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The saturation of a recently proposed universal bound on the Lyapunov exponent has been conjectured
to signal the existence of a gravity dual. This saturation occurs in the low-temperature limit of the dense
Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with q body (q > 2) infinite-range interactions.
We calculate certain out-of-time-order correlators (OTOCs) for N ≤ 64 fermions for a highly sparse SYK
model and find no significant dependence of the Lyapunov exponent on sparsity up to near the percolation
limit where the Hamiltonian breaks up into blocks. This provides strong support to the saturation of the
Lyapunov exponent in the low-temperature limit of the sparse SYK. A key ingredient to reachingN ¼ 64 is
the development of a novel quantum spin model simulation library that implements highly optimized
matrix-free Krylov subspace methods on graphical processing units. This leads to a significantly lower
simulation time as well as vastly reduced memory usage over previous approaches, while using modest
computational resources. Strong sparsity-driven statistical fluctuations require both the use of a much larger
number of disorder realizations with respect to the dense limit and a careful finite size scaling analysis. The
saturation of the bound in the sparse SYK points to the existence of a gravity analog that would enlarge
substantially the number of field theories with this feature.
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The exponential growth of certain out-of-time-order
correlation (OTOC) functions up to the Ehrenfest time in
the semiclassical limit, at a rate given by the leading
classical Lyapunov exponent, is an early signature of
quantum chaotic dynamics. Their calculation in simple
single-particle problems such as a particle in a random
potential [1] or kicked rotors [2] were landmarks in the
early development of the theory of quantum chaos.
However, they are notoriously difficult to compute quanti-
tatively in many-body systems because the region of
exponential growth is relatively short and can be easily
overshadowed by other contributions unless the system is
strictly within the semiclassical limit.
A resurgence of interest in OTOCs in quantum chaos

came quite unexpectedly from quantum gravity. Heuristic
arguments [3,4] suggested that the dynamics of a particle
close to a black hole horizon is quantum chaotic. Later,
these ideas were put on a much firmer ground by showing
that a universal bound on the Lyapunov exponents in

quantum chaotic systems at thermal equilibrium was
saturated in field theories with a gravity dual [5].
Shortly afterward, Kitaev [6] demonstrated analytically
that, in the low-temperature limit, this universal bound on
chaos was saturated in a simple model, now termed the
Sachdev-Ye-Kitaev (SYK) model [6–11], consisting of N
Majoranas [6,12] with random q-body interactions in zero
spatial dimensions. The quantum chaotic nature of the SYK
model for longer timescales was confirmed by a level
statistics analysis [13,14], and its gravity dual was iden-
tified to be Jackiw-Teitelboim gravity [15–17]. The ana-
lytical tractability of the SYK model is one of its most
appealing features. Unfortunately, generalizations of the
model with finite range [18] or sparsified [19–23] inter-
actions do not inherit this property. This begs the question:
is the saturation of the bound, which indicates the possible
existence of a gravity dual, a particularity of the dense
SYK, or is it present in more general settings? For the dense
SYK, a recent numerical calculation [24] of the Lyapunov
exponent based on the Krylov subspace method [25,26] for
up to N ¼ 50 on a graphical processing unit (GPU) system
[and N ¼ 60 on a central processing unit (CPU) only
system] confirmed the analytical results [6,12]. An impor-
tant benefit of the sparsified SYK model is that it may be
easier to simulate on a quantum computer [27–29], which
potentially facilitates addressing questions that cannot be
answered with classical computers.
In this Letter, we aim to calculate the Lyapunov exponent

for a sparse variant [19–23] of the SYK model where a
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large (to be defined shortly) number of random couplings
are set to zero. A key ingredient in our study is the
development of a highly optimized GPU computing code,
which implements the Krylov-based algorithm for comput-
ing time evolution of qubit systems. This allows us to reach
up to N ¼ 64Majoranas on single GPU systems. Our main
result is that, for all temperatures investigated, the
Lyapunov exponent of the sparse SYK model has no
significant dependence on sparsity, and agrees with the
one in the dense SYK case, all the way up to close to the
percolation limit. From the holographic implications of
the saturation [6] of the Lyapunov exponent bound [5] in
the low-temperature limit of the dense SYK, this demon-
strates that the sparse SYK has a gravity dual.
Sparse SYK model—Our Hamiltonian describes N

strongly interacting Majorana fermions in zero spatial
dimensions [6–10,12,30–32] with sparse [19–22,33] ran-
dom interactions of infinite range:

H ¼
X

0≤i<j<k<l<N
pijklJijklγiγjγkγl: ð1Þ

The Majorana operators γn satisfy the Clifford algebra
fγm; γng ¼ δmn, and can be expressed as a tensor product of
Pauli matrices. The Jijkl are random numbers with a
Gaussian distribution of zero average and variance
hJ2i ¼ 3=ð8pN3Þ. The sparseness of the Hamiltonian is
modeled by the stochastic variable pijkl, which is sampled
from the Bernoulli distribution BðpÞ with probability
p > 0. When p ¼ 1, we recover the dense SYK model.
Models with 0 < p < 1 are called sparse SYK models. In
principle, p ∼ N−α with α > 0 a real parameter. It was
shown in Refs. [19,20], α ¼ 3 is the relevant scaling to
study the effect of sparsity because for α > 3 connectivity
in Fock space is broken in the large-N limit while the effect
of sparsity is largely irrelevant for α < 3. Therefore, it is
natural to define the sparsity strength k ¼ ðp=NÞðN

4
Þ. For

the comparison with the dense case, we will focus on the
k ≥ 3 region only because, for sufficiently large N, it is
computationally expensive to impose a regularity condition
on the vertex connectivity. The latter is necessary for k ∼ 1

in order to prevent the Hilbert space from splitting into
separate invariant subspaces of the Hamiltonian.
OTOC calculation and results—We now define the

following regularized out-of-time-order correlation
(OTOC) function for the Hamiltonian Eq. (1):

FðtÞ ¼ 1

N
Tr
h
eitHγN−1e−ðitþβ=4ÞHγN−2

× eðit−β=4ÞHγN−1e−ðitþβ=4ÞHγN−2e−βH=4
i
; ð2Þ

withN¼Trðe−βH=4γN−1e−βH=4γN−2e−βH=4γN−1e−βH=4γN−2Þ
so that Fð0Þ ¼ 1. Different regularizations may lead to
slightly different prefactors in the 1=N expansion of the
OTOC, which may be time-dependent but the Lyapunov
exponent was recently shown [34,35] to be independent of
the regularization.
A strong hint of what will be the main result of this

Letter, the independence of the Lyapunov exponent on the
sparsity, can already be seen from Fig. 1 depicting the
OTOC dependence on the sparseness parameter k for
different N ∈ ½14; 54�: in the low-temperature limit, the
OTOC depends only weakly on k even for relatively small
k ¼ 3 close to the percolation limit where the Hamiltonian
breaks up into blocks for most disorder realizations. We
restrict ourselves to Nmod 8 ¼ 6 because the approach to
the large-N limit may be more uniform taking advantage of
the Bott periodicity of the SYK model [36].
GPU-based numerical optimizations—The calculation

of the OTOC in the large-N limit of interest requires the
development of a novel quantum time evolution library [37]
called REAPERS, short for “a REAsonably PERformant
Simulator for qubit systems,” that implements highly
optimized matrix-free [38] Krylov subspace methods
[25,26,39,40] on NVIDIA GPUs. Written in Cþþ20, it
provides a programming interface similar to that of
DYNAMITE [41], but does not depend on low-level libraries
such as the Portable, Extensible Toolkit for Scientific
Computation [42–44] for matrix operations. Instead, we
start from scratch and implement optimized Computer
Unified Device Architecture kernels that compute spin
operator actions on quantum states more efficiently than
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FIG. 1. The OTOC Eq. (2) versus time t for N ¼ 14, 22, 30, 38, 46, and 54 as indicated in the legend. Results are given for β ¼ 0.5
(left), β ¼ 5 (middle), and β ¼ 20 (right) and sparseness parameter k ¼ 3 (dotted), k ¼ 6 (dashed), k ¼ 9 (dot-dashed), and dense
(solid). The dependence on k in the region where OTOC decreases exponentially is quite weak.
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those provided by the Portable, Extensible Toolkit for
Scientific Computation, and carefully manage object
allocations and deallocations to use as little video memory
as possible. The result of these performance optimizations
is that we are able to simulate sparse SYK systems with
N ¼ 62 fermions in double precision floating point (or
N ¼ 64 fermions in single precision) on single-GPU
systems, and N ¼ 64 fermions in double precision (or
N ¼ 66 in single precision) on dual-GPU systems [45]
with the 80 GB version of the NVIDIA A100 graphics
card. Comparing this with the previous state of the art
CPU-based calculation of an N ¼ 60 (albeit dense) SYK
system using a 500-node supercluster [24], our hardware
cost is far less and we consume far less energy. We refer
the reader to the Supplemental Material [46] for the
technical details of our optimization techniques and
further benchmark data.
Finite size scaling analysis—The expectation for quan-

tum chaotic systems [1,2] is that for sufficiently short
times below the Ehrenfest time the OTOC decreases
exponentially. At least for low temperatures, an analysis
based on the Schwarzian action [47–50] in the dense case
shows that the decay only remains exponential up to
around the Ehrenfest time, after which it approaches zero
with a decreasing exponent before finally turning into a
powerlike decay for very long times. In the exponentially
decaying domain, the dependence on t and N is only
through the combination expðλLtÞ=N [12,51,52] so that

FðtÞ ¼ g0ðtÞ − g

�
eλLt

N

�
ð3Þ

with

g
�
eλLt

N

�
¼ c1

eλLt

N
þ c2

�
eλLt

N

�
2

þ � � � ð4Þ

and λL the Lyapunov exponent. In order to extract λL, we
have to restrict the numerical calculation of FðtÞ to the
region in which the decay obeys Eq. (4). For that purpose,
we largely follow the method of Ref. [24] for the dense
SYK based on the rescaling symmetry, t → tþ log r=λL
and N → Nr, where r > 0. In a first step, we determine
the time t�ðNÞ for which FðtÞ drops to a certain value
F0 < 1. The value of F0 cannot be too large because that
would not capture the exponential growth but it also
cannot be too small because the OTOC no longer decays
exponentially. We shall see that for values of F0 between
0.75 and 0.85 the results are consistent with an exponen-
tial growth. For the scaling behavior Eq. (4) we find to
leading order in 1=N,

t�ðNÞ ¼ logN
λL

þ 1

λL
ðlogðg0ðt�ðNÞÞ − F0Þ=c1Þ: ð5Þ

The rescaling symmetry requires that g0 does not depend
on t in the region of exponential decay. We show in the
Supplemental Material [46] that g0ðtÞ depends only
weakly on t. In that case, the second term can be
eliminated by differentiation with respect to N, resulting in

λL ¼ 1

Ndt�ðNÞ=dN þOð1=NÞ: ð6Þ

In principle, the Lyapunov exponent can be obtained from
the slope of t�ðNÞ versus logN, but the slope has a
residual N dependence in the time and size window at our
disposal. Ideally, we fit observables for which this residual
N dependence is minimized. In agreement with Ref. [24],
our numerical results suggest that the 1=N dependence of
the inverse slope is close to linear at low temperatures
(β ≥ 5) so that the Lyapunov exponent is determined by

1

Ndt�ðNÞ=dN ¼ λL þ α1
N

þ α2
N2

þOð1=N3Þ; ð7Þ

with α2 ¼ 0. At high temperatures (say β ¼ 0.5), the 1=N
dependence is fitted by a quadratic dependence with
α1 ¼ 0 except in the dense case when the data are suffi-
ciently accurate to use a three parameter fit. An estimate
for the Lyapunov exponent is given by the extrapolation of
1=½Ndt�ðNÞ=dN� to 1=N → 0. Details of the fitting
procedure are left to the Supplemental Material [46].
Alternatively, one can integrate Eq. (7), resulting in the

equivalent expansion up to logarithmic factors,

t�ðNÞ ¼ γ0 þ
logN
λL

�
1þ γ1

N
þ γ2
N2

�
þO

�
1

N3

�
; ð8Þ

where λL, γ0, γ1, and γ2 are fitting parameters. For β ≥ 5

we set γ2 ¼ 0, but for β ¼ 0.5 we use γ2=N2 as the
correction term, putting γ1 ¼ 0. As can be seen from
Fig. 2, this gives an excellent fit of the t�ðNÞ data for all
considered temperatures, sparsity parameters, and cutoff
values. Fitting t�ðNÞ directly has the advantage that the
errors are smaller. On the other hand, fitting the numerical
derivative ∂Nt�ðNÞ has the benefit of having one less
fitting parameter at the expense of much larger errors (see
Supplemental Material [46]). We shall see the fitting
results of both methods are consistent though there is a
significant systematic error. There is also an issue of
overfitting, which trades the logN dependence for the 1=N
dependence. For example, using additive 1=N corrections
instead of multiplicative 1=N correction significantly
changes the value of the Lyapunov exponent.
Results for the Lyapunov exponent—Our results for the

Lyapunov exponents λL are shown in Fig. 3. In the range of
temperatures we have considered, β ¼ 0.5, 5, 20, there is
no significant dependence of the Lyapunov exponent on the
sparsity parameter k. The difference of λL for different
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values of k is less than the discrepancies between the two
choices of F0 and the two choices of the fitting method,
both of which are a measure of the systematic error.
Numerical results for the best fitting lines are given in
Table I.
We now compare our results with predictions for the

dense case, either analytical or based on the numerical
solutions of the Schwinger-Dyson (SD) equations. As
shown in the last column of Table I, for β ¼ 0.5 and β ¼
5 our numerical results are in good agreement with the large
N prediction obtained by solving the SD equations [24].
For β ≥ 20 (see Fig. 3), we find a Lyapunov exponent that
is consistent with the chaos bound of 2π=β [5]. Note that in
Fig. 3 (right) the result for β ¼ 40 only has been obtained
for k ¼ 6. Taking into account subleading finite temper-
ature corrections (which can be obtained by solving the SD
equations) lowers the theoretical large N value. For β ¼ 20
is reduced to 0.24, which is still above our result but is in
agreement with previous numerical calculations in the
dense case [24], where for β ¼ 17.8 the Lyapunov expo-
nent was 0.36 versus 0.26 from solving the SD equations.
Therefore this discrepancy is not related to the sparsity of
the model. We stress that in order to reach this relatively
low level of statistical fluctuations, it is necessary to
simulate a number of disorder realizations at least of order
104, which is 2 orders of magnitude larger than in the dense
case [24]. Surprisingly, unlike the dense case, the fluctua-
tions are not larger for low temperature and they are not
reduced as N increases, which prevents us from including
N ¼ 62 in this analysis despite the fact that it is numerically
accessible. This technical difficulty prevented a precise
numerical calculation of the Lyapunov exponent in a recent
calculation of OTOC in the sparse SYK [33] that employed
CPUs instead of GPUs. A comment is in order: it was
previously claimed in Ref. [20] that the sparse SYK was
maximally chaotic for k of order 1. However, this statement
was not supported by any analytic or numerical calculation
of OTOC. Moreover, the provided heuristic arguments do
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FIG. 3. The Lyapunov exponent, obtained from the derivative of t�ðNÞ (left) and from t�ðNÞ (middle), as a function of the inverse
sparsity parameter k for β ¼ 0.5, 5, and 20 using two different cutoffs: F0 ¼ 0.75 (dashed lines and open circles), 0.85 (solid lines and
solid disks). The dense case is represented by the point 1=k ¼ 0. The lines stand for linear fits to the data points. See Table I for a
summary of results. For β ¼ 20, the slope of the line that accounts for the k dependence is consistent with zero. Right: Lyapunov
exponent versus inverse temperature. Bound on chaos (solid) [5], result from the solution of the SD equations (dashed) [6,12], numerical
dense SYK [24] (red dots), numerical sparse SYK (black dots).
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FIG. 2. The time t�ðNÞ at which F Eq. (2) drops to either 0.75
or 0.85 versus logN for β ¼ 0.5 (upper), β ¼ 5 (middle), and
β ¼ 20 (lower) and values of k as indicated in the legend of the
figures. For the numerical fit we employ Eq. (8). For β ¼ 20,
k ¼ 3, and N ¼ 14, 13 outliers that differ by more than 30
standard deviations from the median have been excluded from the
averages [53].
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not address whether the 1=N corrections needed to com-
pute the Lyapunov exponent are affected by the sparsity.
Conclusions and outlook—We have studied out-of-time-

order correlators in a sparse variant of the SYK model.
After a careful data analysis, we have shown that the
Lyapunov exponent has no significant dependence on the
sparsity k for all temperatures we have considered, and
agrees with previous [24] numerical results for the dense
case. In the low-temperature limit, this is a confirmation
that the bound on chaos [5] is still saturated for the sparse
SYK model. However, a word of caution is in order: in the
low-temperature limit where saturation occurs, the value of
the Lyapunov exponent for both the dense and the sparse
SYK is above the analytical prediction [12]. We believe that
reaching larger sizes will bring agreement between analytic
and numerical results.
A crucial part of our work is the development of an

optimized GPU-based quantum simulation library, which
enables us to reach N ≤ 64 Majoranas due to drastic
improvements in simulation speed and memory usage.
The energy consumption and the cost of hardware are
both vastly smaller than equivalent simulations on CPU-
based systems. Natural extensions of this work include
computing OTOCs in non-Hermitian SYK and sparse spin
chains, such as those employed in studies of many-body
localization [54,55].
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