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It is shown that a 2D conformal field theory consisting of a central charge c Liouville theory, a chiral
level one, rank N Kac-Moody algebra, and a weight −3=2 free fermion holographically generate 4D
maximal helicity violating tree-level scattering amplitudes. The correlators of this 2D conformal field
theory give directly the 4D leaf amplitudes associated to a single hyperbolic slice of flat space. The 4D
celestial amplitudes arise in a large-N and semiclassical large-c limit, according to the holographic
dictionary, as a translationally invariant combination of leaf amplitudes. A step in the demonstration is
showing that the semiclassical limit of Liouville correlators are given by contact 3D anti–de Sitter Witten
diagrams.
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Introduction—A central goal in celestial holography is to
construct simple toy models in which 4D scattering
amplitudes are holographically realized by 2D conformal
field theory (CFT) correlators. An obstacle to this endeavor
has been that the translation invariance of 4D amplitudes of
massless particles implies that the low-point correlators are
distributional, which is not the case for most familiar 2D
CFTs. This obstacle has been circumvented by considering
a variety of 4D contexts in which translation (but not
Lorentz) invariance is broken [1–13] or by shadow or light
transforming the external particle states [14–19]. But a
direct holographic reconstruction of translationally invari-
ant 4D scattering amplitudes has so far not been obtained.
In this Letter we obtain such a direct reconstruction of

4D maximal helicity violating (MHV) gluon amplitudes
from a 2D CFT. Our work relies heavily on a recent refined
analysis of the dictionary for flat space holography includ-
ing a complete accounting of causal light-cone singularities
[20,21]. It was shown that the full 4D amplitudes can be
expressed as integrals over leaf amplitudes associated to the
3D anti–de Sitter (AdS3) leaves of a hyperbolic foliation of
flat space. Each leaf amplitude has bulk and boundary
representations that are exactly those of familiar AdS
holography, and the associated “leaf CFTs” have the
corresponding familiar 2D singularity structure. They
may be regarded as the primary building blocks of celestial
holography. A simple formula was derived for the full
celestial amplitudes as a combination of leaf amplitudes. At
three points, celestial amplitudes are extracted from leaf
amplitudes as a pole in the net conformal weight of the

external particles. The distributional form of low-point
celestial amplitudes, as mandated by translation invariance,
then arises from cancellations between subamplitudes. We
refer the reader to [20–22] for details.
In this Letter, we consider a nonunitary 2D CFT

consisting of a Liouville field ϕ coupled to N weight
ðh; h̄Þ ¼ ð1

2
; 0Þ real free fermions ψ j plus a a single weight

ð− 3
2
; 0Þ free fermion η. The N fermions lead to a level one

SOðNÞ Kac-Moody current Ja. (We may similarly obtain
an SUðNÞ gauge group by using complex fermions.)
Positive helicity SOðNÞ gluons are identified with Kac-
Moody currents dressed by Liouville fields. Negative
helicity gluons are then obtained by a further dressing
with an η bilinear. These are shown to match, in the
appropriate limit, the MHV leaf amplitudes computed in
[20]. The leaf-to-celestial dictionary [20] then precisely
reproduces the known MHV scattering amplitudes, includ-
ing the Parke-Taylor factor, the momentum-conserving
delta function, and the various Θ functions separating
different relative causal configurations of the asymptotic
gluons. A key step along the way, detailed in the
Supplemental Material [23], is the demonstration that
semiclassical Liouville correlators are given by scalar
contact AdS3 Witten diagrams.
Duality here is demonstrated to leading (nontrivial) order

expansions about certain limits of both the bulk and the
boundary. First, from the bulk point of view, local con-
formal invariance is equivalent to the subleading soft
graviton theorem [24], which of course holds only in a
theory of gravity. Hence, we do not ever expect an exact
celestial CFT dual to a gauge theory. However, if we take a
large-N limit of gravity coupled to a gauge theory with a
gauge group of rankN, gravity is suppressed. This suggests
that leading order large-N gauge theories may have
celestial duals that are limits of 2D CFTs. Accordingly,
we herein match only the leading-N correlators of the 2D
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Kac-Moody currents. Furthermore, we consider only tree-
level MHV amplitudes in the bulk, which are matched to
the large-c semiclassical limit of the boundary Liouville
theory [25].
This work does not comprise the sought-after full

holographic duality between a 2D CFT and a 4D quantum
theory of gravity. Rather we have achieved the more limited
goal of finding a duality between limits of a subset of a 2D
boundary theory with those of a 4D bulk theory.
Wewish to stress that this Letter is an amalgam of several

important precursors. The MHV leaf amplitudes appear in a
slightly different context in [3]. A very similar fermion
system including the η field is in [26] (itself deriving from
the prescient work [27]) and our construction was partly
inspired by those in twisted holography [1,6]. An important
connection to light operators in the semiclassical Liouville
was noted in a slightly different context in [5,7,28,29].
Finally, the connection between 2D Liouville and 4D gauge
theory found by [30] may be related.
The celestial CFT—In this section, we describe a

relatively simple 2D CFT that generates 4D MHV ampli-
tudes. This CFT has three components: the classical
(b → 0) limit of Liouville theory, a set of N free fermions
ψ i, and a free chiral fermion η of weight −3=2. We will
refer to this as the dressed Liouville theory. In the next

section, we describe the holographic dictionary through
which MHV amplitudes are reproduced in the classical
(b → 0, N → ∞) limit of dressed Liouville theory.
Chiral fermion sector: The free fermion operators have

the operator product expansions (OPEs), for i; j ¼ 1;…; N,

ψ iðzÞψ jðwÞ ¼ δij

z − w
þ ∶ψ iψ j∶ðzÞ þOðz − wÞ

ηðzÞηðwÞ ¼ ðz − wÞη∂ηðzÞ þO½ðz − wÞ2�; ð1Þ
where ψ i haveweights ð1=2; 0Þ and η has weight ð−3=2; 0Þ.
The ψ i generate a level-1 Kac-Moody current algebra for

SOðNÞ with currents

JaðzÞ ¼ 1

2
Ta
ij∶ψ iψ j∶ðzÞ; ð2Þ

where Ta
ij are generators of soðNÞ in the fundamental

representation. We will also employ the dimension −1
chiral operators,

J̄aðzÞ ¼ η∂ηJaðzÞ; ð3Þ
with normal ordering being implicit. (We follow here the
notation of [26] in which a related operator appears.) With
this free field realization, one finds the OPEs

JaðzÞJbðwÞ ∼ δab

ðz − wÞ2 þ
ifabc JcðwÞ
z − w

þO½ðz − wÞ0�;

JaðzÞJ̄bðwÞ ∼ δabη∂ηðwÞ
ðz − wÞ2 þ ifabc J̄cðwÞ

z − w
þO½ðz − wÞ0�;

J̄aðzÞJ̄bðwÞ ∼ ðz − wÞ2δab
12

η∂η∂2η∂3ηðwÞ þ ifabc ðz − wÞ3
12

η∂η∂2η∂3ηJcðwÞ þO½ðz − wÞ4�: ð4Þ

Ja and J̄a will enter the operators dual to positive and
negative helicity gluons, respectively.
Since η has weight h ¼ −3=2, it has four zero modes on

the sphere. Correlation functions of Ja and J̄a must have
exactly 2 J̄a insertions to soak up these zero modes [26].
The relevant correlation function hη∂ηðz1Þη∂ηðz2Þi is com-
puted as follows. The globally holomorphic zero modes of
η are

η ¼ η3=2 þ η1=2zþ η−1=2z2 þ η−3=2z3: ð5Þ
These are the only modes contributing to the correlator, and
lead to

hη∂ηðz1Þη∂ηðz2Þi ¼ z412; ð6Þ
where we adopted the convention

R
dηnηn ¼ 1 for the

Grassmann measure.
The n-point nonvanishing Ja; J̄a correlators are

hJ̄a1ðz1ÞJ̄a2ðz2Þ
Yn
j¼3

JajðzjÞi ¼ TrðTa1Ta2 � � �TanÞ z412
z12z23 � � � zn1

þ � � � ; ð7Þ

where � � � includes other color orderings and multitrace terms. At leading order in the large N limit only the first term
contributes to the color-ordered correlator, which we denote with suppressed gauge indices,

hJ̄ðz1ÞJ̄ðz2Þ
Yn
j¼3

JðzjÞi ¼
z412

z12z23 � � � zn1
: ð8Þ
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Liouville sector: We consider Liouville theory with
central charge

cL ¼ 1þ 6Q2 ¼ 1þ 6ðbþ b−1Þ2; ð9Þ
and coupling μ. This theory contains the primary operators

Vαðz; z̄Þ ¼ e2αϕðz;z̄Þ; ð10Þ
where ϕ is the Liouville field. They are said to have
“momentum” α and have conformal weight

ΔðVαÞ ¼ 2αðQ − αÞ: ð11Þ
A brief review of the relevant aspects of Liouville is
provided in the Supplemental Material.
We are interested in correlation functions of light

operators in the classical limit of Liouville theory. These
operators have momenta α ¼ bσ scaling as b in the b → 0
limit. Using the techniques of [31–33], we show in the
Supplemental Material that these are proportional to n-
point contact Witten diagrams in hyperbolic 3-space H3,

�Yn
j¼1

Vbσjðzj; z̄jÞ
�

¼ e−2γEþ2=b2λ1=b
2

πb3
csc

�
π

�
b−2 −

1

2
β

��
λ−1−

β
2C2σ1;…;2σn : ð12Þ

Here, γE is the Euler-Mascheroni constant, λ ¼ πμb2 is
held fixed as we send b → 0, and β is given by the sum over
weights

β ¼ 2

�X
j

σj − 2

�
; ð13Þ

and the contact Witten diagrams are given by

C2σ1;…;2σnðzi; z̄iÞ ¼
Z
H3

D3x
Yn
j¼1

G2σjðzj; z̄j; xÞ; ð14Þ

with x denoting coordinates and D3x the measure on the
unit hyperboloid. The integrand is a product of scalar bulk-
to-boundary propagators G2σjðzj; z̄j; xÞ of weight 2σj.
(This relation between semiclassical Liouville and Witten
diagrams appears to be new: related formulas appear in
[31,32].) In the special case of n ¼ 3, we have the simple
formula

C2σ1;2σ2;2σ3 ¼
π

2

Γðσ1 þ σ2 þ σ3 − 1ÞΓðσ1 þ σ2 − σ3ÞΓðσ2 þ σ3 − σ1ÞΓðσ3 þ σ1 − σ2Þ
Γð2σ1ÞΓð2σ2ÞΓð2σ3Þðz12z̄12Þσ1þσ2−σ3ðz23z̄23Þσ2þσ3−σ1ðz31z̄31Þσ3þσ1−σ2

: ð15Þ

Celestial amplitudes from dressed Liouville correlators—
In this section, we explain the holographic dictionary from
the 2D dressed Liouville theory to the 4D MHVamplitude.
From this point on, we simply follow the prescription
detailed in [20–22] for the construction of celestial ampli-
tudes from leaf amplitudes. We sketch it here but refer the
reader to those references for details.
Dressed Liouville → Euclidean leaves: The first step is

to state the dictionary between bulk conformal primary
gluons and boundary dressed Liouville operators. We posit

Oþa;ε
Δ ðz;z̄Þ¼ e−iεπðΔ−1Þ=2lim

b→0
Nþ

ΔJ
aðzÞVbðΔ−1Þ=2ðz; z̄Þ;

O−a;ε
Δ ðz;z̄Þ¼ e−iεπðΔþ1Þ=2lim

b→0
N−

ΔJ̄
aðzÞVbðΔþ1Þ=2ðz;z̄Þ; ð16Þ

where ε ¼ �1 labels whether the gluon is outgoing or
ingoing and

N−
Δ¼λΔ=2eγE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2=b

2

λ−1=b
2

πb3sinðπ=b2Þ
q

ΓðΔþ1Þe−iπðΔþ1Þ=2

Nþ
Δ¼λðΔ−1Þ=2ΓðΔ−1Þe−iπðΔ−1Þ=2: ð17Þ

Of course there are other operators in the dressed Liouville
theory that are not of this form. While they may have a bulk
interpretation [34], we do not supply an interpretation of
such herein. Bulk amplitudes ofO�a;ε

Δ are then given by 2D
CFT correlators of the operators on the right-hand side.
Taking the b → 0 limit one finds the color-ordered corre-
lator [35]

�
O−;ε1

Δ1
ðz1; z̄1ÞO−;ε2

Δ2
ðz2; z̄2Þ

Yn
j¼3

O
þ;εj
Δj

ðzj; z̄jÞ
�

¼
Y
j

e−iπεjh̄jΓð2h̄jÞ
z412

z12 � � � zn1
C2h̄1;2h̄2;…;2h̄n : ð18Þ

As shown in [20], this is precisely the expression for the
MHV leaf amplitude obtained by integrating the gluon
interaction over a single spacelike (but asymptotically null)
H3 slice in Minkowski space.
We conclude that the dressed Liouville theory

supplied with the dictionary (16) correctly generates the
Minkowskian H3 leaf amplitudes.
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Euclidean leaves → Lorentzian leaves: The full
Minkowskian celestial amplitudes are given by integrals
of the leaf amplitudes over all the leaves of a hyperbolic
foliation of Minkowski space. These necessarily include
integrals over the 3D de Sitter leaves of the region spacelike
separated from the origin as well as the H3 leaves in the
Milne region. Rather than compute 3D de Sitter leaf
amplitudes, we choose the simpler route of analytically
continuing from Minkowski to Klein space, which directly
yields the Kleinian celestial amplitudes. The hyperbolic
slices or leaves are then all Lorentzian AdS3=Z geometries
and divide into two wedges containing points that are either
timelike or spacelike separated from the origin.
Analytically continuing to Klein space R2;2 induces a

corresponding continuation in the leaf amplitudes. In
particular, the integrals over H3 in the Witten diagram
(14) and its past-pointing counterpart become an integral
over AdS3=Z with an iϵ prescription in the bulk-to-
boundary propagators. This reproduces exactly the detailed

formulas found in [20] for the n-point MHV leaf ampli-
tudes. The leaf amplitudes now live on the boundary of
Lorentzian AdS3=Z, known as the celestial torus.
Lorentzian leaves → celestial amplitudes: Finally, to

get from leaf to celestial amplitudes, the holographic
dictionary dictates that we extract the limit of the leaf
amplitudes when the net conformal weights of the external
particles obey

β≡X
j

ðΔj − 1Þ ¼ 0: ð19Þ

This projection onto β ¼ 0 is performed by multiplying the
leaf amplitudes with δðβÞ. When combined with its image
under exchanging the timelike and spacelike cycles on the
celestial torus, and division by 8π3, one recovers exactly the
n-gluon MHV celestial amplitudes A as an integral over
Klein space [20],

δðβÞ
8π3

��
O−;ε1

Δ1
ðz1; z̄1ÞO−;ε2

Δ2
ðz2; z̄2Þ

Yn
j¼3

O
þ;εj
Δj

ðzj; z̄jÞ
�
þ ðz̄i ↔ −z̄iÞ

�

¼ z312
z23 � � � zn1

Z
∞

0

dτ τ−1−β

ð2πÞ4
�Z

x̂2¼−1
D3x̂

Yn
j¼1

Γð2h̄jÞ
ðϵ − iεjqðzj; z̄jÞ · x̂Þ2h̄j

þ
Z
x̂2¼1

D3x̂
Yn
j¼1

Γð2h̄jÞ
ðϵ − iεjqðzj; z̄jÞ · x̂Þ2h̄j

�

¼ z312
z23 � � � zn1

Z
d4x
ð2πÞ4

Yn
j¼1

Γð2h̄jÞ
ðϵ − iεjqðzj; z̄jÞ · x̂Þ2h̄j

¼ Að1−Δ1
2−Δ2

3þΔ3
� � � nþΔn

Þ; ð20Þ

where qμðz; z̄Þ ¼ ð1 − zz̄; zþ z̄; 1þ zz̄; z − z̄Þ denotes the
embedding of the celestial torus in Klein space.
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