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In systems with a real Bloch Hamiltonian band nodes can be characterized by a non-Abelian frame-
rotation charge. The ability of these band nodes to annihilate pairwise is path dependent, since by braiding
nodes in adjacent gaps the sign of their charges can be changed. Here, we theoretically construct and
numerically confirm two concrete methods to experimentally probe these non-Abelian braiding processes
and charges in ultracold atomic systems. We consider a coherent superposition of two bands that can be
created by moving atoms through the band singularities at some angle in momentum space. Analyzing the
dependency of excitations on the frame charges, we demonstrate an interferometry scheme passing through
two band nodes, which reveals the relative frame charges and allows for measuring the multigap
topological invariant. The second method relies on a single wave packet probing two nodes sequentially,
where the frame charges can be determined from the band populations. Our results present a feasible
avenue for measuring non-Abelian charges of band nodes and the direct experimental verification of
braiding procedures, which can be applied in a variety of settings including the recently discovered
anomalous non-Abelian phases arising under periodic driving.
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Introduction—Within the active field of topological
insulators and semimetals [1–3], the role of on-site tenfold
way symmetries, such as time reversal, particle-hole and
chiral, as well as crystalline symmetries are by now rather
uniformly understood in and out of equilibrium [4–16].
Recently there has been new progress in terms of multigap
topological phases [17–21], where band subspaces (sets of
isolated bands) can attain nontrivial invariants that do not
a priori depend on the symmetry eigenvalues of the bands
at high symmetry points and, hence, fall outside of all
hitherto-known classifications [7–10]. When a system can
be represented in terms of a real-valued Hamiltonian due to
the presence of C2T or PT (twofold rotations or parity and
time-reversal) symmetry, band degeneracies can carry non-
Abelian frame charges [22]. The sign of these frame
charges can be changed upon braiding band nodes in the
momentum space, where the obstruction to annihilate the
similarly valued charges is quantified by a multigap invari-
ant, the Euler class [17–19]. Multigap considerations away
from equilibrium have revealed even more exotic phenom-
ena, such as novel quench signatures [23,24], optical

responses [25–28], and anomalous non-Abelian phases that
can exclusively arise under periodic driving [29].
Band nodes also play an important role in single-gap

topological phases. Weyl nodes act as sources of Berry
flux [30], while higher order degeneracies require stabili-
zation of crystalline symmetries and are often associated
with topological invariants. Individually, their properties
can be probed in different experiments [31–36]. For
example, the π-Berry flux of a Dirac cone has been
measured through atomic momentum-space interferometry
in optical lattices [32], and the winding of isolated linear or
quadratic band touchings has been observed via exciting
atoms by moving them through nodes [34]. Upon being
elevated to multigap topologies, the hallmark gained by
band singularities is non-Abelian frame charges that can
induce a nontrivial Euler class. Consequently, a fundamen-
tal question arises whether there exists observable signa-
tures of these non-Abelian charges, their braiding and this
invariant.
We here address this question, providing an essential link

to experiments. While frame charges correspond to �π
vortices within a gap, distinguishing them is difficult
because it amounts to discriminating between zero and
2π phase windings of the frame after braiding. We
demonstrate that these two cases impose certain construc-
tive or destructive interference of atoms passing through
different Euler nodes. Second, we construct another pro-
tocol for sequential excitation of atoms by moving them
through two band nodes consecutively where the frame
charges can be detected in the phase shift of resulting
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oscillations in band populations. Our results reveal a
physical manifestation of non-Abelian charges and their
relative sign changes upon braiding in momentum space,
imposing a feasible route to directly observe signatures of
multigap band topology in experiments.
Non-Abelian frame charges and Euler class—For a real

Hamiltonian, the eigenstates junðkÞi at quasimomentum k
span an orthonormal triad or, in general, vielbein (“frame”):
The space of spectralized Hamiltonians is given by
OðNÞ=Oð1ÞN ¼OðNÞ=ZN

2 for n∈N bands, where N> 2.
The quotient ensures that flipping the signs of the eigen-
vectors does not change the Hamiltonian. Band singular-
ities obstruct a unique assignment of the eigenstates and
correspond to a π-rotation between the eigenstates that host
the node [see Fig. 1(b)] [37]. Namely, the frame rotation
(ϕframe) accumulates a π Berry phase upon circling around a
node, where band singularities act as the analogs of π
disclination vortices in biaxial nematics [38,39]. While
within the two-band subspace (a single “gap”) the nodes act
as π rotations, we note that 2π rotations in fact correspond
to −1 as π1½SOðNÞ� ¼ Z2, accumulated frame charges
anticommute with those in the adjacent gaps. Focusing
on three bands, the frame charges associated with the nodes
π1½SOð3Þ=D2� ¼ Q take values in the quaternion group
Q ¼ f�1;�i;�j;�kg [38]. Consequently, braiding band
nodes in momentum space (which can be achieved, e.g.,
using stress or strain [17,40], temperature effects [41], or
periodic driving [29]), converts their charges and can
ensure that a specific band subspace hosts similarly valued
charges. In two dimensions, the resulting obstruction to
annihilate these charges (nodes) between states n and
(nþ 1) is quantified by the Euler class [17,42],

χn;nþ1½D� ¼ 1

2π

�Z
D
Eudk1 ∧dk2−

I
∂D

A ·dk

�
∈Z; ð1Þ

evaluated over any patch D encapsulating these nodes
[Fig. 1(b)]. Here, we define the Euler form Eu ¼
h∂k1unðkÞj∂k2unþ1ðkÞi − h∂k2unðkÞj∂k1unþ1ðkÞi and associ-
ated connection one-form, A ¼ hunðkÞj∇unþ1ðkÞi.
The braiding and Euler class can effectively be captured

by tracking Dirac strings (DSs) [29,42]. These are gauge
objects connecting pairs of nodes in each gap (see Fig. 1)
and represent the line across which the sign of the
eigenstates change due to the π-Berry phase induced by
the node. Hence, crossing a DS residing in an adjacent gap
changes the sign of the frame charge, effectively encoding
braiding rules of the band node charges [42].
Model—As a concrete example, we employ a C2T -

symmetric Kagome lattice, while our results apply to any
system admitting an Euler description. The momentum-
space Hamiltonian is written as

HðkÞ ¼ −2J
X
β≠β0

cos ðk · dββ0 Þc†βcβ0 þ
X
β

Δβc
†
βcβ; ð2Þ

with nearest-neighbor hopping amplitudes J along the three
directions dββ0 connecting three sublattices β∈ ðA; B;CÞ
and the annihilation (creation) operator cð†Þβ [29]. For
vanishing sublattice offsets Δβ, there are two linear band
touching points which carry opposite frame charges [e.g.,
�i, depicted with empty and filled markers in Fig. 1(b)],
hence a vanishing patch Euler class. The quadratic band
touching point in gap 2 harbors χ ¼ 1, corresponding to
two same-valued frame charges which we can assign to be
þj [51]. While quaternion frame charges act as �π Berry
fluxes in a given gap, conventional interferometry methods
are insensitive to their signs and, hence, cannot a priori
reveal the relative frame charges or their change after
braiding.
Method 1: Interferometry—We employ a coherent super-

position in the bands forming a singularity (i.e., the Euler
subspace) to deduce the frame rotation around it relative to
other nodes in this gap, hence, their relative frame charges.
Consider moving a wave packet in momentum space in
band 1 ½ju1;inðkÞi�, which enters and exits a band node at
some angle ϕpath as in Fig. 1(c) [34]. Between the in-going
and out-going paths the eigenstates frame is rotated by an
angle ϕframe. Therefore, after passing through the band
touching point, atoms are in a coherent superposition [42],

ju1;ini → ju1;outihu1;outju1;ini þ ju2;outihu2;outju1;ini
¼ cosϕframeju1;outi − sinϕframeju2;outi; ð3Þ

given by the overlap with the final eigenstates ju1;outi and
ju2;outi, captured by the frame rotation ϕframe. Note that we
here assume an adiabatic motion with respect to the third
band, which can be generally satisfied due to the energetic

(a) (b) (c)

FIG. 1. (a) Kagome lattice band structure forΔβ ¼ 0. (b) Linear
band nodes ðK;K0Þ carry opposite non-Abelian frame charges
(�i≡△=▴), and can annihilate (χ1;2 ¼ 0 in the shaded area).
They act as �π fluxes in gap 1, captured by the DS connecting
them. Γ node is formed by two similar-valued frame charges
(þj≡ •) that are obstructed to annihilate ðχ2;3 ¼ 1Þ. The ortho-
normal frame of the eigenstates (arrows) rotates around a band
node, accumulating a π-phase jump at the DS. (c) Awave packet
moving through a node at an angle ϕpath, and finishing in a
coherent superposition [Eq. (3)] due to the frame rotation by an
angle ϕframe.
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separation [Fig. 1(a)] and the orthonormality of the
eigenstates. While the required path precision is within
reach of state-of-the-art experiments [34], the desired
superposition in the Euler subspace governed by ϕframe

can be still created even if atoms might just miss the node
realistically as we show in Supplemental Material [42]. For
linear nodes, ϕframe winds always by π as ϕpath winds by 2π.
To demonstrate our scheme, we consider uniform and
symmetric Hamiltonians (e.g., kagome) for a smooth
winding ϕframe ¼ �ϕpath=2, while our methods readily
apply to generic nodes [52].
When the system is characterized by an Euler class, the

relative phase of the component excited into the second
band depends on the chirality of the frame winding, i.e., the
full dreibein that is naturally encoded by the Hamiltonian
evolution. By analyzing two such excitations, we devise an
interferometry of the Euler nodes to extract the relative non-
Abelian frame charges and, hence, patch Euler class (1).
We shall first present the idea in the simple setting of a
kagome model by considering ðK;K0Þ nodes, where the C6
symmetry eliminates complicating effects of dynamic
phases, isolating the key physics at play. We subsequently
discuss more general settings, including effects of DSs and
dynamic phases.
We consider a wave packet of a single spin state j↑i

localized in band ju1ðk0Þi, starting from k0 at equal
distance to the targeted Euler nodes. Employing a π=2
pulse, a superposition of ðj↑i þ j↓iÞ= ffiffiffi

2
p

can be created,
where the pseudospin can be encoded by, e.g., hyperfine
states [31,32]. As demonstrated in Fig. 2, we split the atoms
such that j↑i and j↓i atoms follow symmetric paths I and II,
passing through two nodes with angles ϕpath and −ϕpath,
respectively, before recombining. In optical lattices, this
may be achieved by using a combination of an applied
magnetic field gradient and lattice acceleration [31,32].
Assuming that the frame-rotation angle for the node I is

ϕframe, the atoms following this path finish in the state
ðcju1i − sju2iÞj↑i as in Eq. (3), where c≡ cosϕframe and
s≡ sinϕframe and the momentum index is suppressed for
simplicity. If the node on path II carries the same charge
with no DS in between, the frame features the same
chirality on both nodes. However, since the path winds
in the opposite direction (−ϕpath), the frame-rotation angle
experienced on path II is −ϕframe. Conversely, if the nodes
have opposite charges, path II corresponds to a frame-
rotation angle ϕframe [53].
Considering the paths together, the final state becomes

1ffiffiffi
2

p �ðcju1i − sju2iÞj↑i þ ðcju1i � sju2iÞj↓i
�
; ð4Þ

whereþð−Þ for down-spins on path II corresponds to same
(opposite) charges. Applying another π=2 pulse before
closing the interferometry then yields cju1ij↑i − sju2ij↓i
for similarly charged nodes, resulting in a mixture of both

spin populations, p↑ ¼ cos2ðϕframeÞ and p↓ ¼ sin2ðϕframeÞ.
However, for oppositely charged nodes, the final state
cju1ij↑i − sju2ij↑i consists only of up spins p↑ ¼ 1. We
demonstrate our interferometry technique along different
paths in Figs. 2(a) and 2(b) with resulting populations given
in Table I that are also numerically confirmed, where the
relative non-Abelian frame charges are distinguished.
General configurations—Our interferometry technique

readily caters to more complex band structures. The
dynamic phases along the two paths considered above
(Fig. 2) are equal under C6 symmetry and cancel in Table I
(see Supplemental Material [42]). In general when targeted
nodes are not at high-symmetry points, dynamic phases
must be accounted for. This can be achieved, e.g., by
measuring band energies along the interferometry with
standard techniques like band mapping [31,54]. We present
another method based on performing a reference interfer-
ometry loop with twice the acceleration in Supplemental
Material [42].
Furthermore, there can be DSs traversed by the inter-

ferometry loop, which change the sign of the relevant
eigenstates, leading to an additional π geometric phase.
While the DS crossed twice in Fig. 2(a) yields no net effect
as in Table I [55], the single crossing on path I in Fig. 2(b)
induces a π phase shift between the spins and switches p↑

and p↓, but still entails a spin mixture for the similar-valued
frame charges. We here give a proof for generic DS
configurations that our interferometry scheme determines

(a)

(c)

(b)

FIG. 2. (a),(b) Interferometry distinguishing relative frame
charges of nodes in kagome lattice. Up- and down-spin atoms
are moved along paths I and II, respectively, and recombined.
Opposite (a) [same (b)] frame charges result in a single spin
(mixture of both spins) as in Table I. In (b2), interferometry paths
enclose an additional node, crossing a DS (blue line). (c) Illus-
tration of the general interferometry (triangles, circles, and
squares indicate nodes between different bands as labeled). Final
geometric phases Δαn − Δαnþ1 ¼ 0 indicate oppositely charged
nodes, which annihilate if brought together within the shaded
area, i.e., vanishing patch Euler class.
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whether the nodes can annihilate if brought together along
the paths closing the interferometry loop [Fig. 2(c)]. This
reveals the relative frame charges and gauge-invariant Euler
class (1) within this region.
We consider two Euler nodes between bands n and

nþ 1, and focus on geometric phases αI=IInðnþ1Þ in each band

along paths I and II, where dynamic phases can be
accounted for as before if required. We now analyze the
effect of all possible DSs: (1) Right before the atoms
starting in band n enter the nodes, the phase difference
between the two paths Δαn ≡ αIIn − αIn can be 0 or π,
depending on any DSs between the initial point and the
nodes as depicted in Fig. 2(c). These have no effect as it
will be carried over to the contributions in both bands on
that path below [42]. (2) Just after exiting the nodes, the
phase of the excited component αI=IInþ1 on the two arms
depends on the frame charges, where we emphasize that the
gauge is naturally fixed by the Hamiltonian evolution. If the
charges are opposite as in Fig. 2(c), the total phase
difference between the two paths are the same for both
bands Δαnþ1 − Δαn ¼ 0, while there will be a sign change
jΔαnþ1 − Δαnj ¼ π for same charges. (3) When the wave
packets are brought together avoiding other nodes, there
can be three types of DSs crossed; within the Euler
subspace and above or below gap, see Fig. 2(c):
Crossing, e.g., the yellow DS changes junþ1i → −junþ1i
on path I, which reflects on Δαnþ1, as summarized in
Table II for all cases. If the node itself is moved across the
yellow DS, its frame charge flips. Indeed, we see that each
time Δαnþ1 − Δαn changes by π, the relative charge of the
nodes changes. (4) The nodes’ obstruction to annihilate
within a region of the Brillouin zone is captured by the
patch Euler class (1). We therefore conclude that the
patch Euler class in the area enclosing the second half
of the interferometry [i.e., postnode branches] vanishes
χn;nþ1¼ 0 (is finite, χn;nþ1 ¼ 1) if jΔαnþ1−Δαnj ¼ 0ðπÞ.
Corresponding spin populations (after a π=2 pulse upon
closing the interferometry [42]) are given in Table III,
which are numerically verified.
We note that evaluating the Euler class is superfluous

for two nodes separated by a reciprocal lattice vector.
While we illustrate the relative charges using the simplest
Kagome setting [Fig. 2], our scheme applies generically.

We validate this by employing a Kagome model with next-
nearest-neighbor tunneling terms [20] which host several
more singularities of various charges, see Supplemental
Material [42]. Furthermore, under linear periodic driving,
this model features an anomalous Euler phase [29] where
the nontrivial patch invariant arises by virtue of a DS in
the anomalous Floquet gap, which we confirm to be
captured by our interferometry [42].
Method 2: Consecutive deflection—Our second method

does not require an interferometry loop and offers the
advantage of not increasing in complexity when symmetries
are removed. This relies on a single wave packet entering
and exiting the two targeted nodes [in the same way as in
Eq. (3)] between bands ðn; nþ 1Þ consecutively [Fig. 3(a)].
Starting in band n, the final population pn in this band
depends on the frame-rotation angles ðϕframe

1 ;ϕframe
2 Þ, aswell

as the relative dynamic phase α0 developed in between the
nodes, which a priori complicates deducing the frame
charges [56]. We circumvent this by expressing it after
some algebra [42] as pn ¼ ½A cos ð2ϕframe

1 − βÞ þ 1�=2,
where

A2 ¼ cos2ð2ϕframe
2 Þ þ cos2ðα0Þsin2ð2ϕframe

2 Þ; ð5Þ

tan β ¼ − cosðα0Þ tanð2ϕframe
2 Þ: ð6Þ

The band population varies with ϕframe
1 sinusoidally with an

amplitudeA and phase β. Crucially, the phase shift in Eq. (6)
depends on whether the framewinds in the same or opposite
direction around the second node ðϕframe

2 Þ, corresponding to
same or opposite frame charges, provided that cosðα0Þ is
known. The latter can be extracted from the amplitude (5),
which reveals only cos2ðα0Þ, by performing the experiment
at double the acceleration to halve the dynamic phase.

TABLE I. Interferometry results for paths in Figs. 2(a) and 2(b).
While opposite frame charges result in a single spin species,
similar charges yield a mixture.

Paths Final state p↑ p↓ Charges

(a1) cju1ij↑i − sju2ij↑i 1 0 Opposite
(a2) cju1ij↑i − sju2ij↑i 1 0 Opposite
(b1) cju1ij↑i − sju2ij↓i cos2 ϕpath=2 sin2 ϕpath=2 Same
(b2) cju1ij↓i − sju2ij↑i sin2 ϕpath=2 cos2 ϕpath=2 Same

TABLE II. π-phase changes acquired by crossing possible DSs
in Fig. 2(c) (shaded area) and corresponding effects on relative
frame charges as explained in the text.

DS between bands Effect on Δαn, Δαnþ1 Relative charge

n and nþ 1 Both change by π No change
n and n − 1 Δαn by π Changes
nþ 1 and nþ 2 Δαnþ1 by π Changes

TABLE III. Effects of possible phase changes (cf. Table II) on
spin populations in bands n, nþ 1 after the interferometry:
Relative frame charge depends only on jΔαnþ1 − Δαnj.

Δαn Δαnþ1 p↑ p↓ Charges

0 0 1 0 Opposite
π π 0 1 Opposite
0 π cos2 ϕframe sin2 ϕframe Same
π 0 sin2 ϕframe cos2 ϕframe Same
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Obtaining cos2 ðα0=2Þ thus yields cosα0 ¼ 2cos2 ðα0=2Þ−1.
Alternatively, the dynamic phase can be directly calculated
from energy measurements [31,54].
We numerically demonstrate this method by using the

ðK;K0Þ nodes in Fig. 3 (see Supplemental Material [42]
for more complicated settings), where pn¼1 oscillates
as a function of the first turning angle ϕpath

1 ¼ 2ϕframe
1 .

Repeating for different turning angles in node 2 induces a
phase shift, direction of which reveals the relative frame
charges. Figure 3(c) reveals cos α0 < 0 in both cases, and
therefore the phase (β) increases (decreases) for similar
(opposite) frame charges.
Discussion—Our two interferometric schemes for

extracting non-Abelian frame charges of real Hamiltonians
require control on lattice acceleration and path precision
that have been already demonstrated in ultracold atom
experiments [32,34]. While the first method involves two
measurements—the actual interferometry and in general
a reference loop if dynamic phases differ along each
path [42]—the second method relies on several measure-
ments for a range of ϕpath

1;2 values to detect the phase shift but
applies independently of underlying lattice symmetries. We
note that pseudospins in Method 1 can be employed for
guiding atoms along an interferometry loop [32] and further
combining with band specific readouts of atoms reveals
individual terms in Table I. Method 2 can be fine-tuned for a
specific experiment as well. For example, for known frame
windings around individual nodes (e.g., uniform under C6

symmetry [42]), one requires only three measurements: Two
for observing pn under double acceleration by choosing
jϕframe

1 j ¼ jϕframe
2 j ¼ π=4 and reversing the sign of ϕframe

1 ,
which yield sin2 ðα0=4Þ and 1 − sin2ðα0=4Þ to find
cos2 ðα0=2Þ. Repeating the first measurement at normal
acceleration then discloses 1 − cos2 ðα0=2Þ½cos2 ðα0=2Þ� for
similar [opposite] charges. We further demonstrate our
techniques’ robustness under experimental imperfections
in [42], putting them within reach of state-of-the-art
experiments [32,34].

The interferometry and consecutive deflection methods
reveal the relative frame charge along the path joining the
nodes. Hence, by varying the route connecting the nodes,
our techniques pave the way for directly demonstrating the
non-Abelian and path dependent nature of braiding in
experiments. Given the essential role of such charges in
constituting Euler class [17–19], these serve as a crucial
route towards experimentally probing multigap topologies
in and out of equilibrium [29].
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