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In classical fluids, the Weber number is a dimensionless parameter that characterizes the flow of a
multiphase fluid. The superfluid analogy of a classical multiphase fluid can be realized in a system of two
or more immiscible Bose-Einstein condensates. These superfluid mixtures have been shown to display a
wider variety of exotic dynamics than their single component counterparts. Here we systematically study
the dynamics of a binary immiscible Bose-Einstein condensate in two dimensions, where a small bubble of
the second component is used to “stir” the first component. We begin by rigorously mapping out the critical
velocity for vortex shedding as a function of the size of the bubble, in analogy to the critical velocity of a
laser spoon. Observing that the dynamics of the system depend on the initial size and velocity of the bubble,
we then show that a dimensionless parameter with the same form as the Weber number accurately predicts
the resulting bubble fragmentation.
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Introduction—From rainfall [1] to liquid jets [2] and the
smelting of liquid metals [3], the dynamics of a wide
variety of flows that consist of two or more fluids with an
interface can be characterized by theWeber number [4]. For
classical multiphase flows (i.e., droplets of oil contained in
water flow), the Weber number is given by

We ¼ ρv2l
σ

; ð1Þ

where ρ is the density of the fluid, v is the characteristic
velocity of the droplet in the fluid, l is the characteristic size
of the droplet, and σ is the surface tension at the interface of
the droplet. In general, multiphase flows are nontrivial
systems that exhibit complex dynamics. The advantage of
the Weber number is that it is a dimensionless parameter
based on a small number of observables that broadly
characterizes the dynamics of the system, without the need
for extensive numerical analysis or experimental measure-
ments. In a flow with a very small Weber number, a droplet
will retain its original shape. As the Weber number
increases in magnitude, vibrational modes will appear on
the droplet, leading to deformations and eventually the
fragmentation of the droplet. For very large Weber num-
bers, a catastrophic break-up modewill occur [5], where the
original droplet will break into smaller droplets, and these
droplets will break into smaller droplets still.

The superfluid analogy of multiphase fluids have been
realized in mixtures of atomic Bose Einstein condensates
(BECs), where the two (or more) components are coupled,
and the components may be miscible or immiscible,
depending on the interspecies and intraspecies interaction
strengths [6]. BEC mixtures can be formed in the same
atomic species [7–16], different isotopes of the same
atomic species [17,18], and with different atomic species
[19–22]. By comparison with single component BECs,
two-component BECs have been shown to exhibit an exotic
variety of both steady state solutions [6,23–31], and
dynamics [32–36]. In addition, recent works on superfluid
mixtures have uncovered a rich vein of counterparts to
instabilities found in classical fluids. In mixtures that have a
mass imbalance, analogies to the Richtmyer-Meshkov [37]
and Rayleigh-Taylor instabilities have been predicted
[38,39], while for superfluid systems subject to long-range
dipole interactions, ferrofluid instabilities such as the
Rosensweig [40] and fingering [41] instability have been
predicted and experimentally observed. These results hint
at the diverse range of instabilities available in two-
component superfluids [42].
While superfluids are characterized by their frictionless

flow about an obstacle, it has been shown that dragging an
obstacle through a superfluid faster than a critical velocity
will nucleate vortices [43], and increasing the speed of the
obstacle further still will lead to a turbulent system [44,45].
While there has been much focus on determining the
critical velocity as a function of obstacle shape [46,47]
and condensate temperature [48,49], these studies are
limited to the case of an external potential acting as an
obstacle, which acts as a “laser spoon” in creating a well-
defined region of depleted condensate density. In the
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absence of an imposed obstacle, it is still possible to create
an area of depleted density, by adding an immiscible
second component to the system [8,10], which is subject
to arbitrary spatiotemporal control [50]. Previous theoreti-
cal work on immiscible binary condensates has observed
that a bubble of component 2 will deform and then shed
vortices in component 1 as it is subjected to a linear forcing
potential [51]. However, it is not possible to identify a
critical velocity at which the bubble will shed vortices into
the other component, owing to the setup of the potential.
In this work, by controlling the imposed velocity profile

of the bubble, we systematically study the bubble’s critical
velocity as a function of its size. The wake of the bubble is
determined both by its size and its initial velocity. Small
bubbles traveling at low speeds are trailed by laminar flow.
As either the bubble’s velocity or size is increased, one
vortex–antivortex pair is shed, the cores of which are filled
by some of the atoms that originally formed the bubble.
Large bubbles traveling at high speeds shed many vortices,
leaving a dense wake. Most notably, we observe a dynamic
similarity between the wakes of bubbles with different sizes
and velocities; motivated by previous studies into dynamic
similarities [52], we identify a dimensionless quantity that
parametrizes the resulting dynamics of the system. This
quantity, the superfluidWeber number, Wes, is based on the
classical Weber number, Eq. (1), and is determined by the
number of atoms in the bubble and the interspecies
interaction strength; two highly controllable experimental
parameters. The Weber number also has the advantage that
it characterizes the dynamics of the system based on the
initial configuration, removing the need to disturb the
system during its evolution (i.e., to perform time-of-flight
imaging) to visualize the flow. We show that the value of
this number accurately predicts the onset of quantum
turbulence, via the irregular shedding of filled vortices.
Governing equations and numerical implementation—

We consider a binary system of weakly interacting BECs in
the zero temperature limit. This consists of a majority
component, with macroscopic wave function ψ1 and
atomic mass m1, which contains a “bubble” of a second
component, with macroscopic wave function ψ2 and
atomic mass m2. For simplicity, we consider a homo-
geneous system with no in-plane trapping potential on
either species. Such a system is accurately described by a
2D coupled Gross-Pitaevskii Equation (GPE)

iℏ
∂ψ1

∂t
¼

�
−

ℏ2

2m1

∇2 þ u11jψ1j2 þ u12jψ2j2
�
ψ1; ð2aÞ

iℏ
∂ψ2

∂t
¼

�
−

ℏ2

2m2

∇2 þ u12jψ1j2 þ u22jψ2j2
�
ψ2; ð2bÞ

where sufficient trapping is applied in the z axis to prevent
excitations out of the plane [53]. We can cast Eqs. (2a) and
(2b) in dimensionless form by working in the characteristic

units of the majority component: background density n1;0,
healing length ξ1 ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1u11n1;0

p
, characteristic time,

τ ¼ ℏ=ðu11n1;0Þ, and speed of sound c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u11n1;0=m1

p
.

In the remainder of this Letter, we will normalize compo-
nent 1 to N1 and refer to this as the majority component,
while component 2 is normalized to N2. The value of N1 is
chosen so that the background density of component 1 is
approximately unity across our computational domain,
n1;0 ≈ 1, and we vary the population of the second
component, N2, while fixing the requirement for the
density of the bubble to be unity in the bulk, n2;0 ≈ 1

[54]. We suppose that our binary system comprises
homonuclear systems with equal masses, m1 ¼ m2 ¼ m,
and equal intraspecies interaction parameters, u11 ¼ u22.
This, coupled with the fact that the background density of
each species is unity in the bulk, means that the healing
length and speed of sound is identical in each component,
and as such we will omit the subscripts on the healing
length ξ, characteristic time τ, and speed of sound c.
The formation of a bubble of the second component is a

result of the immiscibility criterion for a homogeneous
system [26], which constrains the interspecies interaction
strength u12 as u212 > u11u22. Having set the intraspecies
scattering lengths to be identical, and taking u12 > 0, we
can write this constraint as g12 ¼ u12=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u11u22

p
> 1, and we

will report values of g12 in the remainder of this Letter.
We solve the coupled GPE, Eqs. (2a) and (2b), using an

adaptive RK45 method with a tolerance of 10−8, imple-
mented using XMDS2 [55]. We do this on a computational
grid that is discretized to have 2 numerical grid points per
healing length, typically on a grid of size 256ξ × 128ξ;
where the size of the bubble becomes comparable to the
size of this computational domain, we double the linear
size. In order to initialize the system, we perform a Wick
rotation ti ¼ it and evolve up to ti ¼ 100τ, renormalizing
both components after each step. This “imaginary time”
propagation is a well-established method to obtain the
lowest energy state of a system [56]. Once we have
obtained the ground state, we impose a phase gradient in
the x direction on the bubble, which is responsible for the
initial velocity boost, before evolving the system in
real time.
The critical velocity—Unlike the case of an obstacle that

is imposed via an external potential [46–49], a system that
is “stirred” using an immiscible second component does
not have a well-defined zero-density region, since the
second component can deform from its initial shape.
This means that the critical velocity for vortex nucleation
in the wake of the bubble cannot be predicted analytically
using Landau’s criterion [57], and so we determine the
critical velocity numerically, as previous works have done
for the case of an externally imposed barrier [46,47]. The
vortices are quantized due to the superfluid nature of the
system.
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The results of the vortex detection are presented in Fig. 1.
Since the characteristic diameter of the bubble l scales asffiffiffiffiffiffi
N2

p
, we would expect that the critical velocity for vortex

nucleation, vcrit, will decrease with the number of atoms in
the bubble; this is consistent with previous studies for
external stirring potentials [43,45,46,52]. Given the quali-
tative similarities between the immiscible bubble and a
stirring potential, we fit an empirical model for the critical
velocity,

vcrit
c

¼ affiffiffiffiffiffi
N2

p þ b; ð3Þ

where b corresponds to the “Eulerian limit” of very large
obstacles [58]. For g12 ¼ 1.1 we obtain a ¼ 4.623� 0.449
and b ¼ 0.243� 0.024, while for g12 ¼ 2.2 we obtain a ¼
6.376� 0.523 and b ¼ 0.376� 0.024. The form of this fit
has previously been used to determine the critical velocity
for vortex shedding behind a stirring cylinder with a fixed
width [46,48,59]. As N2 increases, the width of the initial
bubble increases, and the critical velocity will decrease,
asymptotically approaching the corresponding Eulerian
limit for a given N2. The effect of increasing g12 is to
increase the repulsion between the bulk of the majority
component and the bubble; this increases the critical
velocity of the bubble in analogy with the increase in
critical velocity of a hard-walled potential compared to a
soft-walled potential [60].
Characterizing the resulting dynamics—While the criti-

cal velocity of a bubble containing N2 atoms of an
immiscible second component has a likeness to vortex
shedding from a dragged laser spoon, the bubble is not a
fixed obstacle, and is able to deform or fragment over the
lifetime of the experiment. Studies of two-component
classical flows observe a number of “break-up” modes
of the droplet, termed vibrational, bag, multimode, sheet-
thinning, and catastrophic [5]. In a system of two

immiscible superfluids, we are also able to identify a range
of characteristic behaviors, which we categorize based on
the long-term behavior of the fluid parcel that originated
from the bubble and the number of vortex pairs that are
shed in the wake of this parcel. A schematic of these
dynamics can be found in Fig. 2.
For very low velocities, we observe a “steady” state

where the fluid parcel is relatively unchanged from the
original bubble (Fig. 2, top left), although any imposed
velocity will lead to a “sloshing” motion (see the example
movies of the dynamics in the Supplemental Material [61]).
As the velocity of the bubble is increased, the surface
tension at the interface gives rise to vibrational modes in the
fluid parcel, similar to the surface modes observed in
trapped BECs [62] (Fig. 2, top middle). The excitation
spectrum of waves at the interface of two BECs has
previously been studied [27]. As the velocity increases
further (or N2 is increased), the vibrational modes of the
bubble have sufficient energy that they are able to over-
come the surface tension associated with the immiscibility
condition, and the bubble breaks into two or more smaller
parcels without forming vortices; this is the multimode
phase (Fig. 2, top right).
As the velocity is increased beyond the critical velocity

for a given N2, we begin to observe fragmentation. The
response of the superfluid system to this highly non-
equilibrium state is to shed an even number of oppositely
charged vortices. The 1st fragmentation occurs when a
single vortex–antivortex pair is shed from the leading fluid
parcel. The cores of this vortex–antivortex pair are filled
with some of the second component, and the leading fluid
parcel, which is now smaller than the original bubble, is
then either in the vibrational or multimode state (Fig. 2,
second row).

FIG. 1. The critical velocity, vcrit of the bubble containing N2

atoms, where the interspecies interaction strengths are g12 ¼ 1.1
(blue) and g12 ¼ 2.2 (red). The error bars indicate the discrete
steps in the initial velocities. Dashed lines indicate the fitted
curves given by Eq. (3). FIG. 2. A schematic of the dynamics of a bubble. From states

with no vortex shedding, row 1, to states that fragment into 1
vortex–antivortex pair, row 2, to 2 vortex–antivortex pairs, row 3,
and so on. Columns indicate the behavior of the original bubble.

PHYSICAL REVIEW LETTERS 133, 093403 (2024)

093403-3



As the velocity is increased further still, and particularly
for larger N2, we observe recursive fragmentation events
(see Fig. 2, third row). This occurs when the initial fluid
bubble fragments by shedding one filled vortex–antivortex
pair, but the remaining fluid parcel is still energetically
unstable to the shedding of further vortices, and so a second
filled vortex–antivortex pair is shed. We refer to this as 2nd
fragmentation. For sufficiently large velocities and N2, we
can observe nth fragmentation of the initial bubble. On
each occasion, a filled vortex–antivortex pair is shed from
the leading fluid parcel, reducing the size of the leading
fluid parcel, which will either continue to shed filled
vortex–antivortex pairs, or it will enter one of the vibra-
tional or multimode states. The recursive pattern of vortex
shedding and bubble deformation is due to the superfluid
nature of the system—the response of a given bubble to an
imposed velocity is to shed vortex–antivortex pairs [60],
due to the fact that vorticity is quantized in a superfluid, and
the bubble is depleted after each shedding event, we see a
reduced number of dynamical states compared to the
classical case.
Having observed that the recursive nature of the bubble

dynamics depends on the initial bubble velocity and initial
bubble size, it would be useful to be able to predict the
bubble dynamics based on some initial parameters. This
leads us to a superfluid analog to the classical Weber
number, Eq. (1). By approximating the density distribution
of the two components to have hyperbolic tanh profiles
[27], we can derive the surface tension at the interface of the
two fluids to be σ¼ξP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g12−1

p
tanh½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2ðg12−1Þ=6π
p �=

4
ffiffiffi
6

p
, where P0 ¼ u11n21;0=2 is the pressure (the full

derivation can be found in the Supplemental Material
[61]). We can think of the surface tension as the energy
required to deform the density of the components away
from a homogeneous profile [28]; such a deformation is
required by the immiscibility condition of the system, and
for a unit area of interface will increase with g12. This leads

to the Weber number for a binary system of immiscible
superfluids, which is

Wes ¼
8

ffiffiffi
6

p
ρv2ξffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

g12 − 1

s
coth

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ðg12 − 1Þ

6π

r �
; ð4Þ

where ρ is the background density of the majority fluid, v is
the initial velocity of the bubble, and l is the characteristic
size of the bubble, which we approximate as l ¼ ξ

ffiffiffiffiffiffiffiffiffiffiffi
N2=π

p
.

The precise experimental control over the interaction
parameter g12 and high-precision measurements of the
atom number N2 are the hallmark of a superfluid formed
of an ultracold quantum gas, and we see that these are
the most prominent variables in the superfluid Weber
number.
Our observed dynamics are presented in Fig. 3, along

with the predictions of the superfluid Weber number, for
each interspecies interaction strength. Although we would
expect that the dynamics of any given individual realization
will be subject to small fluctuations about the value
predicted by Eq. (4), we see that the contours of the
superfluid Weber number are in good agreement with the
different regimes of bubble breakup. In particular, we see
that 100≲Wes ≲ 150 indicates a transition from no
fragmentation, to 1st fragmentation. The presence of
vortices in the system associated with fragmentation
indicates the breakdown of superfluidity, and the transition
of the system to a turbulent state [60,63,64]. In the case
where g12 ¼ 1.1, we see a wide range of dynamics, from no
fragmentation (light blue), up to 5th fragmentation, which
has a superfluid Weber number Wes ≳ 800. The dynamics
of the system for this large superfluid Weber number is
characterized by a large number of filled vortices, which is
an inherently chaotic system that contains large velocity
gradients; as Wes is increased further, these systems will
become turbulent, as has been seen experimentally in one
component [45]. This transition to turbulence takes place

FIG. 3. Characterization of the dynamics for a system with g12 ¼ 1.1, left, and g12 ¼ 2.2, right. The color axis indicates the observed
number of vortex–antivortex pairs that are shed over the lifetime of the simulation, the nth fragmentation. The contours are given by the
superfluid Weber number, Eq. (4). Example movies of the dynamics are available in the Supplemental Material [61].
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when the dimensionless Weber number is an order of
magnitude greater than the Weber number associated with
the 1st fragmentation. We see the best agreement between
the prediction of the superfluid Weber number and the
ensuing dynamics of the system occurs at larger N2; this is
because the approximation of the density profile of the two
components is more accurate in this regime. In the case
where g12 ¼ 2.2, we are limited to 1st fragmentation for the
values of N2 that we consider—this is due to the stronger
immiscibility condition associated with the higher g12
preventing the initial bubble from breaking up, other than
at high velocity or large bubble size. The superfluid Weber
number correctly predicts that this will be the case.
Conclusions—For a binary system of immiscible super-

fluids, we have systematically determined the critical
velocity for vortex shedding by a bubble of the second
component. Such a system would be relatively easy to
realize using current experimental setups, for example, by
making use of DMDs [50]. We have then studied the
resulting dynamics, and we have observed that they can be
characterized by the number of vortices that are shed, and
the behavior of the fluid parcel that remains from the
bubble. Importantly, since vorticity is quantized, the
dynamics are recursive—the bubble undergoes n fragmen-
tation events (shedding n vortex–antivortex pairs) before
reaching a vibrational or multimode state. The dynamics of
the bubble wake depend on the initial velocity of the
bubble, and the size of the bubble; we have shown that this
wake can be characterized by a dimensionless parameter,
the superfluid Weber number Wes, which resembles the
form of a Weber number in classical multiphase flows,
Eq. (1). Like the classical Weber number, the superfluid
Weber number parameterises the dynamics of the system,
and is a useful starting point to predict the nature of the
resulting flow, with steady or vortex-free flow taking place
when Wes ≪ 100, the shedding of one vortex–antivortex
pair occurring at 100≲Wes ≲ 150, and 5th fragmentation
state occurs at Wes ≳ 800. Such dynamic similarities
suggest that the superfluid Weber number may be appli-
cable to a wide variety of superfluid systems, from binary
immiscible Bose-Einstein condensates, to systems contain-
ing multiple phases of liquid helium. Excitingly, we have
seen that the superfluid Weber number is particularly good
when N2 is large or g12 is strong, the regime predicted to
exhibit new forms of superfluid turbulence that are
unavailable in one-component systems.
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