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The direct imaging of time-evolving molecular charge densities on atomistic scale and at femtosecond
resolution has long been an elusive task. In this theoretical study, we propose a self-heterodyne electron
diffraction technique based on single electron pulses. The electron is split into two beams, one passes
through the sample and its interference with the second beam produces a heterodyne diffraction signal that
images the charge density. Application to probing the ultrafast electronic dynamics in Mg-phthalocyanine
demonstrates its potential for imaging chemical dynamics.
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Ultrafast electron diffraction (UED) has been widely
employed to probe molecular structural dynamics in space
and time [1–12]. A pump optical laser pulse initiates an
excited state dynamics and is followed by a probe electron
pulse whose diffraction pattern reveals the time-evolving
molecular charge density. The recent development of mega-
electron-volt radio-frequency (rf) electron guns has enabled
UED to monitor femtosecond molecular dynamics with
atomistic spatial resolution [13–17]. Elaborate computa-
tional methods are required for retrieving the molecular
charge density hσ̂ðrÞi from UED signals. This is because
standard homodyne detection gives the expectation values
of products of charge-density operators hσ̂†σ̂i,[18] while
obtaining a real-space image requires the charge-density
matrix itself in momentum space, including the phase,
which goes beyond the expectation value of the charge
density hσ̂i alone [19]. Heterodyne-detected UED requires
an additional reference wave that interferes with the
scattered wave and can directly measure the time-evolving
molecular charge density hσi itself. It has been recently
shown that the purely nuclear charge density can be singled
out by subtracting the heterodyne x-ray scattering signal
that images the electron density from heterodyne electron
scattering signal [20,21]. Other diffraction and imaging
techniques have been developed recently. Electron micros-
copies that utilize near field electron diffraction and

homodyne detection can image the system with high
space-time resolution [22,23]. Homodyne-detected x-ray
diffraction probes the modulus square of electron charge
density in momentum space [24,25]. Electron holography,
a transmission electron microscopy method that records the
interference of reference electron wave and an imaging
wave, utilizes heterodyne-detected near field electron
diffraction to image nanostructures [26–35]. Heterodyne-
detected electron diffraction, as a far field electron dif-
fraction, can achieve better spatial resolution down to
picometer and can image the total electronic and nuclear
charge density. However, the experimental implementation
of heterodyne-detected UED remains a challenge.
Here, we introduce a novel self-heterodyned UED

technique for imaging ultrafast molecular dynamics
(Fig. 1), which employs a 1 fs single-electron pulse [36–
40] followed by an electron biprism, which splits the beam
into two [41–43]. The electron wave packet generated in
one path interacts with the photo-excited molecular sample
(signal path) and exchange momentum, while the other
(reference path) traveling parallel to the signal path does
not interact with the sample. A second electron biprism is
finally used to combine the two paths, and the phase
information of the scattered electron in the signal path can
be reconstructed from the interference pattern. A detector
monitors the electron and records the diffraction pattern,
thereby measuring the interference of the two paths. The
time-resolved signal is recorded by varying the time delay
between optical pump pulse and single-electron probe
pulse. In analogy to photon self-interference as explained
by Dirac [44], the electron of the single-electron pulse
interferes with itself. Since the relative phase of the two
electron beam paths must be controlled in order to recover
the phase of the signal, single-electron pulses that exclude
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the interference of different electrons and remain coherent
with themselves are most suitable for the proposed setup. In
contrast, for multielectron pulses, when the beam electrons
are incoherent, the interaction of incoherent electrons
cannot recover the phase information. Besides the well-
controlled phase information, single-electron pulses also
overcome the space charge problem that limits the temporal
duration of multielectron pulses [36–40,45]: due to
Coulomb repulsion, multielectron pulses become longer
during propagation from the source to the sample. Space
charge is absent in pulses containing a single electron at a
time. Femtosecond single-electron pulses with several keV
electrons have been applied recently [46–48] to ultrafast
microscopy and diffraction [45,49,50], demonstrating the
feasibility of the proposed technique. Self-heterodyne
diffraction can be alternatively performed with coherent
multielectron pulses, where the pulse electrons remain
coherent within the relevant spatiotemporal window
[73,74], i.e., retain their phases. Measurements of electron
diffraction with such multielectron pulses have improved

data collection. However, multielectron pulses do not have
the femtosecond temporal resolution required for measur-
ing ultrafast electronic dynamics in molecular systems.
Single-electron pulses are thus ideal for ensuring coherence
of the electron beam and for ultrashort time resolution.
Heterodyne-detected diffraction can image the charge

density on atomistic scale and with femtosecond time
resolution. We demonstrate this by simulating this signal
for Mg-phthalocyanine (MgPc) electronic dynamics with
frozen nuclei. The signal probes the charge density tem-
poral evolution in the current migration process, where the
coherent ring currents created by an optical pump pulse
redistribute among different locations within the MgPc
molecule [75]. Similar to charge migration [76–84], current
migration is caused by the time evolution of a coherent
superposition of excited states.
In the proposed pump-probe setup, as illustrated in

Fig. 1, an optical pump at time 0, first launches the
electronic dynamics. The sample molecule excited by
the optical pump pulse evolves according to the time-
dependent Schrödinger equation

i
∂jψðtÞi

∂t
¼ ½Hmol − μ · EðtÞ�jψðtÞi; ð1Þ

where EðtÞ is the optical pump electric field, ψðtÞ is the
electronic wave function that may be expanded as
jψðtÞi ¼ P

A cAðtÞjψAi, and A runs over ground state
and excited states. The charge-density operator in real
space is given by

σ̂ðrÞ ¼ e

�X
α

Zαδðr − RαÞ −
X
i

δðr − riÞ
�
; ð2Þ

Here, Zα andRα are nuclear charges and coordinates, α runs
over the nuclei, ri is the coordinate of electron i, and e is
unit charge. The real-space charge density at time t is given
by σðr; tÞ ¼ hψðtÞjσ̂ðrÞjψðtÞi, or in momentum space,

σ̃ðq; tÞ ¼
Z
R3

dre−iq·rσðr; tÞ: ð3Þ

The total time-dependent charge density can be decom-
posed as

σ̃ðq; tÞ ¼
X

A∈ g∪ex
ρAAðtÞσ̃AAðqÞ þ

X
A;B∈ g∪ex;A≠B

ρABðtÞσ̃ABðqÞ;

ð4Þ

where A, B denote the electronic states, ρABðtÞ ¼
c�AðtÞcBðtÞ is the density-matrix element. ρAAðtÞ is the
population of state A, while ρABðtÞ is the coherence
between states A, B. The optical pump brings the system
from the ground state to a superposition of excited states via
the electric dipole interaction, Eq. (1). When the pump

FIG. 1. Top: the self-heterodyned UED setup. The molecular
sample is excited by an optical pump pulse at time 0. The electron
source ejects a single electron, going through a biprism and
separated into two replicas. One replica is scattered by the sample
at time τ and changes its wave vector from k1 to k1 þ q. The
other replica has wave vector k2. The two interfere at the detector.
Bottom: the single electron pulse at the reference time t0.
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pulse is over, the populations are stationary, while the
electronic coherences ρAB oscillates with a period
½h=ðEA − EBÞ�, reflecting the difference of phase evolution
of states A and B. The time-dependent charge density is
thus solely attributed to electronic coherences.
The electron source ejects the probe electron, which is

then split by an electron biprism into two beams. At a
reference time t0 before the probe electron interacts with
the sample, the probe electron density matrix is
ρfðr1; r2; t0Þ [or ρk1;k2ðt0Þ in momentum space]. Starting
at time t0, the probe electron ρk1;k2ðt0Þ propagates in the two
beams. Electron beam 1 propagates according to the
Coulomb potential created by the sample charge density,

uðr; τÞ ¼
Z
R3

drμ
hσðrμ; τÞi
jr − rμj

; ũðq; τÞ ¼ 4π
hσ̃ðq; τÞi

q2
;

ð5Þ

scatters off the sample at time τ, changing its wave vector
from k1 to k1 þ q. Beam 2 propagates freely with a fixed
wave vector k2. The magnitude distribution of the k2 is
narrow, however its direction distribution should be wide
enough to cover the range of q. This interaction is described
in Supplemental Material [50], Fig. S1. Treating the
Coulomb potential Eq. (5) perturbatively, the probe elec-
tron density matrix at a later time t, ρk1þq;k2ðtÞ is calculated
in Liouville space, as explained in Supplemental Material.
Finally, the electron counting detector captures the probe
electron from the two beams and measures the electron
flux. Truncating the perturbative expansion of the density
matrix to first order in the electron-sample interaction, we
obtain the electron density matrix at time t, given as
Eq. (S16) in Supplemental Material. By integrating the
current density on surfaceA on the detector to calculate the
electron flux, we obtain the expression for the electron
diffraction signal at time tD,

S0ðA; q; tDÞ ¼
ie
ℏ

Z
∞

t0

dτ
hσ̃ðq; τÞi

q2
W0ðA; tD; q; τÞ þ c:c:;

ð6Þ

where W0 is the window function defined in Eq. (S22).
Details of the window function are discussed in Sec. S2 of
Supplemental Material.
The signal that reveals the time-dependent charge

density in q space convoluted with the window function
depends on the detection time tD, the wave vector q, and the
detector area A. Here, the single electron pulse diffraction
signal is derived by neglecting the Coulombic interaction
between the electrons in the pulse. This derivation also
holds for multielectron pulses provided the number of
electrons in the pulse is low and their Coulombic inter-
action can be neglected.

In the interaction of the probe electron and the sample,
we neglected the contribution of inelastic scattering that
involves vibrational state changes. We have also neglected
the free-free transition where an electron passing close to an
ion accelerates, and the laser assisted electron scattering
where the probing electron is scattered by neutral matter in
the process of laser, since the electron and the laser pulse
have no temporal overlap in this proposed experiment.
The present self-heterodyne electron diffraction tech-

nique can be applied to single molecule or molecules
aligned in periodic structure, preferably on a single layer of
molecular film on lattice position, since the random
orientation or position of molecules will make the self-
heterodyne signal vanish. For a periodic sample, the
diffraction signal Eq. (6) becomes a function of discrete
value of q∈LB, where LB is the periodic structure’s
corresponding Bragg lattice [Eqs. (S17),(S18)]. When
the focal point of the electron beam is at the molecular
location that only covers a single molecule, the measure-
ment of a periodic system is equivalent to single molecule
diffraction.
To obtain an analytical form for the window function, we

assume that the probe electron has a Gaussian profile
around the reference time t0. The heterodyne electron
diffraction of the single electron pulse should be measured
repeatedly to accumulate enough signal strength for the
detection of the diffraction pattern [39]. For each single
electron pulse, the position of the Gaussian center r0 has a
random variation [39]. We thus describe the probe electron
as an ensemble of single electron pulses described by a
mixed-state density matrix at time t0,

ρðr1; r2Þ ¼
1ffiffiffiffiffiffi

2π
p

σpulse

Z
dr0 exp

�
−
ðr0−RÞ2
2σ2pulse

�
ρpureðr1; r2Þ:

ð7Þ

This contains the pure state density matrix (ρpure) of
Gaussian wave packet centered at r0, whose wave function
in real space is

ϕðrÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−ik0·r exp

�
−
ðr − r0Þ2

2σ2

�
; ð8Þ

while its center r0 is distributed around R with a Gaussian
weight factor exp

�
−½ðr0 − RÞ2=2σ2pulse�

�
, as depicted in the

lower panel of Fig. 1. Here, k0 is the average electron
wave vector, σ denotes the spatial width of single electron
at the reference time, σpulse is the width of the Gaussian
wave center r0 distribution. We use the same width in
the longitudinal and transverse directions. We further
used an electron average energy of E0 ¼ 100 keV,
jk0j ¼ 85.7 ðℏ=a0Þ, where a0 is Bohr radius, c is the speed
of light and m0 is electron mass. Its De Broglie wavelength
3.88 pm, determines the spatial resolution, i.e., the upper
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limit of jqj in the diffraction pattern. R is set at the origin,
while σ ¼ 22.066 Å, σpulse ¼ 1103.3 Å. The probe pulse
duration 1.18 fs is the pulse length (2σpulse) divided by
electron velocity. The electron coherence time is given by
its coherence length (2σ) divided by its velocity, 0.047 fs.
The window function is Eq. (S42) in Supplemental
Material. Using Eq. (6), we define the signal as

S0
0ðq;A; tDÞ ¼ q2S0ðq;A; tDÞ: ð9Þ

We have applied this technique to probe the electronic
dynamics in Mg-phthalocyanine (MgPc) initiated by a
circularly polarized light pump pulse. Details of the
dynamics are discussed in Supplemental Material and in
Refs. [50,75]. Phthalocyanines have many applications in,
e.g., dye-sensitized solar cells [85,86] and as photosensi-
tizers for cancer photodynamic therapy [87]. MgPc has a
rigid structure, which remains stable upon electronic
excitation [88,89]. It is a planar molecule consisting of a
center porphyrin ring and four corner benzene rings (see
Fig. 1). Its high density of excited states in the 2 to 4 eV

regime, facilitates the coherent excitation of multiple
excited states by a broadband pump pulse [75]. The
circularly polarized pump drives the electron in the con-
jugated π bond moving in a circle, resulting in ring currents
proportional to the electronic state coherence, jðtÞ ¼P

A;B;A≠B ρABjAB, where jAB is transition current density,
analogous to the coherent charge density in Eq. (4). These
coherent ring currents vary with time due to the super-
position of multiple electronic states. Since different
coherent currents have distinct spatial profiles, some
concentrated in the central ring while others reside in
the corner rings, the ring currents redistribute among
different regions of the molecule with time, resulting in
a current migration process between the central and the
corner rings [75]. Similar to current migration, the interplay
of coherent charge-density oscillations induced by multiple
pairs of coherences causes the dynamics of charge density,
i.e., the charge density redistributes among the central
porphyrin and the corner benzene rings, as depicted in the
first row of Fig. 2 and Fig. S2 in Supplemental Material.
The charge density is more pronounced on the central ring
and left and right rings, and moves to the top and bottom

FIG. 2. Top row: real space charge density at time τ minus the charge density at the initial time step, ½σðr; τÞ − σðr;−3.9 fsÞ�. Second
row: the real part of charge density in q-space, (ℜ½σ̃ðq; τÞ − σ̃ðq;−3.9 fsÞ�). Analytical integral Eq. (3) is evaluated with the algorithm of
Ref. [92]. Third row: the diffraction signal [S0

0ðq; tDÞ − S0
0ðq;−3.9 fsÞ]. The first, second, and third columns are at times 2.1 fs, 8.1 fs,

17.1 fs, respectively.
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rings, and back. Such change can also be reflected in the
real part of q-space charge density (second row of Fig. 2)
and the diffraction pattern (third row of Fig. 2). Although
electron diffraction does not directly image the current
density, it images the charge density, originating from the
same electronic coherence ρAB. However, the continuity
relation −ð∂ρ=∂tÞ ¼ ∇ · j connects the time evolution of the
charge density to the divergence of the current density
[90,91].
Figures S2 and S5 display the charge density in real

space and the diffraction pattern of the system prior to
the pump pulse where no current density exists. First
row of Fig. 2 depicts the charge-density difference
[σðr; τÞ − σðr;−3.9 fsÞ], where the charge density at time
−3.9 fs before the pump is subtracted from the charge
density at time τ. The second row displays the charge
density difference in q-space σ̃ðq; τÞ − σ̃ðq;−3.9 fsÞ, while
the third row depicts the diffraction signal difference
S0
0ðq;A; tDÞ − S0

0ðq;A;−3.9 fsÞ. The diffraction signal is
simulated by convoluting the charge density and the
instrumental window function. The window function has
both real and imaginary parts. Once integrated over the
charge density, both parts contribute to the diffraction
pattern. The real (imaginary) part of the charge density
is an even (odd) function of q [see Eq. (3)]. We find that the
resulting diffraction pattern is dominated by the stronger
real part.
During the optical pump, the excited state population ρAA

increases, inducing a population ring current [75,93] and
charge density [first term in Eq. (4)]. Since the electronic
state population is time-independent once the pump pulse is
over, the time dependence of the signal after the optical
pump pulse only comes from electronic coherences. If the
pump has a narrow bandwidth that only covers one pair of
excited state and one coherent ring current like in
Refs. [93–95], the corresponding coherent ring current
and coherent charge density oscillate with the coherence,
i.e., the coherent current density reverses direction while
the coherent charge density changes sign at the frequency
of coherence. For a broad band pump, the superposition of
multiple pairs of coherence causes current migration and a
redistribution of charge density among different regions of
the molecule, as seen in the diffraction signal Fig. 2 and
Supplemental Material Fig. S5. The electronic dynamics
involves excited states of irreducible representation Eu.
Since Eu in D4h point group has character −2 with respect
to inversion, the charge-density change is symmetric for
inversion. For this reason, the charge-density change of the
electronic dynamics in real space has a central symmetry.
The diffraction signal integrates the window function and
the momentum-space charge density. The real (imaginary)
part of σ̃ðq; τÞ is central symmetric (antisymmetric). The
resulting diffraction pattern has central symmetry, as the
real part of window function dominates. The diffraction
signal changes mostly occur within −2 to 2 Å−1, since the

window function decays rapidly for larger jqj. The dif-
fraction signal is thus only clear when the scattering wave
vector jqj is smaller than some threshold. To measure the
signal in a broader range of q, higher energy single-electron
pulses should be employed.
In a future study, we will apply relativistic theory for

describing higher energy probing electrons and simulating
their self-heterodyne diffraction signal. Reconstruction
of the real-space charge density from the diffraction
signal requires the inverse Fourier transform of the three-
dimensional momentum-space charge density σ̃ðq; τÞ. The
diffraction signal integrates the window function with
σ̃ðq; τÞ, thus mixing its real and imaginary parts.
Obtaining σ̃ðq; τÞ requires: (1) measuring the diffraction
signal at various qz; (2) performing phase-shifting [43,96–
98] measurement, i.e., varying the relative phase of the
signal and reference electron beam to separately obtain real
and imaginary parts of the complex valued function;
(3) deconvoluting the window function.
In summary, we have proposed a self-heterodyne elec-

tron diffraction method for imaging the molecular charge
density in real time and space. A single probe electron is
split into two beams, where only one travels through the
sample. The diffraction signal is obtained by the interfer-
ence of these two paths. This ultrafast imaging of the
charge density in q space can monitor electron dynamics in
real time. It is demonstrated by simulating the time-
resolved signal of MgPc electronic dynamics initiated by
a UV-visible circularly polarized light pulse. The proposed
technique is not limited to probing electronic dynamics
like current and charge migration, but can be also applied to
the imaging of various light-induced ultrafast chemical
processes.
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