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We demonstrate that when the field theory Kleiss-Kuijf and Bern-Carrasco-Johansson relations are
imposed on one color ordering of general local bi-adjoint scalar effective field theories, the string
monodromy relations must be obeyed by the other color ordering. This is a surprising example of an open
string world-sheet property appearing in a purely field theoretic context. As part of the derivation, we show
that nonlinear relations among the four-point Wilson coefficients arise from imposing linear symmetries on
the six-point amplitude via factorization.
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Introduction—In effective field theory (EFT), higher-
derivative operators may involve group-theory structures
that are different from those of the leading-order theory.
This can affect linear relations obeyed by the EFT ampli-
tudes. For example, the single-trace color-ordered gluon
tree amplitudes of Yang-Mills theory obey a set of linear
relations known as the Kleiss-Kuijf (KK) and Bern-
Carrasco-Johansson (BCJ) relations. The KK relations
include the photon decoupling identity and trace reversal
identities such as An½123…n� ¼ ð−1ÞnAn½1n…32� [1,2].
The BCJ relations are related to color-kinematic duality [3].
In a YM EFT, the trF3 operator has the same color structure
as the interaction terms of trF2, so the KK and BCJ
relations (henceforth “KKBCJ relations”) are unaffected.
However, as shown in Ref. [4], the KKBCJ relations no
longer hold when trF4 is included. Imposing the KKBCJ
relations on the YM EFT amplitudes restricts the Wilson
coefficients of the higher-derivative operators; e.g., the
couplings of trF4 must vanish [4].
In this Letter, we study the result of imposing KKBCJ

relations on the tree amplitudes of a generic massless bi-
adjoint scalar (BAS) theory with higher-derivative terms
(“BAS EFT”) in d dimensions with d > 3. The cubic BAS
model

LBAS ¼ −
1

2
ð∂ϕaa0 Þ2 þ 1

6
gfabcf̃a

0b0c0ϕaa0ϕbb0ϕcc0 ; ð1Þ

plays a key role for the field theory double copy [6], as
discussed in Refs. [7–9]. It has doubly color-ordered tree

amplitudes mð0Þ
n ½αjβ� that satisfy the KKBCJ relations for

both color orderings α and β. When generic local higher-
derivative terms are added to the cubic BAS model, there
are in general no linear relationships among the amplitudes
beyond the cyclicity inferred from the color traces. The
absence of linear relations can be stated as the matrixmn of
BAS EFT tree amplitudes mn½αjβ� having full rank. When
we impose KKBCJ relations on one color ordering (say β),
the reduced rank of the matrix of tree amplitudes implies
that the amplitudes must also obey a set of linear relations
associated with the other color ordering (i.e., α). With
KKBCJ imposed at four point only, the second set of linear
relations depends on the Wilson coefficients at essentially
each derivative order of the BAS EFT and does not reveal
any particular structure. However, when KKBCJ is also
imposed at six point, we find that the factorization channels
involving the four-point vertices place additional nonlinear
constraints among the four-point couplings. As a result, the
second set of linear relations reduce to a much simpler form
and, unlike the four-point amplitude itself, they depend
only on the lowest-dimension EFT coupling. Specifically,
we show for the four-, five-, and six-point BAS EFT
amplitudes that the second set of linear relations are
identical to the low-energy expansion of the string mono-
dromy relations. The dimensionful coupling of the lowest-
dimension operator in the BAS EFT sets the scale asso-
ciated with α0.
In string theory, themonodromy relations are derived from

theworld-sheet description, and it is thereforevery surprising
that they appear out of a purely field theoretic analysis of an
EFT. Note that the surprise is not that the second set of linear
relations include the monodromy relations—that had to be
the case because of the existence ofZ-theory amplitudes (see
the factorization, exponentiation, and resumation section).
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The surprise is that it is precisely the monodromy relations
that arise from the field theory analysis and nothing else.
Review: KKBCJ and monodromy—KKBCJ relations:

Consider the single-trace color-ordered amplitudes An½α�,
e.g., the tree amplitudes of YM theory. The KKBCJ
relations are a set of

Cn ≡ ðn − 1Þ! − ðn − 3Þ! ð2Þ
independent linear relations among n-point amplitudes
with different color orderings. They can be writtenX

α

An½α�NI
n½α� ¼ 0 ð3Þ

with the sum over the ðn − 1Þ! cyclic color orderings α. The
ðn − 1Þ!-component KKBCJ vectors NI

n½α�, labeled by
I ¼ 1; 2;…; Cn, each give one of the Cn KKBCJ relations.
At n ¼ 4, the C4 ¼ 5 KKBCJ relations consist of three

reflection identities, the photon decoupling relation, and a
BCJ relation. We choose the six cyclic color orderings to be
f1234; 1243; 1324; 1342; 1423; 1432g and write in this
basis the five KKBCJ vectors as

N1
4 ¼ ð1; 0; 0; 0; 0;−1Þ; N4

4 ¼ ð1; 1; 1; 0; 0; 0Þ;
N2

4 ¼ ð0; 1; 0;−1; 0; 0Þ; N5
4 ¼ ðu;−t; 0; 0; 0; 0Þ;

N3
4 ¼ ð0; 0; 1; 0;−1; 0Þ; ð4Þ

with Mandelstams s ¼ s12, t ¼ s13, u ¼ s14, such that
sþ tþ u¼ 0 and sij ¼ ðpi þ pjÞ2. Higher-point KKBCJ
relations can be found in Ref. [10].
String monodromy relations: Type I open string tree-

level scattering processes are disk amplitudes with n vertex
operators inserted on the boundary of the disk. Amplitudes
with distinct external ordering of the vertex operators
correspond to different choices of contours in the integrals
over the insertion points. Contour deformations relate the
different color orderings and the resulting linear relations
are the string monodromy relations [11–15]. With massless
external states, the four-point monodromy relations take
the form

A4½1324� þ eiπα
0uA4½1234� þ e−iπα

0tA4½1342� ¼ 0: ð5Þ

Exponentials of Mandelstams appear because the integrand
is not single valued on the string moduli space. Crucially,
the monodromy relations are a consequence of the string
worldsheet. Thus, in a general EFT, there is no reason for
the tree amplitudes to obey monodromy relations.
Splitting (5) into its real and imaginary parts, the

monodromy relations can be combined with the trace
reversal identities to give five linear relations among the
open string amplitudes. They can be written in the form of
Eq. (3) in which the vectors N1

4, N
2
4, N

3
4 are the same as in

Eq. (4), but N4
4 and N5

4 are replaced by

N4;str
4 ¼

�
1; 1;−

sinðπα0tÞ þ sinðπα0uÞ
sinðπα0sÞ ; 0; 0; 0

�
;

N5;str
4 ¼

�
sinðπα0uÞ;− sinðπα0tÞ; 0; 0; 0; 0

�
: ð6Þ

When α0 ¼ 0, the string monodromy relations (6) reduce to
the field theory KKBCJ relations (4).
Setup—We consider a Lorentz-invariant local d-dimen-

sional model with a massless bi-adjoint scalar field ϕaa0 . It
carries adjoint indices under two non-Abelian global
“color”-symmetry groups, G and G0. We assume the model
to have a canonical kinetic term and the interactions of
interest are single trace in each color structure. The tree
amplitudes mn½αjβ� are doubly color ordered, with α (β)
denoting the single-trace ordering of n generators associ-
ated with G (G0).
We impose the KKBCJ relations on the second color

ordering X
β

mn½αjβ�NI
n½β� ¼ 0; ð7Þ

with I labeling the Cn KKBCJ vectors and the sum running
over the ðn − 1Þ! cyclically independent color orderings β.
The KKBCJ condition in Eq. (7) is the statement that the

ðn − 1Þ! × ðn − 1Þ! matrix mn of tree amplitudes mn½αjβ�
has Cn null vectors NI

n under right multiplication. (We use
“null vector” here as a shorthand for a vector in the null
space of the matrix.) It follows that mn must have rank
ðn − 3Þ! and therefore mn must also have Cn null vectors
KI

n under left multiplication, i.e.,X
α

KI
n½α�mn½αjβ� ¼ 0: ð8Þ

A priori, it is not clear what form these vectors should take
or how they depend on the Wilson coefficients. We are
going to show that the null vectors KI

4 are highly restricted
and match the α0 expansion of NI;str

4 given in Eq. (6).
Imposing KKBCJ—The KKBCJ relations (7) impose

constraints on the Wilson coefficients of the BAS EFT. We
solve these order by order in the derivative expansion for
three-, four-, five-, and six-point amplitudes.
Three point: A bi-adjoint scalar model can have two

possible cubic self-interactions: the three pairs of adjoint
indices can either be contracted with the antisymmetric
structure constants fabc or with the fully symmetric tensors
dabc ¼ Tr½TafTb; Tcg�. The reversal symmetry constraint
m3½123j123� ¼ −m3½123j132� rules out the dabc contrac-
tion. In the absence of other interactions, the result is the
cubic BAS model in Eq. (1).
Now add to the cubic BAS model all possible local

single-trace (in G and G0) higher-derivative interactions,
schematically tr∂2kϕn. On-shell, the n-field Lagrangian
operators of this form are one-to-one with Mandelstam
polynomial terms in the n-point matrix elements.
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Four point: Using cyclicity and momentum relabeling,
the 3! × 3! ¼ 36 possible color-ordered amplitudesm4½αjβ�
can be written in terms of three functions [9]:

f1ðs; tÞ ¼ m4½1234j1234�; f2ðs; tÞ ¼ m4½1234j1243�;
f6ðs; tÞ ¼ m4½1234j1432�: ð9Þ
We now impose the KKBCJ relations from Eqs. (4) and (7).
N1

4 gives f6ðs; tÞ ¼ f1ðs; tÞ and then N2
4 and N3

4 are
automatically satisfied. The N4

4 and N5
4 constraints are

solved by

f1ðs; tÞ ¼
t
u
f2ðs; tÞ and uf2ðu; sÞ ¼ tf2ðt; sÞ: ð10Þ

These relations ensure that f1 is cyclic, f1ðu; tÞ ¼ f1ðs; tÞ.
Setting the cubic coupling to g ¼ 1without loss of general-
ity, we write the ansatz

f2ðs; tÞ ¼ −
1

s
þ
XN
k¼0

Xk
r¼0

ak;rsrtk−r; ð11Þ

where terms up to 2N derivatives are included. Solving
the second condition of Eq. (10) order by order in the
momentum expansion, we find

a0;0 ¼ 0; a1;1 ¼ a1;0;

a2;1 ¼ a2;0; a2;2 ¼ 0;

a3;2 ¼ 2a3;1 − 2a3;0; a3;3 ¼ a3;1 − a3;0;

a4;2 ¼ 2a4;1 − 2a4;0; a4;3 ¼ a4;1 − a4;0;

a4;4 ¼ 0; a5;3 ¼ 5a5;0 − 5a5;1 þ 3a5;2;

a5;4 ¼ 6a5;0 − 6a5;1 þ 3a5;2;

a5;5 ¼ 2a5;0 − 2a5;1 þ a5;2; ð12Þ
and it is straightforward to extend this to higher orders in
the Mandelstams. There is no mixing between orders since
the KKBCJ relations are linear equations. The construction
ensures that the f1 given by Eq. (10) does not have
unphysical poles.
The five left-multiplication null vectors KI

4 of Eq. (8)
consist of the three reversal-symmetry null vectors
KI

4 ¼ NI
4, I ¼ 1, 2, 3, and two other null vectors

K4
4 ¼

�
1; 1;−

f2ðs; uÞ
f2ðu; sÞ

−
f2ðs; tÞ
f2ðt; sÞ

; 0; 0; 0

�
;

K5
4 ¼

�
1;−

f2ðu; tÞ
f2ðt; uÞ

; 0; 0; 0; 0

�
; ð13Þ

that are generalizations of the photon decoupling identity
and of the BCJ relations (see Ref. [9]). In general, the null
vectors in Eq. (13) depend on most of the free ak;r’s in f2.
This changes when constraints from the six-point analysis
are implemented.
Five point: The 4! × 4! amplitudes of m5 can be

parametrized in terms of eight basis amplitudes g1;…; g8

defined in Eq. (6.1) of Ref. [9]. For each gi, we construct a
consistent factorization to three- and four-point amplitudes
and then include all possible polynomial terms in the
Mandelstam variables to parametrize the possible local
contact terms. Their coefficients are constrained by impos-
ing the C5 ¼ 22 five-point KKBCJ relations, which we
have solved to Oðs17Þ. As an example, relevant in the
following, the result for g4 ≡m5½12 345j12 543� is

g4½12345� ¼
1

s12s34
þ 1

s12s45
þ a1;0

�
−
s35
s12

þ s15
s34

þ s23
s45

�

þ a2;0

�
−
s235
s12

þ s15s25
s34

þ s13s23
s45

þ 2s35

�
þ…:

ð14Þ

AtOðs2Þ, the expressions are longer, but all terms in the gi are
fixed at that order in terms of the four-point coefficients a3;0
and a3;1. AtOðs3Þ, we find that all local 5-point coefficients,
except two, are fixed in terms of a4;0 and a4;1. AtOðs4Þ there
are five free parameters, one of which parametrizes a local
term that violates reversal symmetry on the first color
ordering, i.e.,m5½αT jβ� ≠ −m5½αjβ�, where αT is the reverse
of the color order α [e.g., ð12 345ÞT ¼ ð54 321Þ].
Importantly, we find no constraints on any 4-point Wilson
coefficients ak;r from the five-point KKBCJ relations.
Six point:The 5! × 5! amplitudes of the matrix m6 are

written in terms of 24 basis amplitudes that are independent
under cyclicity and momentum relabeling. We construct the
most general ansatz for the basis amplitudes consistent with
all factorization channels and with arbitrary coefficients for
the local six-point contact terms. We impose the C6 ¼ 114
6-point KKBCJ relations and solve them systematically
order by order in the Mandelstams. Remarkably, this
constrains the four-point coefficients ak;r. For example,
we find that

a3;0 ¼ −
2

5
a21;0; a3;1 ¼ −

11

10
a21;0: ð15Þ

Together with the 4-point constraints in Eq. (12), this
completely fixes the Oðs3Þ terms in the f2 ansatz of
Eq. (11) in terms of just a1;0.
Since the KKBCJ relations are linear, any nonlinear

relations, such as in Eq. (15), that mix orders in the four-
point expansion have to arise from combinations of differ-
ent factorization channels in the six-point amplitudes. With
their explicit Mandelstam factors, only the BCJ relations
allow such mixing of diagrams. Thus, to illuminate and
extend the result in Eq. (15), we consider special kinematic
limits of the BCJ relations to isolate pole contributions from
diagrams such as

PHYSICAL REVIEW LETTERS 133, 091601 (2024)

091601-3



ð16Þ

Consider the OðsÞ terms from these diagrams. In the first
diagram, this comes from the Oðs2Þ terms in the five-point
amplitude that are completely determined by a3;0 and a3;1,

as noted below Eq. (14). In contrast, the product of four-
point amplitudes in the second diagram has contributions
with coefficients a21;0 as well as a3;0 and a3;1. Thus, a BCJ
relation involving two such diagrams can result in a relation
such as Eq. (15).
We can make this argument precise by isolating the

pole contributions in the BCJ relations via carefully
chosen kinematic limits. Consider the following two
BCJ relations:

0¼ s34s234m6½1j134265�þ s46ðs12þ s25Þm6½1j136425�þ s46s12m6½1j136452�þðs46þ s45Þs12m6½1j136542�
þðs14þ s45Þðs234þ s26Þm6½1j136245�þ s14ðs234þ s26Þm6½1j136254�þ s14ðs234þ s26þ s25Þm6½1j136524� ð17Þ

⇒ 0 ¼
h
s34f2ðs34; s24Þf2ðs56; s15Þ − s45g4½P123456�

i���
s14;s26;s46;s234;s12¼0

; ð18Þ

0¼ s23s234m6½1j132456�þ s25ðs14þ s46Þm6½1j135246�þ s25s14m6½1j135264�þðs25þ s26Þs14m6½1j135624�
þðs12þ s26Þðs234þ s45Þm6½1j135426�þ s12ðs234þ s45Þm6½1j135462�þ s12ðs234þ s45þ s46Þm6½1j135642� ð19Þ

⇒ 0 ¼
h
s23

�
f2ðs23; s24Þf1ðs16; s15Þ

�
− s26g3½6123P45� þ f1ðs123; s36Þ − s46g3½P123456�

i����s25 ;s14 ;s234 ;
s12 ;s45

¼0

ð20Þ

To obtain these equations, the BCJ relations in Eq. (4.27)
of Ref. [3] are imposed on the β color ordering of the BAS
EFT tree amplitudes m6½αjβ� for any choice of the color
ordering α. Equation (17) is obtained by choosing α ¼
154 263 and then relabeling ½154 263� → ½123 456� and
Eq. (19) arises from α ¼ 142 536 and then relabeling
½142 536� → ½123 456�. The notation 1 is shorthand for
the color-ordering 123 456. To get Eq. (18), take the limit
s14, s26, s46 → 0 of Eq. (17) (the amplitudes have no poles
in those variables) and then pickup the residues from poles
at s234 ¼ 0 and s12 ¼ 0. Equation (18) precisely realizes
the relation between the two diagrams shown in Eq. (16).
A similar kinematic limit of Eq. (19) gives Eq. (20).
Expanding Eqs. (18) and (20) in Mandelstams, we find

to Oðs3Þ that

0 ¼ ða21;0 − 3a3;0 þ 2a3;1Þs16s23s34;
0 ¼ ð−a21;0 − 8a3;0 þ 2a3;1Þs23s34ðs16 þ s56Þ; ð21Þ

from which Eq. (15) follows. For the next two powers in the
Mandelstams, we find that a4;0 remains unfixed but

a4;1 ¼ −a1;0a2;0 þ 2a4;0; a5;0 ¼
8

35
a31;0;

a5;1 ¼
34

35
a31;0 −

1

2
a22;0; a5;2 ¼

27

14
a31;0 − a22;0: ð22Þ

Together with the four-point results in Eq. (12), we
have found, up to Oðs18Þ, that Eqs. (18) and (20) fix all

four-point coefficients except a1;0 and a2k;0. Moreover, all
5-point local coefficients up to orderOðs6Þ are fixed too by
the six-point KKBCJ constraints; we find, in particular, that
operators violating reversal symmetry are eliminated.
Unexpected monodromies—With the constraints from

the four-, five-, and six-point analysis—i.e., Eq. (15),
Eq. (22), and those at higher orders—imposed on the
Wilson coefficients ak;q in f2, we evaluate the left-multi-
plication null vectorsKI

4 in Eq. (13). We find that the a2k;0’s
drop out from the ratios of f2 so that the KI

4 only depend on
a single parameter, namely, a1;0. Order by order in the
Mandelstam expansion, we find that the polynomial
dependence on the Mandelstam variables in KI

4 is identical
to that of the α0 expansion of the monodromy vectors NI;str

4

from Eq. (6). Moreover, we find that the KI
4’s are in fact

equal to the α0 expansion of the NI;str
4 ’s when we set

a1;0 ¼ −
π2

6
α02; ð23Þ

as checked up to Oðs18Þ.
Note that Eq. (23) is merely a choice of scale of α0 in

terms of the Wilson coefficient of the lowest-order EFT
operator. Thus, the BAS EFT amplitude is required to obey
the string monodromy relations. This also holds for the
five- and six-point amplitudes as checked to Oðs6Þ and
Oðs4Þ, respectively. Note that the KI

n vectors do not match
the monodromies without constraints on the 4-point coef-
ficients ak;q from the six-point analysis.
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Factorization, exponentiation, and resummation—We
can understand why the dependence on the a2k;0’s drop
out from the KI

4’s by examining the structure of f2 more
closely. It turns out f2 factorizes as

f2 ¼ fð0Þ2 U; fð0Þ2 ¼ f2ja2k;0¼0; ð24Þ
where all the a2k;0 dependence is contained in the function
U which is fully symmetric in s, t, u. Hence ratios of the
f2’s in the KI

4 null vectors of Eq. (13) are independent of U
and hence of the a2k;0’s.
Moreover, from the low-energy expansion (to 18th order

in the Mandelstams), we find that U can be resummed into
the form U ¼ eV with

Vðs; t; uÞ ¼
X∞
k¼1

a2k;0
2kþ 1

ðs2kþ1 þ t2kþ1 þ u2kþ1Þ: ð25Þ

Since there can be more than one symmetric polynomial in
s, t, u starting at order 6, it is highly nontrivial that U takes
this form, and it relies heavily on the constraints from the
six-point analysis.
Z theory: Because the BAS EFT tree amplitudes obey

KKBCJ relations on the 2nd color ordering, its amplitudes
can be left-sector input in double-copy relations with the
field theory KLT kernel Ref. [9]. For example, it can be
double copied with YM theory to give YMþ higher
derivative (h.d.) amplitudes:

AYMþh:d:
n ½α� ¼

X
β;γ

mn½αjβ�SFTn ½βjγ�AYM
n ½γ�; ð26Þ

where the sum is over a choice two set of ðn − 3Þ! color-
orderings β and γ, and SFTn denotes the standard field theory
KLT kernel. The property that m4½αjβ� obeys the string
monodromy relations on the first color-ordering α, is
inherited by the YM+h.d. tree amplitudes constructed by
Eq. (26). Such amplitudes will include the open string tree
amplitudes.
Indeed, the open string tree amplitudes are known to be

constructible by a double-copy such as in Eq. (26) but with
mn½αjβ� replaced by the Z-theory amplitudes mZ

n ½αjβ�. The
Z-theory amplitude f1 is the beta-function and f2, found
from the BCJ relation, is then

fZ2 ðs; tÞ ¼ −
1

s
Γð1þ α0sÞΓð1 − α0ðsþ tÞÞ

Γð1 − α0tÞ : ð27Þ

The Z-theory amplitudes arise from period integrals in the
computation of the disk amplitudes, see Ref. [5], and they
are known to obey string monodromy on the first color-
ordering and field-theory KKBCJ relations on the second
one. Thus, Z theory is a special case of our BAS EFTwith
a1;0 identified with α0 as in Eq. (23) and

a2k;0 ¼ −ðα0Þ2kþ1ζð2kþ 1Þ: ð28Þ

Note that the entire dependence on the odd-ζ’s is contained
in the symmetric function U. [The factorized form (24)
exponentiation (25) with the coefficients of Eq. (28) was be
found in Ref. [16].] For the choice in Eq. (28), the
symmetric function V in Eq. (25) resums to a compact
expression with logarithms of Γ functions. Because

Eq. (24) gives fZ2 ¼ fð0Þ2 eV , this leads us to propose a

re-summed form of fð0Þ2 , namely,

fð0Þ2 ¼ −
1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πsðsþ tÞα0 sinðπα0tÞ

t sinðπα0sÞ sin½πα0ðsþ tÞ�

s
: ð29Þ

One can directly verify that this gives amplitudes that solve
the string monodromy relations on the first color-ordering
and KKBCJ on the second.
Discussion—We assumed in our analysis that the cubic

coupling and a1;0 are nonzero in the BAS EFT model. If we
instead set a1;0 ¼ 0, the left-multiplication null vectors
become the field theory KKBCJ relations of the string
monodromy relations, and it follows from Eq. (24) that
the only solution for f2 is then −1=s times the symmetric
functionU. Choosing a2k;0 to be twice the value for Z theory
given in Eq. (28) these amplitudes are then the “J integrals,”
or period integrals, of the closed string in Ref. [17].
The results in this Letter are strictly tree level. The

proposed monodromy relations for loop integrands studied
in Refs. [18–25] may shed light on any potential gener-
alization to loops.
The string monodromy relations guarantee that the KLT

double copy of two open string amplitudes is independent of
the choice of ðn − 3Þ! color orderings in the double-copy
sum; see Refs. [26] and [9]. The results presented in this
Letter have significant consequences for generalizations of
the double copy. In Ref. [27], we use the results of this Letter
to argue that themost general KLT-like double copy requires
the “input” tree amplitudes (e.g., Yang-Mills with higher-
derivative corrections) to satisfy either the stringmonodromy
relations or the KKBCJ relations; there are no other options.
We have shown how linear symmetry constraints at six

point can result in nonlinear constraints among four-pointEFT
couplings. This new observation may have an impact on the
EFTS-matrix bootstrapwhich uses unitarity and analyticity of
2 → 2 scattering amplitudes to derive upper and lower bounds
on EFT couplings. The resulting allowed regions are convex
because the addition of four-point amplitudes is compatible
with the linearized unitarity constraints. In this Letter, we have
demonstrated that the sum of two four-point amplitudes may
not be compatible with linear symmetries at higher point due
to factorization. This can significantly impact the resulting
allowed regions in S-matrix bootstraps for models with
additional symmetries, such as supersymmetry. These ideas
will be explored in future work.
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