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The effective central charge (denoted by ceff ) is a measure of entanglement through a conformal
interface, while the transmission coefficient (encoded in the coefficient cLR of the two-point function of the
energy-momentum tensor across the interface) is a measure of energy transmission through the interface. It
has been pointed out that these two are generally different. In this Letter, we propose the inequalities,
0 ≤ cLR ≤ ceff ≤ minðcL; cRÞ. They have the simple but important implication that the amount of energy
transmission can never exceed the amount of information transmission. We verify them using the AdS/CFT
correspondence, using the perturbation method, and in examples beyond holography. We also show that
these inequalities are sharp by constructing a class of interfaces that saturate them.
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Introduction and summary—Conformal interfaces play
an important role in the study of quantum critical systems.
However, our knowledge of their general properties is
limited because they break half of the conformal symmetry.
The AdS/CFT correspondence is useful in this context
because it gives us insight into systems far from free fields.
Indeed, our recent work [1] demonstrated a utility of the
AdS/CFT correspondence in studying general properties of
interfaces. In this Letter we extend this line of research and
formulate the conjecture that the effective central charge,
which measures the entanglement across a conformal
interface in 1þ 1 dimensions, is bounded below by the
two-point function of the energy-momentum tensor across
the interface. Namely, the amount of energy transmitted
across the interface cannot exceed the amount of informa-
tion transmitted. The conjecture is motivated by holo-
graphic conformal field theories (CFTs), free field
examples, and the defect perturbation theory. We also
show that the bound can be saturated by constructing
explicit examples.

In 1þ 1 dimensions, conformal interfaces are defined by
the following boundary condition for the energy-stress
tensors across the interface [2–4]:

TðLÞ − T̄ðLÞ ¼ TðRÞ − T̄ðRÞ; ð1Þ

where TðiÞ and T̄ðiÞ are the holomorphic and antiholomor-
phic energy-stress tensors of CFTi, respectively. In the
operator formalism, this can be reexpressed using the

Virasoro generators LðiÞ
n and L̄ðiÞ

−n in CFTi as

�
LðLÞ
n − L̄ðLÞ

−n

�
I ¼ I

�
LðRÞ
n − L̄ðRÞ

−n

�
∀ n: ð2Þ

This condition does not fully determine an interface: It
demands the interface not to absorb energy while allowing
flexibility regarding the amount of energy reflected by the
interface.
Conformal interfaces can be characterized by the “effec-

tive central charge,” which controls the amount of entan-
glement across them. We focus on the vacuum state, where
entanglement entropy between two (possibly different)
systems has a simple logarithmic form,

SA ¼ ceff
3

ln
L
πϵ

: ð3Þ

Here, the system size for CFTL and CFTR is denoted as L, ϵ
is the lattice regularization parameter, and ceff is the
effective central charge. A convenient way to evaluate
the entanglement entropy is given by the replica trick,
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SA ¼ lim
n→1

SðnÞA ; SðnÞA ¼ 1

1 − n
ln

Zn

ðZ1Þn
; ð4Þ

where the replica partition function is defined as

Zn ≡ tr
�
e−ðβ=2ÞHðLÞ

IL→Re−ðβ=2ÞHðRÞ
IR→L

�n: ð5Þ

The dependence on the subsystem size is encoded in the
temperature as β ¼ ð1=πÞ lnðL=πϵÞ. We can define the
interface Hilbert space HI

n by the dual-channel expansion
of the replica partition function,

Zn ¼ trHI
n
e−½ð2πÞ2=β�HI

n ; ð6Þ

where we formally define the Hamiltonian HI
n in the

presence of the interfaces. Then, one can give an alternative
definition of the effective central charge in terms of the
vacuum energy Δ0

n in the interface Hilbert space as

ceff ≡ lim
n→1

12n
1 − n2

�
nΔ0

1 −
Δ0

n

n

�
: ð7Þ

The effective central charge has been calculated in some
specific models [5–9]. Nevertheless, there is still much
unknown about ceff due to the lack of techniques in
interface CFT (ICFT) where the conformal symmetry is
partially broken by interfaces.
Another quantity known to characterize interfaces is the

“transmission coefficient,” which measures the transfer of
energy across the interface [10]. This quantity is controlled
by the two-point function of the stress tensor across the
interface,

hTðLÞðz1ÞTðRÞðz2Þi ¼
cLR

2ðz1 − z2Þ4
: ð8Þ

The weighted average transmission coefficient can be
expressed in terms of cLR as

T ¼ 2cLR
cL þ cR

; ð9Þ

where cL and cR are the central charges of the two CFTs
connected by the interface. Similar expressions in terms of
cLR can be given for transmission from left and right
separately [11]. Here, we would like to emphasize that the
transmission of energy across the interface is independent
of the transmission of information. One will see this
independence later in this Letter.
One of our main results is to provide evidence for the

following inequality,

cLR ≤ ceff : ð10Þ

It implies that the amount of energy transmitted across the
interface cannot exceed the amount of information

transmitted, which is directly controlled by ceff [8]. We
have confirmed that this inequality holds in general holo-
graphic CFTs. Furthermore, it also holds in free CFT
beyond holography. We also verify the inequality in the
defect perturbation theory. Based on these examples, we
propose it to hold in general CFTs.
Using the entropic c theorem, it has been shown that

there is an upper bound on ceff [1]:

ceff ≤ minðcL; cRÞ: ð11Þ
In fact, this is consistent with the upper bound cLR ≤
minðcL; cRÞ shown in [10,11]. Combining it with our
conjectured inequality (10),

0 ≤ cLR ≤ ceff ≤ minðcL; cRÞ: ð12Þ
Another result of this Letter is that these inequalities are

sharp. For holographic CFTs, we were able to find the
conditions under which interfaces saturate the bounds. We
also show that cLR ¼ ceff is satisfied only if ceff is either
minðcL; cRÞ or 0. This means that the amount of energy
transmission and information transmission across the inter-
face match only in the case of the simplest interfaces, which
are either boundaries or topological interfaces. We expect
that these results will contribute to the understanding of
nontopological interfaces.
Holographic proof of the bound cLR ≤ ceff and its

saturation—The relation between ceff and the transmission
coefficient T (or equivalently cLR) in ICFT2 has been
studied in certain one-parameter families of conformal
interfaces [5,6], where a monotonous function ceffðT Þ
was found for free boson as well as certain lattice models.
It is tempting to generalize this relation. However, as we
will show below, they are generally independent quantities.
Instead, we prove that in a holographic ICFT2, there is an
inequality (10) between them. Moreover, the saturation of
this bound in both holographic theories and free boson-
fermion theories is realized when either cLR ¼ ceff ¼ 0,
or cLR ¼ ceff ¼ cL ¼ cR.

AdS3A

FIG. 1. The foliation of an asymptotic AdS3 bulk. The black
line below corresponds to the AdS asymptotic boundary, and
the red dot is the one-dimensional interface. Each blue line
represents an AdS2 slice, and in certain degeneration limit of
the warp factor it can be a thin brane across which the effective
AdS radius jumps.
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Consider bottom-up AdS/CFTwhere an ICFT2 is dual to
an asymptotic AdS3 spacetime with sliced AdS2 leaves and
SO(2,1) isometry [12], as shown in Fig. 1. Its metric is

ds2 ¼ a2ðθÞ
�
dx2 − dt2

x2
þ dθ2

�
; ð13Þ

where the AdS2 is written in Poincaré patch, and
θ∈ ð−π=2; π=2Þ is the slicing coordinate. aðθÞ is a general
function, referred to as the “warp factor.”
Below, wewill consider a general warp factor aðθÞ that is

a C2 function. Near θ → �π=2, we have the asympto-
tic form limθ→−π=2aðθÞ ¼ lL= cos θ and limθ→π=2aðθÞ ¼
lR= cos θ. Recall that the Brown-Henneaux formula relates
lL=R to the central charges cL=R of CFTL=R as cL=R ¼
3lL=R=2GN where GN is the Newton constant in 3D.
For such a continuous AdS domain wall solution, the

transmission coefficient of the interface (or equivalently,
cLR defined above) is given by [13]

cLR ¼ 3

GN

�
1

lL
þ 1

lR
þ 8πGNσ

�
−1
; ð14Þ

where σ characterizes the net brane tension. To calculate the
effective net tension, we first define a function LðθÞ as

LðθÞ≡ aðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
a0ðθÞ
aðθÞ

�
2

r : ð15Þ

LðθÞ represents an effective local AdS curvature radius.
To calculate the brane tension σ we note that the Israel

junction condition [14,15] gives the differential change in
brane tension needed to support the change in curvature
radius [16]

8πGN
dσ
dθ

¼ aðθÞjL0ðθÞj
LðθÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðθÞ2 − LðθÞ2

p : ð16Þ

Set Lj to be the set of solutions for L0ðθÞ ¼ 0 in
θ∈ ð−π=2; π=2Þ where j ¼ 1;…;M. The integration is
bounded by [17]

8πGN

Z
π=2

−π=2
dθ

dσ
dθ

≥
Z

π=2

−π=2
dθ

jL0ðθÞj
L2ðθÞ

¼
Z

jdLj 1
L2

¼
				 1lL −

1

L1

				
þ � � � þ

				 1

LM
−

1

lR

				: ð17Þ

The total net tension σ can be derived by integrating
dσ=dθ over its C2 support of θ [16,18,19]. Let the global
minimum of LðθÞ function be lmin. By definition, lmin is

equal to one of the Lj. Picking out θmin in (17) means that

8πGNσ ≥
				 1lL −

1

lmin

				þ
				 1lR −

1

lmin

				: ð18Þ

This leads us to conclude that

cLR ¼ 3

GN

�
1

lL
þ 1

lR
þ 8πGσ

�
−1

≤
3

GN

�
1

lL
þ 1

lR
þ
				 1lL −

1

lmin

				þ
				 1lR −

1

lmin

				
�

−1

≤
3

GN

�
2

lmin

�
−1

≤
3amin

2GN
¼ ceff ; ð19Þ

where the second line is from (18), and the third line is the
universal formula for the effective central charge in holo-
graphic ICFT2, indicating the relation between ceff and the
minimal value amin of the warp factor aðθÞ [20,21].
In order to saturate this inequality, from (17), the warp

factor has to diverge wherever jL0ðθÞj > 0. Hence, there are
two ways to realize cLR ¼ ceff . One is when amin ¼ lmin ¼
0 and the net brane tension diverges. In this case,
cLR ¼ ceff ¼ 0, and the two BCFTs are uncorrelated at
all. The other is when LðθÞ is constant, and the ICFT2 is
dual to a pure AdS3 with a topological interface. In
particular, cLR ¼ ceff ¼ cL ¼ cR.
It is worth mentioning that holographic duals with

discontinuity in a0ðθÞ are often considered as thin branes
anchoring on the AdS boundary [13,19]. It corresponds to a
delta function in (16). Upon integrating, it contributes to the
net tension a term 8πGNσt that follows the Coleman–De
Luccia bound [22]

8πGNσt ≥
				 1

Lleft
−

1

Lright

				; ð20Þ

where Lleft and Lright are the effective AdS2 radii on the left
and right of the thin brane, respectively. The equality holds
only when the AdS2 radius diverges at the brane. It is
obvious that our proof follows through in this degenerate
limit of the warp factor, and so does the saturation
condition.
As a corollary of the above proof, the transmission

coefficient cLR depends on an integration of functions on
the warp factor aðθÞ over the entire range, while the
entanglement entropy proportional to ceff only depends
on the minimal value of aðθÞ as in (19) and the comments
below. Therefore, in general, there is no strict monotonicity
(correlation) between those two quantities.
The free boson-fermion theories across a partially trans-

missive interface provide additional evidence for the
inequality [23]. In both cases, there is a parameter
s∈ ½0; 1� controlling the jumping radii on the two sides
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that characterize the interface, and the transmission coef-
ficient is T ¼ s2 [4,5].
c ¼ 1 free boson: The entanglement entropy for c ¼ 1

free theories across an interface has been derived to be [5]

cboseff ¼ 1

2
þ sþ 3

π2
½ðsþ 1Þ logðsþ 1Þ log s

þðs − 1ÞLi2ð1 − sÞ þ ðsþ 1ÞLi2ð−sÞ�; ð21Þ

where Li2ðsÞ is the dilogarithm function. Algebraically, we
always have cboseff ≥ cbosLR ¼ s2 and the equality saturates
only when T ¼ s2 ¼ 0, 1.
c ¼ 1=2 free fermion: Similarly, in the presence of an

interface, the entanglement entropy in the vacuum for the
free fermion is [6]

cfereff ¼
s − 1

2
−

3

π2
½ðsþ 1Þ logðsþ 1Þ log s

þ ðs − 1ÞLi2ð1 − sÞ þ ðsþ 1ÞLi2ð−sÞ�: ð22Þ

Again, we have cfereff ≥ cferLR ¼ s2=2, and the equality
holds iff T ¼ s2 ¼ 0, 1.
It is obvious that the free theories also saturate this bound

only when cLR ¼ ceff is at either end of their spectrum.
Therefore, we propose that this saturation condition for
cLR ≤ ceff is a universal feature among all ICFT2.
Additional evidence for the inequality comes from the

defect perturbation. Consider deforming a topological
defect on a line γ by a relevant or marginal defect field ϕ,

δS ¼ λ

Z
γ
dwϕðwÞ; ð23Þ

where λ is the coupling. Under this perturbation, the
effective central charge changes as follows up to order
λ2 [24],

ceff ¼ c

�
T þ 1

4
R
�
; ð24Þ

where R is the reflection coefficient R ¼ 1 − T , which is
non-negative because 0 ≤ T ≤ 1. Note that this is consis-
tent with (22), and the point is that the result (24) is
not limited to free fermion but holds in general. Since
cT ¼ cLR and R ≥ 0, we obtain

cLR ≤ ceff : ð25Þ

Holographic saturation of ceff ≤ minfcL; cRg—The
upper bound (11) on ceff has been derived for both
holographic theories and general ICFT2 in [1]. Below,
we will write down its saturation condition in holographic
theories in terms of conditions on the warp factor, which is
much more mathematically tractable compared to the CFT
side. In particular, we show that with the possible presence

of thin branes in the bulk, there is a much broader family of
holographic ICFT2 that saturates this bound than ICFT2

with topological (transparent) interfaces.
For a holographic ICFT2 dual to the bulk (13) with warp

factor aðθÞ, we construct an auxiliary function [1]

F ¼ 1

L2
¼

�
a0

a2

�
2

þ 1

a2
: ð26Þ

The derivative of F gives

F0 ¼ 2a0ða00a − 2a02 − a2Þ
a5

: ð27Þ

The null-energy condition (NEC) on aðθÞ reads

a2ðθÞ þ 2a02ðθÞ − aðθÞa00ðθÞ ≥ 0: ð28Þ

From the above two equations we conclude that at θmin
where the warp factor a0ðθÞ ¼ 0 and reaches its minimal
value amin, we have F0ðθÞ ¼ 0 and reaches its maximal
value Fmax. Explicitly, we have [25]

Fmax ¼
�

3

2GN

�
2 1

c2eff
;

lim
θ→�π=2

FðθÞ ¼
�

3

2GN

�
2 1

c2R=L
: ð29Þ

If we set cL ≥ cR, the saturation of ceff ≤ minfcL; cRg is
then equivalent to.
Case (a) cL > cR: Saturation of NEC, i.e.,

aðθÞ ¼ lR= cos θ, for θ∈ ðθmin; π=2Þ, and any aðθÞ for
the rest of the region subject to Einstein’s equation and
boundary conditions, with the possible presence of thin
branes.
Case (b) cL ¼ cR: Pure AdS3 with a topological inter-

face, or at least two minima for the warp factor at
θmin 1 < θmin 2. Saturation of NEC, i.e., aðθÞ ¼ l= cos θ
where lL ¼ lR ¼ l, for θ∈ ð−π=2; θmin 1Þ ∪ ðθmin 2; π=2Þ,
and any aðθÞ for ðθmin 1; θmin 2Þ subject to Einstein’s
equation, with the possible presence of thin branes.
Discussion—Our results inspire various future works and

applications. (i) We have proposed a universal relationship
between entanglement through the interface and energy
transmission, based on the AdS/CFT correspondence. It is
desirable to have a proof for general CFTs. In [1], we were
able to give a general proof of the upper bound on the
effective central charge using the entropic c theorem. A
similar approach might be useful for our current purpose as
well. It may also be possible to verify our results numeri-
cally using the lattice realization of the conformal interface
[26,27]. (ii) We have identified holographic interfaces
which saturate the bounds. It is important to determine
the saturation condition for general CFTs. In fact, there are
nonholographic CFTs which saturate the bounds, as we
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show with explicit examples in Supplemental Material [28].
(iii) It is also desirable to generalize our results to higher-
dimensional CFTs. Two potential challenges in higher
dimensions are the lack of the Virasoro symmetry and
the growth of entanglement, which makes well-known
numerical calculation methods like density matrix re-
normalization group unusable. (iv) The effective central
charge plays an important role in the weak measurement
and the pseudo entropy (see, for example, [29–31]). The
relationship revealed in our Letter can be useful in
elucidating the properties of such quantities.
What draws our attention here is the observation that

many analytical methods on the gravity side do not depend
on the dimension d. The successful generalization of the
concept of the effective central charge to higher dimensions
has been achieved using the AdS/CFT correspondence [1].
This is precisely because the calculation on the gravity side
is not dependent on the dimension d. Based on this insight,
it is a very interesting challenge to predict how the results
revealed in this Letter would change in higher dimensions
using the AdS/CFT correspondence. Additionally, provid-
ing proof within CFT for such predictions is also an
important challenge.
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