spin-motion coupling κ
which is (i) comparable to the spin-spin interaction strength
V, and (ii) overly dominates the natural motional energy
scale ω set by a trapping potential. We also propose an
experimental approach, ultrafast stroboscopic Rydberg
excitation, to tune the ratio κ=ω over many orders of
magnitude.

Rydberg atoms display interactions ranging up to the
GHz-scale at micrometer interatomic distances r [4,18]. The
potential VðrÞ typically follows a 1=r3-dependence for
resonant dipole-dipole interaction, or a 1=r6 potential in
the nonresonant van der Waals (vdW) regime. Over the last
decade, spin models have been implemented with Rydberg
atoms in a gas phase [19–21], in an optical lattice [17,22,23],
or in an array of optical tweezers, e.g., [8,9,24,25]. In these
works, spin-motion coupling (arising when the atom
explores the spatially varying potential) is either considered
negligible, or as a small source of decoherence with the
external d.o.f. treated as a thermal bath. For example, if
atoms move randomly during the dynamics, because of a
finite thermal energy, the interactionvaries and blurs the spin
dynamics. By preparing atoms in a pure motional quantum
state, the coupling to motion is coherent and creates spin-
motion entanglement [16].
In this coherent regime, the spin-motion coupling orig-

inates from the variation of the potential VðrÞ over the root
mean squared (rms) spread xrms of the atom position wave
function, around a distance d [13]. The first-order, linear,
spin-motion coupling term is parametrized by κ,

κ ¼ −xrms
∂V
∂x

����
x¼d

¼ 6
xrms

d
VðdÞ; ð1Þ

where we assumed a repulsive vdW potential. First, we
compare the ratio of spin-motion to spin-spin coupling
κ=V, which depends on the choice of optical traps: lattice or
tweezers. In both approaches, the quantum fluctuation of
position xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mω

p
(m the mass of the atom) is
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slightly tunable through the trapping angular frequency
ω ∼ 2π × 10–100 kHz giving a spread of a few tens of
nanometers. The distance d between atoms is typically
0.5 μm with lattice and can range from 2 to 10 μm for
tweezers. Consequently, the spin-motion coupling is usu-
ally only a small perturbation for tweezers κ=V ≪ 0.1 [16],
while it is comparable to the spin-spin coupling in the
lattice platform κ=V ∼ 0.5. We will see clear signatures of
this large perturbation on the spin dynamics in the first part
of this work.
Second, we discuss the relevance of motion through the

ratio κ=ω, which can vary over many orders of magnitude
depending on the platform. For molecules, interacting
through a dipole-dipole potential V on the kHz scale or
less [6,26,27], the spin-motion coupling is negligible
κ=ω < 0.01, except if working with delocalized, over-
lapping, wave functions [28]. For Rydberg atoms excited
with cw lasers, forcing the Rydberg blockade limits the
interaction strength V to the MHz scale which nevertheless
allows to enter the perturbative regime κ=ω ∼ 0.1–0.5 and
already opens up exciting prospects [11–14]. By using
picosecond pulsed lasers, our ultrafast approach allows to
always overcome Rydberg blockade [29] and prepare
Rydberg atoms with interaction strength at the GHz scale
[16,17,19]. Here, the spin-motion coupling becomes overly
dominant with κ=ω ∼ 10–1000, such that motional dynam-
ics, due to the kinetic energy of atoms [30–32], can be
completely neglected on the timescale of spin-spin and
spin-motion entanglement. In the final part of this work, we
will propose the ultrafast stroboscopic method to effec-
tively tune κ=ω.
Experimental platform—The schematic of our experi-

mental system is shown in Fig. 1(a). We prepare a three-
dimensional (3D) unity-filling Mott-insulator state with
∼3 × 104 atoms in the j↓i ¼ j5Si ground state of 87Rb
(electronic and nuclear spin d.o.f. are fully polarized
and decoupled from the ultrafast dynamics). The 3D
optical lattice, with period alat ¼ 532 nm, has a depth of
20ER for each axis giving rise to an isotropic trapping
frequency ω ¼ 2π × 18 kHz in the harmonic oscillator
approximation [17]. The spatial wave function jψispatial
of each atom, prepared in the motional ground state
of each lattice site, have a quantum uncertainty of
position xrms ¼ 57 nm, and a momentum uncertainty
prms ¼ ℏ=2xrms ¼ m × ð6.4 mm=sÞ.
Following preparation of the ground-state atoms, they

are then coherently excited to the j↑i ¼ j29Si Rydberg
state using a two-photon (779 and 483 nm) off-resonant
excitation with broadband laser pulses (∼10 ps duration) as
described in Ref. [33] and shown in Fig. 1(b). This pre-
pares each atom in a coherent electronic superposition
jψielec ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p j↓i þ ffiffiffiffi
p

p j↑i, with p the probability to be
in the Rydberg state, typically 4%–6% [17,19], and where
we mapped the ground and Rydberg states to a spin 1=2.
Two atoms in the 29S state experience strong dipole-dipole

interaction in the vdW regime. Figure 1(c) shows the
interaction potential calculated using the pairinteraction
software [34,35]. It is very well approximated by an
isotropic, repulsive, vdW form VðrÞ ¼ C6=r6, where the
calculated coefficient Cth

6 is 2π × 16 MHz μm6. The mixing
with the dominant interaction channel (the pair-state
28P − 29P) remains negligible thanks to its large energy
separation of 20 GHz. Choosing a Rydberg S state, rather
thanD state as in previous works [16,17], was motivated by
obtaining this clean isotropic potential, despite the
increased experimental challenge caused by the smaller
excitation strength of S state and in spectrally resolving the
S and D states when using picosecond laser pulses [33].
The model Hamiltonian—Here, we discuss the model

Hamiltonian, including the motional d.o.f. Following
excitation, each atom j is initially in a product state of
spatial and internal d.o.f. jψ ji ¼ jψispatial ⊗ jψielec. We
then consider the evolution of this system in the nano-
second timescale relevant for spin-spin and spin-motion
entanglement. For such short duration, the motion of atoms
can be completely ignored: the position probability

(a)

(b) (c)

FIG. 1. (a) Schematic of the experiment. The atoms prepared in a
unity-filling 3D atomic Mott-insulator are coherently excited to the
29S Rydberg state using a pump pulse. After the pump excitation,
the system undergoes many-body dynamics driven by spin-spin
and spin-motion couplings until the probe pulse is applied.
(b) Rydberg state population after pump excitation. The solid
curve shows a fit by a double Gaussian function, while the dashed
curves represents the individual contribution from the state 27D
and 29S. At resonance, the population in 27D state is only ∼0.2%.
(c) The 29S − 29S pair state energy as a function of inter-atomic
distance. The inset zooms in the 0–1 GHz energy range.
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distribution do not have time to evolve either from the
absence of confining potential for the Rydberg state or from
the vdW repulsion. The ultrafast dynamics is then driven
only by

Ĥ
ℏ
¼

X
j<k

Vðr̂jkÞ ⊗ n̂jn̂k

≈
X
j<k

�
Vjk þ κjk

r̂jk − r̄jk
xrms

· ejk þ � � �
�

⊗ n̂jn̂k: ð2Þ

Here, r̂jk ¼ r̂j − r̂k is the quantum operator of the relative
position of atoms j and k, r̄jk its expectation value, ejk a unit
vector along site j and k, Vjk and κjk the couplings
evaluated at distance r̄jk, and n̂j ¼ j↑ijh↑j is the projection
operator on the Rydberg state for the jth atom. Applying
this Hamiltonian to the initial product state creates entan-
glement within the spin sector, but also, and this is the key
point of the first part of this work, between the spin and
motional sectors of the Hilbert space.
Results—We now present experimental results obtained

by time-domain Ramsey interferometry [16,17,19] with
p ∼ 4.8%, to probe the many-body entangled state gen-
erated by the above Hamiltonian. In short, a first pump
pulse initiates the many-body dynamics which is read out
by a second probe pulse after a variable delay τ ¼ 0–3 ns.
This second pulse gives rise to a Ramsey interference
whose contrast is a probe to the single-atom coherence in
the spin sector, i.e., between the ground and Rydberg state.
Spin-spin and spin-motion coupling generates entangle-
ment entropy [17], which reduces the single-atom coher-
ence and thus the Ramsey contrast. Ramsey interferograms
are obtained by measuring the Rydberg population p after
the probe pulse, as a function of relative pump-probe delay,
by detecting the field-ionized Rybderg atoms using a
microchannel plate [33]. Typical interferograms are shown
in Figs. 2(a) and 2(b). In absence of interaction (blue curve,
obtained for a low-density atomic sample), the highly
contrasted interference indicates a constant pure state.
For atoms prepared as a Mott-insulator (red curve), the
decreasing contrast signals a reduced purity in the spin
sector, which is shown in Fig. 2(c) as a function of the delay
τ. Additionally, we also extract a phase shift of the Ramsey
oscillations with the reference noninteracting sample.
Numerical solution—To calculate the Ramsey contrast

and phase shift from the action of the Hamiltonian of
Eq. (2), we extend previous results [19,36] to include the
spatial wavefunction of each atom, which requires to
calculate terms such as the two-body spatial overlap:

OjkðtÞ ¼ hψ j;ψkj expð−iVðr̂ÞtÞjψ j;ψki

¼ C
Z

dr exp

�
−
jr − r̄jkj2
x2rms

− i
C6

jrj6 t
�
; ð3Þ

where C is a normalization constant. The second line is
obtained after reformulating the two-body wavefunctions
jψ j;ψki into two independent one-body system: a trivial
one for the center-of-mass, unaffected by the interaction,
and the interesting one for the relative coordinate rjk with
reduced mass m=2. For a two-atom system, the Ramsey
contrast and phase are directly related to the amplitude and
phase of the complex-valued overlapO. For the many-body
dynamics considered here, the analytical expression relat-
ing them is given in Ref. [33], which also include details on
neglecting three-body (and higher) overlap terms.
The calculation results are then fitted to the relative

Ramsey contrast data with a single free parameter:
the coefficient C6. The fitted curve, see Fig. 2(c), agrees
well with the experimental data for a coefficient
Cexp
6 ¼ 2π × 5.5 MHz μm6. With this value, the positive

trend (related to the sign of C6) and magnitude of the phase
shift are also well captured. The fitted Cexp

6 coefficient is 3
times smaller than obtained from ab-initio calculation of
the vdW potential, which calls for further investigation of
the accuracy of the vdW potential calculation in the short,
submicron distance regime. This could be done using a
tweezers platform where a simpler system of only two
atoms can be prepared [16], potentially down to the short
sub-micrometer distance by throwing atoms with moving
tweezers [37].
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FIG. 2. Time-domain Ramsey interferograms for atoms pre-
pared in a Mott insulator, strongly interacting, state (red) and a
low-density, noninteracting, reference atomic sample (blue) for
(a) τ ¼ 0.05 and (b) τ ¼ 2.5 ns. The vertical axis of each
interferogram is normalized by the mean value of data.
(c) Measured relative Ramsey contrasts (ratio of the contrasts of
Mott-insulator and reference sample) and phase shifts (phase differ-
ence ofMott-insulator and reference sample) are shownby red circles
(error bars are standard error of the mean). The observations are
compared with a fitted numerical solution that takes into account
spin-motion coupling (red curve) or ignore it (green curve).

PHYSICAL REVIEW LETTERS 133, 093405 (2024)

093405-3



To emphasize the importance of the spin-motion cou-
pling in this experiment, we also show calculation for a
pure spin-spin model where we ignore the spatial extent of
the wave functions [17,19]. As shown in the green curve of
Fig. 2(c), the Ramsey contrast would have displayed an
oscillation (see Discussion) which is clearly absent in the
experimental data. We can thus conclude that capturing
spin-motion entanglement is essential to account for the
observed many-body dynamics.
Discussion—We now present a hierarchy of approxima-

tions to identify the relevant terms in Eqs. (2) and (3) that
create spin-motion entanglement. We consider two atoms at
nearest-neighbor (NN) distance alat, where the variation of
potential over the wave function describing their relative
distance ψ12ðrÞ is largest. We then restrict the problem to
one dimension, along the interatomic axis, by neglecting
the wave function spread in the other two directions as it
gives a small 1

2
ðxrms=alatÞ2 ≃ 0.5% increase in NN distance,

20 times smaller than the effect along the interatomic axis.
This allows a phase-space representation of the 1D wave
function ψ12ðxÞ, as shown in Fig. 3(a), which is convenient
to depict the relative motional states of two atoms with the
Rydberg interaction [14].
The 1=r6 potential then applies a strong force on the

wavefunction which can be decomposed with a series
expansion of the potential around the mean interatomic
distance alat. The zeroth-order term V ¼ Cexp

6 =a6lat gives
rise to spin-spin entanglement reaching its maximal value
at time τ ¼ π=V ¼ 2.1 ns, and corresponding to a mini-
mum in the Ramsey contrast of the green curve of Fig. 2(c).
For longer time, the two effective spins would de-entangle
and the Ramsey visibility restore [16,38]. The first-order
linear term, explicitly written in Eq. (2), gives a uniform
force on the wavefunction F ¼ 6ℏC6=a7lat ¼ ℏκ=xrms≃
ðm=2Þð2.5 × 107 ms−2Þ. The momentum kick Δp from
this acceleration becomes comparable to the relative
momentum rms spread after τ ¼ prms=

ffiffiffi
2

p
F ¼ 0.3 ns. As

the state-dependent force is applied only on part of the spin
sector (j↑↑i), it creates spin-motion entanglement that is
captured by the reduced overlap jOj between the displaced
and initial momentum wave function seen in Fig. 3(b). It
explains why the Ramsey contrast drops initially faster than
expected from a pure spin model, see Fig. 2(c), as well as
why it does not restore beyond τ ¼ 2.1 ns as the pure spin
model predicts.
For a good qualitative description of the dynamics, it is

necessary to go beyond the first-order term to capture the
wide variation of the mechanical force over the wave
function. As seen in Fig. 3(b), a second-order expansion
brings the calculated overlap much closer to the exact result
from Eq. (3). Qualitatively, these second-order terms r̂2jk ¼
ðx̂j − x̂kÞ2 have two interesting effects on the wave func-
tion. First, they squeeze each atom wave function through
the terms x̂2j and x̂2k: the atoms feel a stronger force at

shorter distance from the other one, which will compress
the wave function. And second, they entangle the two
atoms wave functions through the cross term x̂jx̂k. The
relative wave function ψ12 cannot anymore be decomposed
into a product state of two single-atom wave functions.
Such entanglement between the motion of two atoms is not
captured at lower order. The third-order terms are required
to explain the negative value taken by the Wigner
distribution.
Outlook—The strong spin-motion coupling observed

here precludes the realization of a pure spin model in
our experimental regime. However, instead of performing
quantum simulation in the spin sector, we could rather work
fully in the motion sector of the Hilbert space. This would
be realized by completely transferring ground-state atoms
to Rydberg orbits, a step that can be done with high-fidelity
in the microsecond timescale [39] (but only for weakly
interacting atoms), and for which progress have been re-
ported by our group for picosecond-scale excitation [16].

FIG. 3. (a) Phase-space (Wigner) representation of the relative
wave function ψ12 at time τ ¼ 0 and 1 ns. The ψ12 at τ ¼ 0 ns
is the relative wave function of the two atoms in the motional
ground state of the lattice sites. The red (blue) color represents
positive (negative) value of the Wigner distribution. The
marginal position and velocity distribution are shown as black
lines. The momentum displacement and squeezing are clearly
visible. Inset: zoom on the probability distribution jψ12j2,
showing the spatial variation of the vdW potential V (solid),
and the resulting force F (dashed). (b) Overlap jOðtÞj as a
function of the delay τ. Solid curve: exact calculation of
Eq. (3). The dashed (dotted) lines are obtained by expanding
the vdW potential to first order (second order).
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We could then prepare a unit-filling Mott-insulator state of
Rydberg atoms which would be submitted to strong internal
vdW force [40]. Interestingly, the forces from two opposite
directions of a given atom cancel in first-order and the
second-order squeezing and entangling terms would domi-
nate the dynamics. This would lead to nontrivial distortion
of the spatial wave functions observable by time-of-flight
imaging, a technique also available on the tweezers plat-
form [41,42].
In this work, we neglected the effect of kinetic energy

due to the large separation of timescales between the
Rydberg interaction (nanoseconds) and the motion of
atoms (microseconds). We now propose to bring these
two scales together to investigate a larger class of
Hamiltonians with ultrafast stroboscopic Rydberg excita-
tion. As schematically drawn in Fig. 4, ground-state atoms
are transferred in a picosecond timescale to Rydberg states
to experience for a brief time TR the strong force demon-
strated in this work. This gives a momentum kick that can
be widely tuned, by TR and the choice of Rydberg state,
with respect to the trap depth (we should not kick atoms out
of their trapping sites). They are then brought back to the
ground-state to now experience the kinetic energy and the
trapping potential on a microsecond-timescale T0. This step
is repeated with a high enough frequency to apply Average
Hamiltonian Theory (AHT) [43–46], and a controlled duty
cycle to vary the effective, reduced, coupling strength
κeff ¼ TR=T0 × κ relatively to the trapping frequency ω.
Optionally, a spin-1=2 can be encoded in the ground-state
manifold, and a spin-dependent force obtained by spin-
selective ultrafast excitation. We note that this requires to
combine ultrafast excitation with resolving the 6.8 GHz ¼
1=ð150 psÞ hyperfine splitting, which is one of our ongoing
developments.
This ultrafast Floquet engineering approach can be seen

as complementary to Rydberg dressing [20,22,25,47–49],

where a trapped ground-state atom is instead continuously
and weakly dressed by a small fraction of Rydberg
character. Compared to other proposals for spin-motion
coupling using long-lived circular Rydberg states [14], or
Rydberg facilitation (antiblockade) [11–13], here we note
that the stroboscopic approach have the practical advantage
to not require magic-trapping of the Rydberg state. Finally,
we emphasize that ultrafast Rydberg excitation with pulsed
lasers (delivering up to 100 GHz of ground-Rydberg Rabi
frequency) unlocks the full GHz-strength of interaction
between Rydberg atoms, otherwise curbed by the limited
MHz-scale Rabi frequency achievable with cw lasers.
In conclusion, we have considered the force experienced

by Rydberg atoms, mapped it into a spin-motion coupling
term, and observed a clear signature: a strong perturbation
to the spin dynamics. We proposed a quantum control
technique, ultrafast Floquet engineering, to tune the relative
strength of this force compared to the trapping potential of
optical lattice or tweezers, opening regimes of quantum
simulation with Rydberg atoms. Among the new avenues,
we envision the creation of exotic motional states such as a
Rydberg crystal: an atomic array with each atom stabilized
in free-space (i.e., in the absence of a confining lattice
potential) by long-range isotropic vdW repulsion between
Rydberg atoms, a state reminiscent of electronic Wigner
crystals [50].

Note added—Recently, we became aware of related work
on spin-motion entanglement that demonstrates quantum
information processing using motional d.o.f. in tweez-
ers [51].
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