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The detrimental impact of noise on sensing performance in quantum metrology has been widely
recognized by researchers in the field. However, there are no explicit fundamental laws of physics stating
that noise invariably weakens quantum metrology. We reveal that phase-covariant noise either degrades or
remains neutral to sensing precision, whereas non-phase-covariant noise can potentially enhance parameter
estimation, surpassing even the ultimate precision limit achievable in the absence of noise. This implies that
a non-Hermitian quantum sensor may outperform its Hermitian counterpart in terms of sensing
performance. To illustrate and validate our theory, we present several paradigmatic examples of magnetic
field metrology.
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Introduction—Investigating quantum parameter estima-
tion in open systems is essential due to the unavoidable
interaction of real physical systems with their surrounding
environment [1,2]. Previous studies consistently show that
environmental noise degrades quantum coherence, leading
to reduced sensing precision. Strategies such as dynamic
decoupling [3–6], time optimization [7,8], quantum error
correction [9–11], feedback control [12–14], quantum
trajectory monitoring [15] and Floquet engineering [16]
have been developed to overcome this challenge. Some
works explore noise types with lesser detrimental effects,
revealing that non-Markovian noises [17–19] or noises with
special orientation [20] can be advantageous.
In fact, there is no fundamental law that prohibits the

positive influence of environmental noise on quantum
metrology. Recent findings recognize noise as a booster
for quantum precision measurement and sensing in some
cases [21–24]. For instance, a high-temperature reservoir
can enhance system fluctuations, improving distinguish-
ability in measuring dual electron spin states [25]. The
theory of enhanced sensor sensitivity at environmentally
induced exceptional points has been experimentally vali-
dated [26–28], emphasizing the use of environmental
factors to amplify quantum sensor responses to weak
signals. Moreover, a dissipative adiabatic measurement
based on noise is proposed [29], where noise is an
indispensable resource.

Spirited by the development of noisy quantum metrol-
ogy, two important questions naturally arise: (i) What types
of noise may boost quantum metrology; (ii) can estimation
precision in the presence of noise surpass the noiseless
precision limit? This Letter aims to address these two
questions. First, we demonstrate that only non-phase-
covariant (NPC) noise is likely to boost quantum metrol-
ogy, while phase-covariant (PC) noise has a negative effect
(or no effect) on sensing performance. Surprisingly, we find
that the sensing precision of a non-Hermitian sensor
influenced by NPC noise may surpass the ultimate pre-
cision limit given by its Hermitian counterpart. We illus-
trate these findings in the analysis of paradigmatic quantum
metrological schemes, including quantum estimation of
magnetic field strength and its direction. We emphasize
that, unless otherwise stated, the noise mentioned below
does not contain estimated parameters.
Preliminaries—The dynamic evolution of an open

quantum system is described by the master equation
[30,31] ∂tρ̂ðtÞ ¼ ðĤþ L̂Þ½ρ̂ðtÞ� (hereafter ℏ ¼ 1), where
Ĥ½•� ≔ −i½Ĥ; •� and L̂½•� ≔ P

k γk½Γ̂k • Γ̂
†
k −

1
2
fΓ̂†

kΓ̂k; •g�,
with Ĥ the Hamiltonian of system and Γ̂k the quantum
jump operator associated with a dissipative channel occur-
ring at decay rate γk. The series solution of ρ̂ðtÞ reads
as [32]

ρ̂ðtÞ ¼ eĤt½Π̂ðtÞ½ρ̂ð0Þ��; ð1Þ

where ρ̂ð0Þ is the initial-state density matrix operator of
system, Π̂ðtÞ ¼ P∞

n¼1ð1̂þ Ξ̂nÞ is an effective dissipative
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superoperator, 1̂ is identity superoperator, and

Ξ̂n ¼
Z

t

0

Z
t1

0

� � �
Z

tn−1

0

e−Ĥt1L̂eĤt1e−Ĥt2L̂eĤt2 � � � e−ĤtnL̂eĤtndtndtn−1 � � � dt1ðn > 0Þ; ð2Þ

with the integral upper limit satisfying t > t1 > � � � > tn−1.
Based on the commutativity of noise-induced operations
with Hamiltonian dynamics in the master equation, noise is
categorized into two types. The first one is PC noise, where
dissipative dynamics commutes with coherent dynamics
[39], i.e., Ĥ½L̂½ρ̂ðtÞ�� ¼ L̂½Ĥ½ρ̂ðtÞ��. In this case ρ̂ðtÞ can be
expressed as [32]

ρ̂ðtÞ ¼ eL̂t½eĤt½ρ̂ð0Þ�� ¼ eL̂t½ρ̂ð0ÞðtÞ�; ð3Þ

where ρ̂ð0ÞðtÞ represents the evolved state in the noiseless
case. This implies a complete separation of the two
dynamics in time evolution, and their order does not affect
the final state ρ̂ðtÞ.
The other is NPC noise, where the two dynamics are no

longer commutative [39], i.e., Ĥ½L̂½ρ̂ðtÞ�� ≠ L̂½Ĥ½ρ̂ðtÞ��. In
this case, the two dynamics cannot be separated in state
evolution, presenting significant challenges for solving the
master equation. But at the short-term limit, ρ̂ðtÞ is
approximated as [32]

ρ̂ðtÞ ≈ eĤt½eL̂t½ρ̂ð0Þ��: ð4Þ

The approximate expression involves transforming the two
concurrent dynamics processes into a sequential order, with
dissipative dynamics preceding the coherent dynamics.
This sequence implies that the noise may solely alter the
effective initial state which subsequently undergoes coher-
ent evolution.
Let θ represents the estimated parameter, and the

corresponding estimation error is quantified by quantum
Cramér-Rao bound (QCRB) [47], i.e., Varðθ̂Þ ≥ 1=νFθ.
Here, Varðθ̂Þ is the mean squared error of unbiased
estimator, ν is the number of trials, Fθ½ρ̂θ� ≔ Tr½ρ̂θL̂2

θ� is
quantum Fisher information (QFI), and L̂θ is the symmetric
logarithmic derivative formally defined by ∂θρ̂θ ¼
ðρ̂θL̂θ þ L̂θρ̂θÞ=2. The QCRB indicates the larger the
QFI, the higher the theoretically achievable estimation
precision of the sensor.
Non-phase-covariant noise enhanced sensing perfor-

mance—Assuming θ is only included in the Hamiltonian,
superoperator Ĥ → ĤðθÞ. Liouvillian superoperator L̂ is
negative semidefinite when γk ≥ 0 for ∀ k [30]. Its eigen-
values ζj and right (left) eigenmatrices bℜR

j (bℜL
j ) satisfy

eigenequation L̂bℜR
j ¼ ζjbℜR

j (L̂†bℜL
j ¼ ζ�j bℜL

j ) where
Re½ζj� ≤ 0 for ∀ j (j ¼ 1 ∼ d2, here d is the dimension
of the system), leading to 0 ≤ eRe½ζj� ≤ 1 and a potential

decrease in the elements of the density matrix and informa-
tion of estimated parameter. Thus, for PC noise, based
on Eq. (3) and the definition of the QFI we can conclude
that [32]

Fθ½ρ̂θðtÞ� ≤ Fθ½ρ̂ð0Þθ ðtÞ�: ð5Þ

The formula indicates that PC noise is detrimental to
estimation precision, or at best, it does not affect it. This

is because if information about θ in ρ̂ð0Þθ ðtÞ is not encoded in a
decoherence-free subspace, it leaks to the environment,
resulting in a decrease in estimation precision.
For NPC noise, a positive answer to question 1 can be

obtained by studying the following limiting scenario
through Eq. (4). Suppose initial state ρ̂ð0Þ is an eigenstate
of Hamiltonian ĤðθÞ, without eL̂t we cannot extract any
information about θ from state ρ̂ðtÞ since it only manifests
as a global phase factor. However, introducing NPC noise
causes ρ̂ð0Þ to deviate from the eigenstate, and θ is
subsequently encoded into ρ̂ðtÞ under the action of
eĤðθÞt. This results in Fθ½ρ̂θðtÞ� ≠ 0, signifying that NPC
noise enables previously unattainable quantum parameter
estimation. Furthermore, if ρ̂ð0Þ is not the optimal initial
state, the action of eL̂t may bring ρ̂ð0Þ closer to the optimal
state, leading to enhanced estimation precision.
Now, addressing question 2: Can the sensing precision of

a non-Hermitian sensor with NPC noise surpass its
Hermitian counterpart’s limit? If the noise itself includes
the estimated parameter, a positive answer is not surprising,
as recent research has also confirmed [48]. This Letter
focuses on the case where the noise lacks the estimated
parameter. Unfortunately, this situation cannot be analyzed
solely from Eq. (4). This is because, under the encoding by
the Hamiltonian, the performance of the effective initial
state eL̂t½ρ̂ð0Þ� cannot surpass that of the optimal initial state
in a closed system. To address this, we must delve into the
high-order corrections introduced by NPC noise. Perform
the following substitution in Eq. (1): Ĥ → ĤðθÞ and
Π̂ðtÞ → Π̂ðθ; tÞ. In this case, Π̂ðθ; tÞ is an effective dis-
sipative superoperator containing the estimated parameter,
implying an additional parameter encoding process beyond
coherent dynamics. This is essentially equivalent to the
incoherent manipulation of the quantum state by the NPC
noise environment. Then a conclusion can be drawn that the
estimation precision obtained from an open quantum
system with NPC noise may surpass the precision limit
determined by the optimal initial state and optimal esti-
mation time of its closed counterpart, expressed as
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Fθ½ρ̂θðτÞ� > Fθ

�
eĤðθÞtoptl ρ̂optlð0Þ�; ð6Þ

may hold. Here, τ is a moment that depends on the specific
form of the Hamiltonian and NPC noise. ρ̂optlð0Þ and toptl
represent the optimal initial state and the optimal encoding
time in the closed system, respectively. This surprising
result contradicts intuition, as noise without estimated
parameters can assist sensors in surpassing the precision
limit established by coherent dynamics. Physically, this
stems from NPC noise introducing an additional parameter
encoding process, capitalizing on the noncommutativity
between coherent and dissipative dynamics, compared to
the noiseless case.
Example—Consider an open spin-1=2 system, whose

dynamics is governed by a generalized master equation,

dρ̂ðtÞ
dt

¼ −i½ĤS; ρ̂ðtÞ� þ γ½Γ̂ ρ̂ðtÞΓ̂† −
1

2
fΓ̂†Γ̂; ρ̂ðtÞg�; ð7Þ

where ĤS ¼ B½cosðϑÞσ̂x þ sinðϑÞσ̂z� is the Hamiltonian of
the system, with the Bohr magneton set to 1 for simplicity.
B and ϑ denote the amplitude and direction of the magnetic
field in the XZ plane, respectively. Γ̂ ¼ cosðαÞσ̂x þ
sinðαÞσ̂z is the general quantum jump operator [49,50],
where α is the coupling angle between the spin and
environment bath. σ̂x;z and γ are the Pauli operator and
the decay rate, respectively. The model can be experimen-
tally implemented using atoms or quantum dots [51,52],
where atoms or electron spins are simultaneously excited
and relaxed, accompanied by phase diffusion due to
random fluctuations in the electromagnetic environment.
We present three scenarios below. Scenario 1 highlights
that PC noise degrades or has no impact on estimation
precision. Scenario 2 demonstrates that NPC noise can
enhance parameter estimation. Finally, scenario 3 shows
this enhancement has the potential to exceed the highest
precision achievable in a noise-free environment.
Scenario 1—when ϑ ¼ α ¼ π=2, the Hamiltonian

ĤS ¼ Bσ̂z, the jump operator Γ̂ ¼ σ̂z, and ½ĤS; Γ̂� ¼ 0
i.e., the system is affected by PC noise. Suppose the initial
state of system is jΦð0Þi ¼ cosðβ=2Þjei þ sinðβ=2Þjgi,
where σ̂zjei ¼ jei and σ̂zjgi ¼ −jgi. Let β and B be the
estimated parameters, the QFI for each parameter reads [32]

Fβ½ρ̂ðtÞ� ¼ 1; ð8aÞ

FB½ρ̂ðtÞ� ¼ 4sin2ðβÞe−4γtt2: ð8bÞ

One can see that the PC noise has no effect on the estimation
precision of β but reduces that of B. These results are
consistent with the conclusions presented earlier.
Scenario 2—when ϑ ¼ π=2 and α ≠ kπ=2 ðk∈ZÞ, Γ̂ in

this case signifies NPC noise. Suppose initial state is
jΦð0Þi ¼ jgi, the corresponding Bloch vector is
r⃗ð0Þ ¼ ½0; 0;−1�T, lying on the negative Z axis. In the

noiseless case, one cannot get information ofB from evolved
states because jΦðtÞi ¼ eiBtjgi and FB½ρ̂ðtÞ� ¼ 0. The non-
commutative nature of NPC noise presents challenges in
obtaining analytical expressions for ρ̂ðtÞ and subsequently
QFI.However, at the short-term limit, theBloch vector of the
system can be approximately solved [32], i.e.,

r⃗ðtÞ ¼ ϒnpcðtÞr⃗ð0Þ ¼ −½ϒ13;ϒ23;ϒ33�T; ð9Þ

whereϒnpc represents the affine transformationmatrix of the
Bloch sphere, it signifies unequal contractions along the X,
Y, and Z axes, along with rotations around certain axes.
Consequently, r⃗ðtÞ diverges from the Z axis, acquiring
quantum coherence and encoding effective information
about B. The matrix elements ϒ13 and ϒ23 contain param-
eter B, leading to FB½ρ̂ðtÞ� ≠ 0. This indicates that the NPC
noise can boost quantum metrology. Furthermore, the
presence of nonzero ϒ13 and ϒ23 indicates that the NPC
noise imparts quantum coherence. This arises from the fact
that the correlation between the decay channels through σ̂x
and σ̂z in Γ̂ is established by the dissipation process Γ̂ ρ̂ðtÞΓ̂†.
For PC noise, the affine transformation matrix ϒpc shrinks
the Bloch sphere equally along the X and Y axes and rotates
around the Z axis, making the Bloch vector r⃗ðtÞ always
follow the Z axis without containing effective information
about B. See Supplemental Material for specific forms of
ϒpc andϒnpc [32]. Notice that not all NPC noises can lead to
the above results, e.g., Γ̂ ¼ σ̂x.
We present the variation of FB based on the exact

numerical solution of the master equation in Fig. 1.
Figure 1(a) illustrates that NPC noise significantly enhan-
ces FB, indicating enhanced estimation precision when the
initial state is jΦð0Þi ¼ jgi, and higher decay rates result in
increased maximum value of FB. But due to dissipation, FB
eventually becomes zero over time. Interestingly, we
observe that as the decay rate γ increases, the value of
FB derived from the initial state jΦð0Þi ¼ jgi temporarily
surpasses the value achieved with the noise-free optimal
state jΦð0Þi ¼ ðjgi þ jeiÞ= ffiffiffi

2
p

over a specific duration.
This suggests a potential metrological advantage of non-
optimal states in practical noisy environments. From
Fig. 1(b), we can see that the optimal coupling angle
αoptl for the NPC noise-enhanced sensing precision is π=4
or 3π=4. This is because when α ¼ kπ=4 (k is an odd
number), the weights of σ̂x and σ̂z in the jump operator Γ̂
are the same, maximizing the correlation between the two
dissipation channels [32]. In addition, Fig. 1(b) exhibits
symmetry with respect to α ¼ π=2, stemming from the fact
that substituting α with π − α leaves the master Eq. (7)
unaffected.
Scenario 3—Now, we consider the angle ϑ representing

the direction of the magnetic field as the parameter to be
estimated. We rewrite the Hamiltonian of system to
ĤS ¼ R⃗ · J⃗, where R⃗ ¼ ½2B cosðϑÞ; 0; 2B sinðϑÞ� and
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J⃗ ¼ ½σ̂x=2; 0; σ̂z=2�. Utilizing the method developed by
Wang et al. [40], the corresponding maximum QFI is
given by

Fmax
ϑ ðtÞ ¼

�
djR⃗j
dϑ

e⃗R

�2

t2 þ 4

�
de⃗R
dϑ

�
2

sin2
�jR⃗j

2
t

�
; ð10Þ

where jR⃗j and e⃗R are the magnitude and unit vector of R⃗,
respectively.
Since the magnitude of R⃗ is independent of ϑ, the

maximum noiseless QFI regarding ϑ expressed as Fϑ ¼
4 sin2 ðBtÞ which reaches the ultimate value of 4 at the
optimal encoding time toptl ¼ ðπ=2þ kπÞ=B.
The primary effect of NPC noise on the QFI can also be

demonstrated within this model by utilizing the reaction-
coordinate polaron transform to introduce an effective
Hamiltonian Ĥeff

S ¼ R⃗0 · J⃗ [32]. This Hamiltonian accu-
rately captures the dominant dynamics of the system within
the open environment. We observe that unlike R⃗, both the
magnitude and direction of R⃗0 vary with ϑ. Especially, the
change in its magnitude leads to an accelerated increase in
Fmax
ϑ with a factor of t2, far surpassing the sin2ðBtÞ factor

derived from directional changes, indicating a potential to
exceed a maximum of noiseless QFI.
Figure 2(a) shows the numerical simulation of Fϑ

evolving over time with noise based on the exact quantum
master equation, exceeding 4 for a specific duration. This
verifies our theory that NPC noise can enhance the non-
Hermitian sensor’s precision in measuring magnetic
field direction beyond its Hermitian counterpart’s limit.
Figure 2(b) presents a 3D plot depicting the maximum QFI
MaxfFϑg as a function of both noise coupling angle α and
initial state parameter β in the noisy environment. These
maximums represent the peaks throughout time evolution
under given initial states, rather than the maximum QFI

Fmax
ϑ ðtÞ given in the optimal initial state. The plot suggests

that if there is a substantial difference between α and ϑ,
surpassing the precision limit is impossible, regardless of
the chosen initial state. In contrast, when α is very close to
ϑ, it becomes more feasible to surpass the precision limit
by selecting an appropriate initial state. However, this
comes at the expense of requiring a longer encoding time.
Fortunately, the open system takes a considerable time to
decay to a steady state in this case, thereby affording an
extended window for encoding [32]. But for the special
case of α ¼ ϑ, indicating the transition from NPC to PC
noise, the highest precision limit set by coherent dynamics
cannot be exceeded.
Multiparticle scenario—The results obtained in the

previous section should also hold for collective systems
composed of N particles, as Eq. (1) is universal and does
not confine the analysis to a specific model. To verify this,
we simulated the corresponding N-particle master equation
and computed the QFI [32], assuming no direct coupling
between particles for generality. Figure 3 plots the variation
of Fϑ with γt for different coupling angles α, where the
initial state of the system is jΦtotð0Þi ¼ ½ðjei þ jgiÞ= ffiffiffi

2
p �⊗N

(For entangled initial states, see Supplemental Material for
similar results.). We observe that for particle number
N ¼ 2, 3, 4, as long as the coupling angle α is chosen
appropriately, and with the aid of NPC noise, the estimation
precision consistently exceeds the ultimate precision limit
set by the optimal initial state (entangled state) in the
absence of noise. However, it is worth noting that as N
increases, surpassing this limit through the introduction of
NPC noise becomes progressively more challenging. This
is because the selection of the coupling angle α becomes
more stringent (manifested as α needing to be closer to ϑ),
and the encoding time also becomes longer (see the sky
blue numbers), posing significant challenges for practical
experimental realization. Notice that, in the absence of
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FIG. 1. (a) FB versus encoding time t with various decay rates,
where α ¼ π=4 and B ¼ 0.1 (used as a scale). The purple circle
line corresponds to the initial state jΦð0Þi ¼ ðjgi þ jeiÞ= ffiffiffi

2
p

,
while the others correspond to jΦð0Þi ¼ jgi. (b) The density plot
of FB versus α and γt.

FIG. 2. (a) Fϑ (red solid line) versus encoding time t in the
presence of noise, where the magnetic field direction ϑ ¼ π=3,
the noise coupling angle α ¼ π=4, β ¼ π=3, γ ¼ 0.03, and B ¼
0.1 (used as a scale). The blue dashed line denotes the noise-free
maximum of Fϑ. (b) The maximum QFI MaxfFϑg as a function
of α and β, where the magnetic field direction ϑ ¼ π=4, the noise-
free maximum QFI equals 4, and other parameters are the same as
(a). The orange curve corresponds to α ¼ ϑ.
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NPC noise, the maximum value of Fϑ in an N-particle
system is 4N2 (see the pink dashed lines). This implies that
the precision limit can reach the Heisenberg scale in terms
of particle number. Although NPC noise cannot break this
scale, it can, in principle, make the Fϑ value exceed 4N2.
Discussion and summary—More recently, a study

reported that non-Hermitian sensors do not outperform
their Hermitian counterparts in the performance of sensi-
tivity [44]. The authors derived an upper bound of channel
QFI, i.e., FðcÞ

λ ðtÞ ≤ �R
t
0 k∂ĤλðsÞ=∂λkds

�
2 ¼ FUB

λ , where
ĤλðtÞ is the parameter-dependent Hamiltonian of the

system, and FðcÞ
λ ðtÞ is the maximum QFI achievable by

optimizing the initial state. We point out that the equality
sign in the above inequality can be achieved when the
estimated parameter is the overall factor of the Hamiltonian

[32], e.g., ĤB ¼ Bσ̂z ⇒ FðcÞ
B ðtÞ ¼ FUB

B ¼ 4t2. However,
the estimated parameter is not always an overall multipli-
cative factor of the Hamiltonian, e.g., Ĥϑ ¼ B½cosðϑÞσ̂xþ
sinðϑÞσ̂z�. In this case, FðcÞ

ϑ ðtÞ ¼ 4 sin2 ðBtÞ, well below the
up bound FUB

ϑ ¼ 4B2t2 for t ≫ 1. Our study suggests that
appropriate NPC noise can bridge this gap and enhance the
precision limit, without violating the inequality.
In summary, we found that NPC noise can enhance

quantum metrology due to the noncommutative nature
between coherent and dissipative dynamics. Remarkably,
the QFI attained through dynamics influenced by NPC
noise can surpass the ultimate limit set solely by coherent
dynamics. This suggests that the sensing precision of a non-
Hermitian sensor with NPC noise can potentially outper-
form its Hermitian counterpart. Utilizing a general series

solution analysis of the master equation, we establish the
universality of our findings and demonstrate a specific
instance of noise-enhanced magnetic-field quantum met-
rology. Furthermore, this approach provides valuable
insights for enhancing other quantum technologies that
are constrained by environmental noise.
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