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We study driven atomic Josephson junctions realized by coupling two two-dimensional atomic clouds
with a tunneling barrier. By moving the barrier at a constant velocity, dc and ac Josephson regimes
are characterized by a zero and nonzero atomic density difference across the junction, respectively.
Here, we monitor the dynamics resulting in the system when, in addition to the above constant velocity
protocol, the position of the barrier is periodically driven. We demonstrate that the time-averaged particle
imbalance features a plateau behavior that is the analog of Shapiro steps observed in driven super-
conducting Josephson junctions. The underlying dynamics reveals an intriguing interplay of the vortex and
phonon excitations, where Shapiro steps are induced via suppression of vortex growth. We study the system
with a classical-field dynamics method, and benchmark our findings with a driven circuit dynamics.
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Superconducting Josephson junctions (JJs) exhibit a
transition between the dc and ac Josephson effect by
developing a dc voltage when the current exceeds a critical
value [1]. In the presence of microwave radiation driving
the junction, characteristic dc-ac transitions can occur as a
result of photon-assisted tunneling processes. Accordingly,
for an averaged voltage matching multiples of the driving
frequency, the supercurrent jumps between different “dc
plateaus,” reflecting that the Cooper pairs’ phase change is
effectively synchronized with the external ac source [2].
The resulting steps displayed in the I-V characteristics are
referred to as Shapiro steps [3,4]. Such picture has been
confirmed with experiments carried out on driven super-
conducting JJs [5–7]. Shapiro steps play an important role
both for the fundamental understanding of superconduc-
tivity and practical applications of JJs, such as metrological
voltage standards [8–10].
Similarly to the dc and ac Josephson effects in super-

conducting junctions,dissipationless-viscous transitionscan
occur also in neutral 3He and 4He quantum fluids flowing
through suitable constrictions. This phenomenon has been
demonstrated to result from phase slips nucleating in the
hydrodynamical field [11–14]. By suitable driving of the
pressure across the constriction, a matter flow with Shapiro-
type step behavior was reported in superfluid 3He [15].

Ultracold atoms have emerged as ideal systems to
implement and study atomtronic analogs of superconduct-
ing circuits [16–24]. Atomic Josephson junctions (JJs)
were realized using weak links of atom clouds [25–28],
enabling the study of important effects as macroscopic
self-trapping [29] and current-phase relation [30,31].
Following the seminal paper of Giovannazzi et al. [32],
the Josephson effect in ultracold atom systems can be
studied by moving a barrier separating two degenerate gas
clouds at rest. An analog of a dc to ac Josephson response
occurs in which the difference of the particle densities of
the two sides of the junction (termed as particle imbalance
throughout the manuscript) changes from zero to a finite
value. The current-chemical potential (playing the role of
the voltage in superconducting JJ) relation was achieved
in a series of remarkable experiments [31,33,34]. Such a
behavior can be captured by a resistively and capacitively
shunted junction (RCSJ) circuit model [35]. Phase-slip
induced dissipation was studied in Refs. [36–40].
Theoretically, Josephson effects were studied using a
two-mode Gross-Pitaevskii equation model [32,41,42].
Even though specific resonances were noticed in periodi-
cally tilted double wells, experimentally feasible protocols
to realize Shapiro steps in condensates have not been
provided yet [42–45].
With the remarkable progress in dynamical light shaping

achieved recently [46–48], driven matter-wave circuits
are well within the experimental capabilities. Here, we
consider a driven JJ: while moving the barrier with a
velocity v, we drive its position periodically; see Fig. 1(a).
With this, we observe that the dynamics of the system
features steps of the Shapiro type that manifest themselves
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as a time-averaged atom imbalance; see Fig. 1(b). We
demonstrate how the observed dynamics is controlled by
specific features of phonon excitations and vortex nucle-
ation. The results are obtained by classical-field methods
that include fluctuating bosonic fields beyond mean-field
description [49–52]. We benchmark our results with the
dynamics of a driven RCSJ circuit model.
System and method—We simulate the dynamics of a

generic condensate of bosons using classical-field dynam-
ics within the truncatedWigner approximation [49–52]. We
consider a homogeneous cloud of bosons confined in a box
of dimensions Lx × Ly. The system is described by the
Hamiltonian

Ĥ0 ¼
Z

dr

�
ℏ2

2m
∇ψ̂†ðrÞ ·∇ψ̂ðrÞþ g

2
ψ̂†ðrÞψ̂†ðrÞψ̂ðrÞψ̂ðrÞ

�
:

ð1Þ

ψ̂ (ψ̂†) is the bosonic annihilation (creation) operator. The
interaction g ¼ g̃ℏ2=m is given in terms of the dimension-
less parameter g̃ ¼ ffiffiffiffiffiffi

8π
p

as=lz, where m is the mass, as is
the s-wave scattering length, and lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωzÞ

p
is the

harmonic oscillator length in the transverse direction.
Within the classical-field representation we replace the
operators ψ̂ in Eq. (1) and the equations of motion by
complex numbers ψ . The initial states ψðr; t ¼ 0Þ are
sampled in a grand canonical ensemble with chemical
potential μ and temperature T via a classical Metropolis
algorithm [53]. The resulting distribution provides the
fluctuations of ψðr; t ¼ 0Þ around its mean-field value.
Finally, each initial state is propagated using the equations
of motion

iℏψ̇ðr; tÞ ¼
�
−
ℏ2

2m
∇2 þ Vðr; tÞ þ gjψ j2

�
ψðr; tÞ; ð2Þ

which include the barrier potential given by Vðr; tÞ ¼
V0ðtÞ exp½−2ðx − xðtÞÞ2=w2�. V0ðtÞ, w and xðtÞ are the
barrier’s strength, width, and location. For numerical
calculations, we discretize space on a lattice of size
Nx × Ny and a discretization length l ¼ 0.5 μm. While
we present our results for the concrete realization provided
by 6Li2 molecules, we emphasize that our protocol can be
applied to any cold-atom degenerate gas. We choose
the density n ≈ 5.6 μm−2, g̃ ¼ 0.1, T=T0 ¼ 0.06, and
Lx × Ly ¼ 512 × 27 μm2. The critical temperature T0 is
estimated by T0 ¼ 2πnℏ2=ðmkBDcÞ, where Dc ¼
lnð380=g̃Þ is the critical phase-space density [56,57]. We
use w=ξ ¼ 1.1 and V0 in the range V0=μ≡ Ṽ0 ¼ 1–4,
where ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffi
2mgn

p
is the healing length and μ ¼ gn is

the mean-field energy. To create the weak link at the
location xðtÞ ¼ x0 ¼ Lx=2, we ramp up V0 linearly over
200 ms and wait for 50 ms. Following [31,32], the
Josephson current can be obtained by moving the barrier
at a constant velocity v until it reaches the final position xf,
as depicted in Fig. 1(a). Here, we will discuss the dynamics
of the system obtained when the barrier features a periodic
driving in addition to its motion with constant velocity,

xðtÞ ¼ vtþ x1 sinð2πftÞ; ð3Þ

where x1 is the amplitude and f is the frequency of
driving. We calculate the atom number NLðtÞ [NRðtÞ] in
the left (right) reservoir to determine the imbalance
zðtÞ ¼ ½NLðtÞ − NRðtÞ�=N, where N ¼ ðNL þ NRÞ is the
total atom number. The barrier motion induces an external
current given by IextðtÞ ¼ ðz̄N=2Þ × jvj=Δx, whereΔx is the
displacement and z̄ is the equilibrium imbalance at the final
location xf ¼ x0 þ Δx. Throughout the Letter we fix the
driving time tf to four cycles. We calculate zðtÞ for various
values of v; see inset of Fig. 1(b). By fitting zðtÞwith a linear
function we obtain the value of the time-averaged imbalance

FIG. 1. Atomic Josephson junction and emergence of Shapiro
steps. (a) Simulation of a Josephson junction consisting of two
clouds separated by a tunneling barrier of height V0 and width w.
The barrier is moved at constant velocity v (arrow) from the
position x0 until the final position xf, which induces an external
current Iext. In addition, we modulate the barrier location using
the protocol xðtÞ ¼ vtþ x1 sinð2πftÞ, where f is the frequency
and x1 is the amplitude of driving. NL (NR) represents the atom
number of the left (right) reservoir. (b) Imbalance Δz ¼ z − z̄ as a
function of v for the undriven case (dashed line). z̄ is the
equilibrium imbalance determined at xf that varies with v.
Time-averaged imbalance hΔzi shown for f ¼ 45 Hz and
x1 ¼ 1, 2, 3, 4, and 5 μm. Inset shows the time evolution of
zðtÞ at different v for the driving with x1 ¼ 3 μm, where Tp ¼
1=f is the driving period. We use the barrier height V0=μ ¼ 1.5,
where μ is the mean-field energy.
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hΔzi at tf, where hΔzi ¼ hzi − z̄ðxfÞwith xf ¼ jvj × tf. h::i
refers to the time-averaged response throughout the
Letter. In Fig. 1(b), the driven response shows the formation
of Shapiro steps in comparison to the undriven system,which
we explain below. For the undriven case, we show Δz ¼
z − z̄ðxfÞ determined at the same tf as the driven case.
We quantify the change in the chemical potential
Δμ ¼ NEcΔz=2, where Ec ¼ 4ð∂μ=∂NÞ is the effective
charging energy.
Characterization of the dc-ac regimes—We first intro-

duce the driven RCSJ model and then analyze the dc-ac
regimes of the undriven junction. We note that this is
intrinsically different from the two-mode Gross-Pitaevskii
equations, which converge to the RCSJ model in the ideal
underdamped limit only. The RCSJ model is a lumped
elements circuit to model the dynamics of JJs [35]. The
Kirchhoff law of the driven RCSJ circuit reads

Iext þ I1ω̃ cosðωtÞ ¼ Ic sinϕ − GΔμ − CΔμ̇; ð4Þ
where Ic is the critical current, ϕ ¼ ϕL − ϕR the phase
difference across the junction, G the conductance, and
C ¼ 1=Ec the capacitance. The Josephson relation for the
phase dynamics is ℏϕ̇ ¼ −Δμ, meaning that Δμ plays the
role of the voltage across the junction. I1ω̃ is the amplitude
and ω is the frequency of ac drive, with ω̃ ¼ ω=ωJ, where
ωJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IcEc=ℏ

p
is the Josephson frequency. By using the

expression of Δμ we provided above, the circuit is
described as an effective driven resistively shunted junction
model

żN=2þ I1ω̃ cosðωtÞ ¼ Ic sinϕþ ℏGϕ̇: ð5Þ
The undriven case (i.e., I1 ¼ 0) is solved analytically,
yielding the time-averaged chemical potential hΔμi ¼
G−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ext − I2c

p
, which we use to fit our results for the

ΔμðIext; tfÞ curve. Based on this fit, we determine Ic andG.
Here, for the undriven case, we use the constant

displacement of Δx ¼ 150 μm, which results in the same
equilibrium imbalance z̄ ¼ 0.59 at xf for all v. As shown in
Fig. 2(a), there is a nonzero Δμ only when Iext exceeds Ic,
which marks the transition from the dc to ac Josephson
effect. The junction becomes resistive with a finite Δμ
above Ic. We map out the ac resistive regime for a wide
range of Ṽ0 in Fig. 2(b). The onset of the resistive regime
occurs at a low value of Ic for high Ṽ0. We compare
the results of Ic with the predictions of the critical current
Ic;p ¼ Ibt0ðṼ0; wÞ derived for an ideal Josephson junction
[37]. The bulk current Ib ¼ cn0Ly is determined using the

sound velocity c ¼ ffiffiffiffiffiffiffiffiffiffiffi
gn=m

p
and the condensate density n0.

We use the variational solution of the tunneling amplitude
t0ðṼ; dÞ obtained across a rectangular barrier of width d
and height Ṽ [37], with d ≈ 1.1w and Ṽ ¼ Ṽ0 [53]. In
Fig. 2(b) the results of Ic;p show good agreement with the
simulation results.
To characterize the resistive regime, we study the

dynamics of the condensate’s local density and phase.
While we observe no distinctive change in the dynamics
for Iext below Ic, characteristic density patterns due to
phonon and vortex excitations, resulting in an increase of
the imbalance, occur for Iext above Ic [53]. We identify
vortex excitations by calculating the phase winding around
the lattice plaquette of size l × l using

P
□
δθðx; yÞ ¼

δxθðx; yÞ þ δyθðxþ l; yÞþ δxθðxþ l; yþ lÞþ δyθðx; yþ lÞ,
where θðx; yÞ is the phase field of ψðx; yÞ and the phase
differences between sites are taken to be δx=yθðx; yÞ∈
ð−π; π�. We associate a vortex (an antivortex) by a phase
winding of 2π (−2π). By counting all vortices and anti-
vortices we determine the total vortex number Nv and
average it over the initial ensemble. Figure 2(c) shows a
rapid growth of Nv above Ic and no vortex excitation below
Ic. This confirms that the energy in the resistive regime is
dissipated by the creation of vortex-antivortex pairs, which
is analogous to phase slips in 4He [11,12] and atomic weak
links [36].

FIG. 2. Characterizing an atomic Josephson junction. (a) Imbalance z − z̄ as a function of v for Ṽ0 ¼ 1.5 (dots) and its correspondence
to the current-chemical potential results (second axes). We fit the response with hΔμi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ext − I2c

p
=G (continuous line) to determine the

critical current Ic and the conductance G. (b) z − z̄ as a function of Ṽ0 and Iext=Ib, where Ib is the bulk current. The results of Ic (dots)
are compared with the theoretical prediction Ic;p (continuous line); see text. (c) Total vortex number Nv determined from the same
simulations as in (b), which shows a sharp onset of vortex growth above Ic (dots). (d) Conductance G (dots) and Stewart-McCumber
parameter βc (squares) determined for Ṽ0 in the range 1–4.
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In Fig. 2(d), we demonstrate that the dependence of both
the conductance G and the Stewart-McCumber parameter
βc ¼ IcC=ðℏG2Þ is consistent with an exponential depend-
ence on Ṽ0. The characteristic dependence between G and
Ic yields to G ∝ Iαc , with α ¼ 1.2 [53], resembling the
linear dependence of the Ambegaokar-Baratoff relation
[54]. The values of βc are in the range between 25 and 500,
which fulfills the junction dynamics being in the under-
damped regime (βc ≫ 1). The dependence of βc on G
follows the behavior βc ∝ G−1.17 [53].
Driven response and Shapiro steps—We now turn to the

dynamics of a periodically driven junction, which is
obtained using the barrier protocol described in Eq. (3);
see also Fig. 1(a). In Fig. 3(a) the time-averaged response of
hΔμi features the creation of regular steps occurring at

hΔμi ¼ khf, where k is an integer denoting the step index.
The onset current location and width of the step vary
according to the value of x1. To benchmark our results we
numerically solve the driven RCSJ model and analyze its
time-averaged response for various parameters, where the
current-driving amplitude I1 is related to x1 via x1 ¼
I1vc=ðIcωJÞ in which vc is the critical velocity associated
with Ic [53]. The results of the driven model confirm the
formation of the Shapiro steps at hΔμi ¼ khf in agreement
with our simulations; see Fig. 3(b). The steps obtained by
the driven RCSJ model are smoothed out due to the thermal
fluctuations of the initial state and a driving-induced
depletion of the condensate density. As a result, especially
for k > 2, the steps are obtained with a specific broadening
and amplitude suppression.
Below, we monitor the formation of vortices taking

place while the system is driven. Figure 3(c) shows the
total number hNvi of vortices nucleating during driving,
averaged over two driving cycles [53]. Remarkably, hNvi
features a similar plateau structure as the hΔμi response:
hNvi increases rapidly at the onset of the steps and
undergoes a suppressed vortex nucleation during the steps
formation. For x1 ¼ 5 μm, hNvi shows a distinct behavior
compared to the results at lower x1. hNvi starts out with a
nonzero value undergoing a plateau structure during the

FIG. 3. Shapiro steps and the underlying vortex and phonon
dynamics. (a) hΔμi–Iext response of the driven junction for
f=fJ ¼ 2.2 and x1 ¼ 1, 2, 3, 4, and 5 μm. The corresponding
undriven junction with Ṽ0 ¼ 1.5 gives Ic ¼ 1.6 × 105 s−1,
ℏG ¼ 157, and the Josephson frequency fJ ¼ 25 Hz. (b) Results
of the driven RCSJ model shown for the same parameters as the
simulations. (c) Time-averaged vortex number hNvi correspond-
ing to the simulations in (a). (d),(e) Time evolution of the density
nðxÞ and the phase θðx; Ly=2Þ in the x direction of the driven
system at Iext=Ic ¼ 0.6, which is indicated by the open circle
symbol in (a). Tp ¼ 1=f is the driving period. nðxÞ is averaged
over the initial ensemble and the y direction, whereas θðx; Ly=2Þ
represents the phase profile of a single sample. In (e), vortices
(triangles) and antivortices (dots) are calculated using the phase
change near the line at Ly=2 and the dotted line denotes the
barrier motion.

FIG. 4. Maximal current at the Shapiro steps. Differential
resistance dμ=dIext as a function of Iext=Ic and x1, for
f=fJ ¼ 1.4, 1.8, 2.2, and 3. The maxima of dμ=dIext allow us
to identify the maximal currents Is0, I

s
1, I

s
2, I

s
3, I

s
4, and Is5 of

the Shapiro steps 0, 1, 2, 3, 4, and 5, respectively. The gray
squares show the frequency and amplitude dependence of the
maximal currents Ik of the driven RCSJ model, determined using
the same magnitude cutoff for all f, where the splitting of curve
indicates a broadening of maxima. k is the step index. We use
Ic ¼ 1.6 × 105 s−1, fJ ¼ 25 Hz, and ℏG in the range 145–175,
which are chosen according to the undriven system.
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first step, whose onset and width feature an opposite
trend than the corresponding results of low x1 in Figs. 3(a)
and 3(b). This occurs due to a Bessel-function type fea-
ture of the step width on x1, which is evident from the
results shown in Fig. 4. Even though Iext is below Ic,
as a consequence of the periodic driving, both density
wave pulses in nðx; yÞ and slippages of the local phase
θðx; yÞ near the barrier occur at the beginning of each
driving cycle. Vortex formation and density waves are
clearly correlated: vortex-antivortex pairs are generated that
propagate behind the barrier; at the same time, density
wave pulses of low velocity are observed in the left
reservoir. Such phenomenon occurs in correspondence
of the maxima, where the current near the barrier exceeds
Ic, making the barrier effectively dissipative [53]; see
Figs. 3(d) and 3(e).
To quantify the maximal current that develops at each

step, we monitor the maxima Isk of the differential resis-
tance dμ=dIext at different driving frequencies. Figure 4
shows that the numerically obtained Isk follow the behavior
of maximal currents of the driven RCSJ model. The
amplitude of the peak decreases for both high steps and
high driving frequencies, where the latter is partially
captured by the driven model. The high-step damping
originates from the depletion of the condensate density,
which is a feature of the dynamics and does not affect the
circuit model.
Conclusions and outlook—We have analyzed the time-

averaged response of a driven atomic Josephson junction
(JJ) at nonzero temperature. The JJ is created by separating
two two-dimensional bosonic clouds with a tunneling
barrier, where the barrier motion induces an external
current and the periodic modulation of the barrier position
acts as an external ac current drive. For the analysis, we
employed classical-field simulations that capture the
dynamics beyond mean field. The driven response dem-
onstrates dc-ac transitions in the form of Shapiro steps. We
compare these results with a driven RCSJ circuit model.
Indeed, the steps result from resonances between the
driving frequency f and the periodic oscillations in the
particle imbalance such that hΔμi ¼ khf, where k is
the step index. As a distinctive feature of our neutral
superfluid system, the phenomenon arises from character-
istic dynamics of vortex and phonon excitations. Our
results can be directly probed, for example on ultracold
6Li machines employed in LENS [31] and Hamburg [30].
Because of the possibility to tune interactions from negative
to positive values and relying on the know-how of the field
allowing to work with bosonic and/or fermionic systems,
spinor condensates [58], etc., Shapiro steps are expected to
bear a great potential to explore the coherent properties of
the artificial quantum matter as provided by cold atoms.
Our results are important for both fundamental research in
quantum dynamics of coherent systems and applications in
quantum technologies.
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[44] André Eckardt, Tharanga Jinasundera, Christoph Weiss, and
Martin Holthaus, Analog of photon-assisted tunneling in a
Bose-Einstein condensate, Phys. Rev. Lett. 95, 200401
(2005).

PHYSICAL REVIEW LETTERS 133, 093401 (2024)

093401-6

https://doi.org/10.1103/PhysRevLett.87.035301
https://doi.org/10.1088/1367-2630/aa5a6d
https://doi.org/10.1116/5.0026178
https://doi.org/10.1103/RevModPhys.94.041001
https://doi.org/10.1103/RevModPhys.94.041001
https://doi.org/10.1103/PhysRevLett.106.130401
https://doi.org/10.1103/PhysRevLett.106.130401
https://doi.org/10.1038/nature12958
https://doi.org/10.1038/nature12958
https://doi.org/10.1103/PhysRevLett.111.205301
https://doi.org/10.1038/s41467-020-17185-6
https://doi.org/10.1038/s41467-020-17185-6
https://doi.org/10.1038/nphys3531
https://doi.org/10.1038/nphys3531
https://doi.org/10.1088/1361-648X/aa74a1
https://doi.org/10.1126/science.1062612
https://doi.org/10.1126/science.1062612
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1103/PhysRevLett.118.230403
https://doi.org/10.1103/PhysRevLett.118.230403
https://doi.org/10.1103/PhysRevLett.120.173601
https://doi.org/10.1103/PhysRevLett.120.173601
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1126/science.aaz2342
https://doi.org/10.1126/science.aaz2463
https://doi.org/10.1103/PhysRevLett.84.4521
https://doi.org/10.1103/PhysRevLett.84.4521
https://doi.org/10.1038/nature06186
https://doi.org/10.1103/PhysRevLett.126.055301
https://doi.org/10.1103/PhysRevLett.120.025302
https://doi.org/10.1103/PhysRevLett.120.025302
https://doi.org/10.1103/PhysRevResearch.2.033298
https://doi.org/10.1103/PhysRevResearch.2.033298
https://doi.org/10.1103/PhysRevLett.124.045301
https://doi.org/10.1103/PhysRevResearch.4.033205
https://doi.org/10.1103/PhysRevResearch.4.033205
https://doi.org/10.1103/PhysRevLett.130.023003
https://doi.org/10.1103/PhysRevLett.130.023003
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1088/1367-2630/5/1/394
https://doi.org/10.1088/1367-2630/5/1/394
https://doi.org/10.1103/PhysRevLett.95.200401
https://doi.org/10.1103/PhysRevLett.95.200401


[45] Julian Grond, Thomas Betz, Ulrich Hohenester, Norbert J
Mauser, Jörg Schmiedmayer, and Thorsten Schumm, The
Shapiro effect in atomchip-based bosonic Josephson junc-
tions, New J. Phys. 13, 065026 (2011).

[46] C Ryu and M G Boshier, Integrated coherent matter wave
circuits, New J. Phys. 17, 092002 (2015).

[47] Halina Rubinsztein-Dunlop et al., Roadmap on structured
light, J. Opt. 19, 013001 (2016).

[48] Daniel Barredo, Vincent Lienhard, Sylvain de Léséleuc,
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