
Causality Bounds on Dissipative General-Relativistic Magnetohydrodynamics

Ian Cordeiro ,1,* Enrico Speranza ,2,1,† Kevin Ingles,1,‡ Fábio S. Bemfica ,3,§ and Jorge Noronha1,∥
1Illinois Center for Advanced Studies of the Universe Department of Physics,

University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
2Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland

3Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, RN, 59072-970 Natal, Brazil

(Received 30 January 2024; revised 29 May 2024; accepted 23 July 2024; published 29 August 2024)

We derive necessary and sufficient conditions under which a large class of relativistic generalizations of
Braginskii’s magnetohydrodynamics with shear, bulk, and heat diffusion effects is causal and strongly
hyperbolic in the fully nonlinear regime in curved spacetime. We find that causality severely constrains the
size of nonideal effects and the onset of kinetic instabilities. Our results are crucial for assessing the regime
of validity of fluid dynamical simulations of plasmas near supermassive black holes.

DOI: 10.1103/PhysRevLett.133.091401

Introduction—The vast majority of galactic black holes
are predicted to have luminosities far below the Eddington
limit [1]. Some salient examples include M87 and Sgr A*,
whose large angular size relative to Earth makes them ideal
targets for high-resolution imaging experiments such as the
Event Horizon Telescope [2,3] and GRAVITYon the Very
Large Telescope [4]. These low-luminosity black holes
cannot accrete matter at a rate that balances dissipative
effects such as viscosity, causing the plasma to heat
up and expand into geometrically thick, though possibly
optically thin, disks of hot, low-density charged particles.
Additionally, the collisional Coulomb mean free path of
such particles is expected to be orders of magnitude larger
than the black hole horizon radius [5], implying that the
plasma is approximately collisionless. As such, nonideal
effects are expected to be non-negligible [3], even though
the vast majority of numerical simulations continue to
model weakly-collisional flows using ideal general-
relativistic magnetohydrodynamics (GRMHD). This is,
in part, because a consistent formulation of nonideal
GRMHD in the fully nonlinear regime is still missing
[6], despite the recent progress in the formulation of
relativistic viscous fluids both at first [7–11] and second
order [12–16] in deviations from equilibrium, and their
corresponding extensions to include effects from strong
electromagnetic fields [17–24].
In particular, Ref. [17] formulated a relativistic gener-

alization of Braginskii’s equations [25] in the context of
Israel-Stewart (IS) theory [12,13,26] to model weakly

collisional plasmas, assuming that the shear-stress tensor
and heat flux align with the comoving magnetic fields. This
extended magnetohydrodynamic (EMHD) model has been
used in [27] to perform general-relativistic 3D simulations
of accretion flows onto a Kerr black hole, including shear
viscosity and heat conductivity effects. This system gen-
erally possesses large pressure anisotropy, induced by the
magnetic field contribution to the pressure, and displays
mirror and firehose unstable regions. Modeling such
extreme plasmas surrounding black holes necessarily
pushes the boundaries of our understanding of nonideal
GRMHD effects toward the far-from-equilibrium regime.
As deviations from equilibrium become large, the

standard approximations made in the derivation of fluid
models cease to be valid [28,29]. Unphysical features may
emerge, such as causality violation signaled by super-
luminal characteristic velocities, which can occur in Israel-
Stewart theories applied sufficiently far from equilibrium
[30–34]. Therefore, it is unknown whether fluid models
such as EMHD can correctly capture the nonideal physics
of plasmas near black holes without violating fundamental
physical principles, such as relativistic causality [35].
We derive new necessary and sufficient constraints that

ensure causality in the nonlinear regime of a large class of
models of weakly collisional plasmas, including EMHD
[17]. We also establish strong hyperbolicity [36], implying
that the models we consider have a locally well-posed
Cauchy problem in general relativity [35]. Furthermore, we
generalize the EMHD model to (a) include bulk-viscous
corrections and (b) make no assumptions on the form of the
IS-theory transport coefficients. For these generalized
theories of EMHD, we present necessary nonlinear con-
straints for causality in the presence of all dissipative
fluxes. Causality leads to a new set of algebraic inequalities
relating transport properties and the equation of state to the
magnitude of dissipative fluxes. Such inequalities can be
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readily checked in numerical simulations of black hole
accretion disks [27], providing key new insight into the
domain of validity of such models. Our nonlinear analysis
shows that causality can rule out the onset of the firehose
instability [37,38] in weakly collisional plasmas unless heat
diffusion is considered, a result that cannot be obtained
using standard linearized techniques. Our new generalized
model may also be used to capture rich physical phenom-
ena such as turbulence via the magnetorotational instability
[39,40], as well as two-temperature plasma viscous effects
[41] describable by isotropic dissipation—a key feature
absent from the original model.
Equations of motion—Our system is described by an

energy-momentum tensor Tμν, containing ideal MHD [42]
plus nonideal shear contributions from the shear-stress
tensor, πμν, heat diffusion qμ, and bulk viscosity Π, and a
conserved mass density current JμB (in the Eckart frame
[43]) given by

Tμν≡Tμν
IdealþΠΔμνþqμuνþuμqνþπμν; JμB¼ ρuμ; ð1Þ

where Tμν
Ideal¼

�
eþðb2=2Þ�uμuνþ�

Pþb2=2Þ�Δμν−bμbν, e
is the total energy density, uμ is the fluid’s four-velocity
(with uμuμ ¼ −1), Δμν ¼ gμν þ uμuν is the projection
tensor orthogonal to uμ, gμν is the (arbitrary) spacetime
metric (we use natural units where ℏ ¼ c ¼ kB ¼ 1), ρ is
the mass density, and P is the equilibrium pressure. Here,
bμ ¼ εμναβuνFαβ=4

ffiffiffi
π

p
is the magnetic field four-vector

(Fαβ is the electromagnetic field tensor) obeying bμuμ ¼ 0,
and b2 ¼ bμbμ.
We are motivated by the applications of GRMHD in

accretion flows around black holes. Following [17], we

assume that the magnetic field drives all the relevant
contributions to the dissipative fluxes. In this regime,
one then finds

qμ ¼ q
bμ

b
; πμν ¼ −ΔP

�
bμbν

b2
−
1

3
Δμν

�
; ð2Þ

where q is the magnitude of heat diffusion along field lines
and ΔP is the pressure anisotropy. This setup provides a
covariant generalization of Braginskii’s nonrelativistic
MHD [25]. Our model also emerges when taking the
nearly collisionless limit of the nonresistive relativistic
MHD equations derived from kinetic theory in [18];
see Ref. [22].
The dynamics are governed by energy-momentum con-

servation,∇μTμν ¼ 0, baryonmass conservation,∇αJαB ¼ 0,
and Maxwell’s equations ∇αðuαbμ − bαuμÞ ¼ 0 [42]. The
dissipative quantities, ΔP, q, and Π, satisfy relaxation
equations derived from a general entropy current following
IS theory (see the Supplemental Material [44]) [13].
The full set of equations of motion may be cast in the

quasilinear form [45]

ðAα
∂α þ BÞU ¼ 0; ð3Þ

where U ¼ ðuν; bν; e; ρ;Π; q;ΔPÞT ∈R13 is a column vec-
tor and T denotes transposition. For any scalar, we require
the existence of a smooth, invertible equation of state
(EOS) in terms of e and ρ. The matrices Aα and B are
nonlinear functions of the components ofU (but not of their
derivatives), andAα defines the principal part. In particular,
one finds

Aαϕα ¼

0
BBBBBBBBBBBBBBB@

Xμ
ν Yμ

ν vμPe vμPρ vμ x bμ
b

1
3

�
vμ − 3ybμ

b2
�

−yδμν − xuμbν þ bμϕν xδμν 0μ 0μ 0μ 0μ 0μ

Aν Bν x 0 0 y
b 0

ρϕν 0ν 0 x 0 0 0�Π
2
þ 1

b0

�
ϕν − γ0c0

b0
q
b ϕ̃ν CΠ;e CΠ;ρ x − c0

b0
y
b 0

q
2
ϕν þ x

b1
bν
b Qν Cq;e Cq;ρ − y

b
c0
b1

x 2
3
y
b
c1
b1

1
2

�
ΔPþ 1

b2

�
ϕν − 3

2
ybν
b2b2

c1γ1
b2

q
b ϕ̃ν CΔP;e CΔP;ρ 0 c1

b2
y
b x

1
CCCCCCCCCCCCCCCA

; ð4Þ

The expressions for Xμ
ν, Y

μ
ν , Aν, Bν, and the scalars CX;Y

(X ¼ Π; q;ΔP, Y ¼ e, ρ) are long and unwieldy, but are
provided in the Supplemental Material [44]. We also use
the shorthand notation Pe ¼ ∂P=∂e and Pρ ¼ ∂P=∂ρ,
along with x ¼ uαϕα, y ¼ bαϕα, v2 ¼ ϕαϕβΔαβ, and
ϕ̃ν ¼ ϕν − ybν=b2. The coefficients b0, b1 and b2 are
transport coefficients from IS theory measuring the

contributions of the dissipative corrections to the entropy
fromΠ, q, andΔP, respectively. The constants c0, c1, γ0, γ1
measure the coupling between the dissipative contributions.
As this is a system of first-order quasilinear partial
differential equations, we determine the system’s character-
istics to derive physical constraints on the theory [45].
No simplifying assumptions about the geometry of the
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spacetime (Christoffel symbols that arise from covariant
derivatives do not enter the principal part and, thus, are
absorbed into B), or the relative size of the dynamical
variables are made. In fact, our results below apply even
when the transport coefficients depend not only on e and ρ,
but also [for example, one may have b2 ¼ b2ðπμνπμνÞ] on
Π, q, and/or ΔP. Therefore, we consider a vast class of
models, which include the EMHD formulation of [17].
Causality and hyperbolicity for shear viscosity—Upon

setting Π and q to zero and removing the corresponding
equations of motion, we derive below (i) necessary and
sufficient constraints that relate the dynamical variables in
U ¼ ðuν; bν; e; ρ;ΔPÞT ∈R11 through inequalities that
ensure causal propagation of information and (ii) sufficient
conditions providing bounds for which the quasilinear
system of partial differential equations is strongly hyper-
bolic and, hence, locally well-posed [26,36]. The latter
guarantees that given the initial conditions, the nonlinear
equations of motion possess a unique solution [35,46,47].
Strong hyperbolicity also implies a universal bound on how
solutions grow in time (determined by the initial data and
the structure of the equations), which does not depend on
numerical schemes. This makes local well-posedness a
prerequisite for any system whose solutions must be
computed numerically [26,48]. Therefore, establishing
such properties is crucial to correctly assess the applicabil-
ity of dissipative fluid models to describe the nonideal
physics of plasmas around black holes. This allows us to go

beyond the bounds obtained from the linear analysis of
causality and stability performed in [17], which were used
in simulations [27]. We stress that our nonlinear constraints
can also be readily implemented in current numerical
simulations [27].
We now give conditions for causality. The quasilinear

system in Eq. (3) is causal if and only if the following two
conditions hold. First, (CI) the roots of the characteristic
equation detðAαϕαÞ ¼ 0, given by the timelike component
of ϕμ as a function of its spatial components ϕ0 ¼ ϕ0ðϕiÞ,
are real. Here, ϕμ ≡∇μΦ, and fΦðxÞ ¼ 0g are the
characteristic hypersurfaces of the system in Eq. (3).
Second, (CII) ϕμ is nontimelike, i.e., ϕαϕα ≥ 0 [35].
This implies that the initial data does not evolve outside
the local light cone.
Next, we give the conditions for strong hyperbolicity.

Given some differentiable timelike vector ξμ, an n-dimen-
sional quasilinear system of the form in Eq. (3) is strongly
hyperbolic if (HI) detðAαξαÞ ≠ 0, and (HII) for any space-
like vector ζμ, the solutions of eigenvalue problem
ðΛξα þ ζαÞAαr ¼ 0 only permit real eigenvalues Λ∈R.
Additionally, the right eigenvectors r∈Rn must form a
complete basis [42]. Condition (HI) is akin to requiring that
the principal part be invertible to guarantee solutions,
whereas (HII) ensures the diagonalizability of the system.
In the case of ΔP ≠ 0, one finds that the determinant of

the principal part of the system is

detðAαϕαÞ ¼ x3
�
Ex2 − ðΔPþ b2Þ y

2

b2

�
2
�
Cxx4 þ Cy

y4

b4
þ Cxyx2

y2

b2
þ Cxvx2v2 þ Cyv

y2

b2
v2
�
: ð5Þ

The coefficients fCx; Cy; Cxy; Cxv; Cyvg determine the magnetosonic wave modes and they are given by

Cx ¼ EðE − b2 − ΔPÞ; ð6aÞ

Cxy ¼ −ðeþ PÞðΔPþ b2Þc2s þ
ΔPð5b2 þ 5ΔP − 3EÞ

6
þ ΔPðΔPþ b2 − 3EÞ

3
½ðeþ PÞαs − Pe�

þ ðΔPþ b2 þ 3EÞ
3

�
αeΔP2

3
−

1

2b2

�
; ð6bÞ

Cxv ¼ −
1

18
ðE − b2 − ΔPÞ

	
18b2 þ 6ðeþ PÞð3c2s − αsΔPÞ þ ΔPð3þ 6Pe − 2αeΔPÞ þ

3

b2



; ð6cÞ

Cy ¼ ðeþ PÞ
	
c2s

�
2ΔPþ αeΔP2 −

3

2b2

�
þ αsΔP2

�
1

3
− Pe

�

−
ΔP

h
ΔPð4αeΔPþ 15Pe þ 3Þ − 6

b2
Þ
i

18
; ð6dÞ

Cyv ¼ ðeþ PÞ
	
c2s

�
b2 − ΔP − αeΔP2 þ 3νρ

τR

�
þ αsΔP

3
ð2b2 þ ΔPþ 3PeΔPÞ




þ
6
b2
ð2b2 þ ΔPÞ − ΔP½ð2b2 þ ΔPÞð4αeΔPþ 3Þ þ 3Peð4b2 − ΔPÞ�

18
: ð6eÞ
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Here, we have introduced αs ¼ ðdα=deÞS=N ¼ αe þ ½ρ=
ðeþ PÞ�αρ, and defined α≡ 1

2
log ð2b2=ΘÞ and αX ≡ ∂Xα

for X ¼ e, ρ. Furthermore, the speed of sound squared is
c2s ¼ ðdP=deÞS=N ¼ Pe þ ½ρ=ðeþ PÞ�Pρ, where S=N is
the specific entropy. Lastly, Θ ¼ T=mp, where T is the
temperature, and mp is the ion mass. In the above,
E ¼ eþ Pþ b2 þ ΔP=3. The determinant, which is fac-
tored into three distinct and physically relevant terms, is a
polynomial of the Lorentz scalars fx; y; v2g. The cubic
term x3 gives roots corresponding to the standard transport
equation [42], whereas the quadratic polynomial Ex2 −
ðΔPþ b2Þy2=b2 determines the Alfvén characteristic
velocities. The quartic polynomial gives the characteristics
from the magnetosonic sector [42].
Our results concerning causality and hyperbolicity can

be stated as follows.
Theorem 1—If the following strict inequalities hold

simultaneously ∀ κ∈ ½−1; 1� and Cx ≠ 0

0 <
ΔPþ b2

E
< 1; ð7aÞ

0 <

�
κ2Cxy þ Cxv

Cx

�
2

− 4κ2
�
κ2Cy þ Cyv

Cx

�
; ð7bÞ

1 >

���� κ
2Cxy þ Cxv

Cx
þ 1

����; ð7cÞ

0 <
κ2Cy þ Cyv

Cx
; ð7dÞ

0 < κ2
�
κ2Cy þ Cyv

Cx

�
þ κ2Cxy þ Cxv

Cx
þ 1; ð7eÞ

then the system is strongly hyperbolic. Furthermore, if the
above system of strict inequalities is replaced with the
weaker conditions<→≤ and>→≥, then the system admits
causal solutions if and only if the inequalities hold.
Proof—Proof of the causality bounds follows from

solving the characteristic equation detðAαϕαÞ ¼ 0 for the
roots ϕ0, and imposing the nontimelikeness and reality of
ϕμ along with elementary properties of quadratic poly-
nomials. Strong hyperbolicity can be shown by proving
that, given any timelike ξα, detðAαξαÞ ≠ 0 and that, for all
spacelike ζα, the eigenvalues Λ generated by the eigenvalue
problem ðΛξα þ ζαÞAαr ¼ 0 are real and the eigenspace
spanned by the right eigenvectors has dimension 11. The
interested reader can find the full mathematical proof in the
Supplemental Material [44]. ▪
We stress that conditions (7a) and (7b)–(7e) ensure

causality in the nonlinear regime for the characteristic
velocities coming from the Alfvén and magnetosonic
sectors, respectively.

Linear regime—When dealing with systems with many
variables, a useful approximation is to consider linear
deviations from a given (unique) equilibrium state. In this
approximation, one considers the dynamical variables of
the system UA ∈U for A ¼ 1; 2;…; 11, and introduces the
substitution UA → Ueq;A þ δUA, where Ueq;A is the (con-
stant) equilibrium value of UA, and δUA is a linear
fluctuation from equilibrium. In this case, nonideal effects,
such as the viscous shear stress, vanish in equilibrium. One
then truncates the equations of motion up to linear order in
fluctuations and arrives at a linear system of partial
differential equations of the form

AαðUeqÞ∂αδUþ δðBUÞ ¼ 0: ð8Þ

In particular, nonideal fluxes vanish in this regime (i.e.,
ΔP → 0). The principal part in (8) follows from (4)
assuming zero dissipative fluxes. Thus, causality and strong
hyperbolicity are immediately provided under the bounds
prescribed by Theorem 1, as we made no assumptions
about the magnitude of ΔP. One immediate question to
consider is whether or not the original, nonlinear coeffi-
cients contain (or restrict) more information than those of
the linearized regime. This information not only refers to
the physically allowed range of values for the dynamical
variables of the system, it may also refer to nonlinear,
physical phenomena that arise beyond linear response.
As a helpful example, following the original EMHD

model [17], we set b2 ¼ τR=2ρν where τR and ν are
interpreted as a shear viscous relaxation time and kinematic
viscosity term. We also consider the case of a polytropic
EOS, which is expected to well approximate slow accretion
flows onto supermassive black holes such as Sgr A* [27].
Using the same parameters as [27], we use the EOS P ¼
KρΓ for Γ ¼ 5=3 and K ¼ 0.0043. Figure 1 plots the
causally allowed regions for both the linear and nonlinear
coefficients using the bounds prescribed in Eqs. (7a)–(7e)
for ratio of pressure anisotropy P⊥=Pk relative to the
dimensionless pressure 2P=b2, where P⊥ ¼ Pþ ΔP=3
and Pk ¼ P − ð2=3ÞΔP.
One can immediately see from Fig. 1 that the linear

regime (denoted by the solid line) restricts the equilibrium
values of the dynamical variables (i.e., ΔP ¼ 0), and
therefore does not contain information about nonideal
currents, which generate a diverse array of physical
phenomena such as kinetic instabilities.
Kinetic instabilities naturally set a bound on the magni-

tude of dissipative fluxes [49], and the simulations of [27]
are constrained to remain inside those limits. In particular,
the firehose instability, which has been shown in particle-
in-cell simulations [50,51] to occur in the region
ΔP < ΔPFH ≡ −b2, is forbidden by the nonlinear causality
bound provided in Eq. (7a). This result cannot be seen in
the linear regime. In this regard, one can see from Fig. 1
that while linear constraints do not restrict ΔP=b2 (as
expected), our nonlinear study shows that the presence of
the firehose instability signals causality or hyperbolicity
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violation. However, we note that another nonlinear phe-
nomenon, the so-called mirror instability expected to occur
when the pressure anisotropy reaches ΔP=b2 > Pk=ð2P⊥Þ
[52,53], can still emerge in this system without violating
fundamental physical principles. The inability of causality
to rule out the mirror instability suggests the existence of
causal, nontrivial regions of parameter space not explored
in existing numerical simulations. In fact, regions corre-
sponding to firehose and mirror unstable solutions are
manually excluded in current simulations [27] through
assumptions on the form of the transport coefficients. As
such, a future reconsideration of the form of these coef-
ficients may be an important step for future work.
Causality of general EMHD—The previous sections

consider shear viscous contributions without heat diffusion
or bulk viscosity, which are expected in general nonideal
systems. Upon adding all contributions from dissipative
fluxes, the general nonlinear determinant obtained via
Eq. (4) is

detðAαϕαÞ¼ x

�
Ex2þ2qx

y
b
− ðΔPþb2Þy

2

b2

�
2

P8ðx;y;vÞ:

ð9Þ

Here, P8 is an order 8 polynomial in x and y (and quadratic
in v) of the form

P8ðx; y; vÞ≡
Xð8;8;1Þ

ði;j;kÞ¼ð0;0;0Þ
iþjþ2k¼8

Ci;j;kxiyjv2k; ð10Þ

where the coefficients Ci;j;k ¼ Ci;j;kðUÞ are highly non-
linear functions of U. The interested reader may find the
exact coefficients at [54]. From the roots of the Alfvén
wave modes, for E ¼ eþ Pþ Πþ b2 þ ΔP=3 ≠ 0, the
following constraints are necessary (but not sufficient) for
causality:

0 ≤ q2 þ EðΔPþ b2Þ; ð11aÞ

0 ≤ jqj
	
jqj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ EðΔPþ b2Þ

q 

≤
1

2
EðE − ΔP − b2Þ:

ð11bÞ

These constraints are fully nonlinear, and restrict the
contributions of all dissipative corrections from equilibrium
ðΠ; q;ΔPÞ in terms of the other dynamical variables in
question. The magnetosonic contributions given by the
roots of P8 can only be determined numerically [55], in
contrast to the q ¼ 0 case in which the magnetosonic
contribution is quadratic in x2 (hence, analytically solv-
able). However, one should note that the presence of q
modulates the Alfvén constraint in Eq. (7a) such that the
firehose instability may satisfy causality.
Conclusions—A general nonlinear analysis was per-

formed to assess whether a large class of nonresistive
viscous GRMHD models with shear, bulk, and heat
diffusion can correctly capture the nonideal physics of
plasmas without violating fundamental physical principles.
For the first time, we derived the conditions on the transport
coefficients, equation of state, and dissipative fluxes that
ensure nonlinear causality and strong hyperbolicity. This
was done for a large class of general-relativistic models of
Braginskii’s magnetohydrodynamics. Our results limit the
magnitude of nonideal effects in fluid descriptions of nearly
collisionless plasmas, which can be readily applied in
current fluid dynamic simulations of accretion flows
around black holes and in systematic studies of turbulence
in viscous GRMHD simulations.
We showed that causality forbids the onset of the

firehose instability in the absence of heat diffusion, a
new result that cannot be obtained from linear response
analyses. However, causality does not forbid the presence
of mirror unstable regions, which suggests that the new
viscous GRMHD theories considered here may be able to
explore kinetic instabilities previously deemed inaccessible
to fluid models.

FIG. 1. Causally allowed region for ν=τR ¼ ψc2s in terms of the
(normalized) viscous anisotropic stressΔP=b2 and pressure 2P=b2
due to the constraints inEqs. (7a)–(7e)withoutheat diffusionorbulk
viscosity (Π ¼ 0, q ¼ 0). The blue color indicates the causal
regions, while the red color indicates the acausal regions. The solid
horizontal region corresponds to the causality constraints for a
linearized theory, where the anisotropic stress vanishes; for the
range of pressures show, the linearized theory is always causal. The
dashed and dotted lines correspond to the firehose instability
ΔP=b2 ¼ −1 and the mirror instabilities ΔP ¼ ðb2=2ÞðPk=P⊥Þ.
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