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We apply a topological material design concept for selecting a bulk topology of 3D crystals by different
van der Waals stackings of 2D topological insulator layers, and find a bismuth halide Bi4Br2I2 to be an ideal
weak topological insulator (WTI) with the largest band gap (∼300 meV) among all the WTI candidates, by
means of angle-resolved photoemission spectroscopy (ARPES), density functional theory (DFT)
calculations, and resistivity measurements. Furthermore, we reveal that the topological surface state of
a WTI is not “weak” but rather robust against external perturbations against the initial theoretical prediction
by performing potassium deposition experiments. Our results vastly expand future opportunities for
fundamental research and device applications with a robust WTI.
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Highly directional spin currents flow along side surfaces
of crystals in a weak topological insulator [1,2]. The
topological spin currents would be more robust against
impurity scattering than those in a strong topological
insulator (STI) that prohibits only perfect backscattering
[3,4]. This is supported by experiments showing that the
carrier lifetime of a one-dimensional topological edge state
could be even two orders longer than that of STIs [4].
WTIs, thus, could be even more advantageous than STIs for
various applications. In contrast to STIs, however, the
materials hosting WTI states are very scarce [5–14]. In
addition, the WTIs established so far have a band gap
relatively smaller than those of STIs reaching up to
∼300–350 meV [15]. It may make the WTI states fragile
against excitations and difficult to extract without being
masked by the nontrivial bulk contributions. Therefore, the

discovery of a WTI with a large band gap has been awaited
in materials science.
A difficulty in searching for WTIs comes from their

property that the topological surface state (TSS) resides only
on the side surface of crystals that are usually not cleavable,
preventing the verification of their bulk band topology.
Another difficulty is finding an insulator, not a semimetal,
hosting a WTI state. This is a required condition to utilize
TSSs for research and application without contamination of
trivial bulk conductivity. So far, only four compounds have
been proposed asWTIs via experiments: Bi14Rh3I9, β-Bi4I4,
ZrTe5, and HfTe5 [6,10–12]. Bi14Rh3I9 has a relatively
large band gap (∼200 meV), whereas the other three have
small ones (∼100, ∼30, and ∼50 meV each). Bi14Rh3I9 is a
promising candidate for a WTI with a large gap. However,
the side surface of this compound is not cleavable, prevent-
ing the direct observation of the topological surface band
required for the identification of a WTI.
Recently, quasi-one-dimensional (quasi-1D) bismuth hal-

ides Bi4X4 (X ¼ Br, I) have attracted much attention as a
versatile platform to realize various topological phases
[9,12,13,16–36]. These compounds can be regarded as the
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stacking of two-dimensional TIs (2D TIs) [16], and
several types of stacking structures realizing different bulk
topologies have been proposed. The crystals built from
chains can be easily cleaved by Scotch tape along both top
and side surfaces, allowing one to observe topological
boundary states.
So far, three types of crystal structures (α-Bi4I4, β-Bi4I4,

and Bi4Br4) have been investigated by theory and experi-
ments [Fig. 1(a)], and each has been experimentally
identified as a normal insulator (NI), a WTI, and a
higher-order topological insulator (HOTI). The band gap
of the WTI (β-Bi4I4) is, however, rather small (∼100 meV
[12]), compared to that of Bi14Rh3I9 (∼200 meV). In this
Letter, we find the trilayer Bi4Br2I2 to be a weak topo-
logical insulator with the largest band gap of ∼300 meV
among all WTIs. We furthermore demonstrate that the
topological surface state of a WTI is robust against external

perturbation by the potassium deposition experiments,
similarly to the case of a STI.
Theoretically, the monolayer Bi4Br4 has a larger band

gap than the monolayer Bi4I4 [16]. The band gap of the
layer-stacked 3D crystal could also be enlarged by sub-
stituting I for Br in Bi4I4. The Bi4Br4 crystal, indeed, shows
a large band gap (∼300 meV) [27]. It is, however, double
layered with the AB stacking, which hosts a HOTI, not a
WTI. Bi4Br4 built from a single-layered A stacking has
been theoretically suggested as a WTI [9]. Nevertheless,
such crystals are not stable and cannot be synthesized. One
needs an alternative structure realizing a WTI that can be
synthesized and still take advantage of Bi4Br4 layers with a
large band gap.
We find Bi4Br2I2 with AA0B stacking to fulfill such a

condition [Figs. 1(b)–1(d)] [37,38]. This structure can be
viewed as an alternative stacking of AA0 layers and a B

FIG. 1. Topological material design concept. (a) Topological phases selected by different van der Waals stackings of Bi4X4 (X ¼ Br, I)
chains. A NI, a WTI, and a HOTI have been experimentally validated in A stacking (α-Bi4I4), AA0 stacking (β-Bi4I4), and AB stacking
(Bi4Br4), respectively. (b) The trilayer Bi4Br2I2 built from AA0B stacking. Topological spin currents and the annihilated ones are
expressed by densely and lightly painted circles. (c) Photograph of a Bi4Br2I2 crystal. The scale bar is 1 mm. (d) Scanning electron
microscope (SEM) image of a cleaved surface. (e) The resistivity of Bi4Br2I2, compared with other related compounds. (f) Brillouin
zone (BZ) for the bulk and projected surfaces of AA0B-stacked Bi4X4. (g) Bulk band calculations of Bi4Br2I2 with and without SOC.
The red and blue circles indicate even and odd parities, respectively. (h),(i) Calculated surface spectral weights for the top plane (001)
and the side plane ð100Þ0, respectively.
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layer mutually flipped by 180 degrees. Since the AA0 layers
should behave as normal insulators, as in α-Bi4I4, the
AA0B-stacked structure can be viewed as 2D TI layers (B
layers) alternatively stacked with insulator blocks (AA0
layers). In the band structure [Fig. 1(g)], only a single parity
inversion becomes effective when all the trilayer-split
bands are inverted by strong spin-orbit interaction.
Surface calculations [Figs. 1(h) and 1(i)] indeed predict
a topological Dirac dispersion to emerge only on the side
surface.
The resistivities [Fig. 1(e)] along chains provide two

implications. (1) The resistivity of Bi4Br2I2 shows an
insulating behavior around room temperature. The

magnitude comes to between those of Bi4Br4 and Bi4I4,
indicating that the bulk gap of Bi4Br2I2 is smaller than that
of Bi4Br4 (a HOTI) but larger than α- and β-Bi4I4 (a normal
insulator and a WTI, respectively). (2) The resistivity of
Bi4Br2I2 decreases upon cooling below ∼150 K and turns
metallic at low temperatures. The metallic resistivity is
much smaller than the low-temperature resistivity of Bi4Br4
(a HOTI) and comparable to (smaller, but only slightly
than) that of β-Bi4I4. These results imply that Bi4Br2I2 is in
a topological phase with a large insulating band gap in bulk
and massive currents on the surface. Nevertheless, direct
observation of the bulk band structure and the topological
surface state by ARPES is required to decisively reach this
conclusion.
The synchrotron-based ARPES measurements were

performed on the ab planes. Typically, the surface is
composed of relatively large terraces, larger than the light
spot (∼50 μm), together with a bunch of small steps.
ARPES intensity maps along the ab plane at the Fermi
level (EF) [Fig. 2(a1)] show islandlike weak intensities at
M̄. Anisotropic features with parallel segments are clarified
at higher binding energies [Fig. 2(a2)]. The quasi-1D
feature is further confirmed [Figs. 2(b1) and 2(b2)] in

FIG. 2. Synchrotron-ARPES data showing the bulk band. (a1),
(a2) ARPES maps along ky-kx at E − EF ¼ 0 and −0.5 eV,
respectively (hν ¼ 100 eV). (b1),(b2) ARPES maps along ky-kz
at E − EF ¼ 0 and −0.5 eV, respectively. Bulk band dispersions
along the M̄-Γ̄-M̄ cut (c) and across Γ̄ and M̄ (d1),(d2)
(hν ¼ 100 eV). (e) Energy distribution curve (EDC) at M̄
extracted from (d2). The black arrow indicates the valence band
top. The sample temperature was 20 K.

FIG. 3. Laser-ARPES data showing the bulk and surface bands.
(a) Photograph of a cleavage surface. The scale bar is 100 μm.
The white circle denotes the position observed by ARPES.
(b) ARPES map along ky-kx at EF. (c) Band map across Γ̄
(bottom) and momentum distribution curves (MDCs) (top) for
two different binding energies (dashed line in the map). Blue
dotted lines are doubled Lorentzian curves. (d) Band map across
M̄ (bottom), MDC (top), and EDC at M̄ (right). The arrow
indicates the valence band top. The sample temperature was 30 K.
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the map of the kz direction (or the AA0B-stacking direction)
obtained by changing photon energy.
The bulk valence band is found to disperse in energy by

∼270 meV along M̄-Γ̄-M̄ [Fig. 2(c)]. This is similar to that
of Bi4I4 (∼260 meV) and smaller than that of Bi4Br4
(∼350 meV) [12,27]. The energy distribution curve (EDC)
at M̄ [Fig. 2(e)] indicates that the top of the bulk valence
band is deep below EF (marked by an arrow), whereas the
bulk conduction band is located above EF, exhibiting a
spectral tail.
We also used laser-based ARPES with high energy and

momentum resolutions. To detect the signals of the side
surface where TSSs are expected to exist, we illuminate a
laser with a 50 μm spot onto a surface portion with many
steps [a circle in Fig. 3(a)] with both the (001) top and
ð100Þ0 side planes. Importantly, we observe a quasi-1D
structure [Fig. 3(b)] which forms a Dirac-like dispersion
[Figs. 3(c) and 3(d)] inside the bulk band gap that is spin
polarized (Supplemental Fig. S3 [38]). It should, therefore,
be attributed to a TSS. The gap magnitude at M̄, where the
bulk band gap becomes minimal, is estimated to be
∼230 meV [right panel of Fig. 3(d)]. We should note,
however, that this gap value is only the lower limit since the
valence band is situated above EF.
We employed nano-ARPES with a focused photon beam

less than 1 μm in spot size for cleaved crystals along the bc
and ab surfaces to independently observe the (001) and
ð100Þ0 planes. Figure 4(b) shows the real-space intensity
map of the Bi 5d core level for the side bc plane. The Fermi
surface map [Fig. 4(c)] shows a quasi-1D feature along kz

over many Brillouin zones. The energy dispersions
[Fig. 4(d)] exhibit metallic in-gap states with almost no
variation between the zone center and corner [red and green
lines in Fig. 4(c), respectively]. In contrast, the ARPES
dispersions [Fig. 4(i)] for the top ab-plane capture the
bulk valence band with a clear difference between the
zone center and corner [red and green lines in Fig. 4(h)].
These are consistent with the theoretical prediction
[Figs. 4(e) and 4(j)].
The larger band gap makes the topological property

robust against thermal fluctuations. Nevertheless, the
robustness of the WTI phase itself is still controversial.
Initially, the topological surface state of aWTIwas predicted
to be destroyed by disorders, so a WTI was thought of as
being literally “weak” in contrast to a strong TI [1,2]. Later,
however, theoretical studies pointed out that the surface
states of aWTImay not be so fragile due to the protection by
time-reversal symmetry [56–58]. However, it has not been
tested by experiments to the best of our knowledge. We thus
performed the potassium deposition experiments, which
apply a strong perturbation by putting impurities and adding
a potential gradient on the crystal surface.
For that, we prepared new crystals (see Supplemental

Material [38]) with an optimized ratio between Br and I to
make it closer to 1∶1 in the grown crystals. Importantly, we
succeeded in increasing the balk band gap up to ∼300 meV
[Fig. 5(a)], which is the largest among all WTI materials.
We also confirmed the topological Dirac dispersion for the
side surface of a crystal [Fig. 5(b)].
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Next, we deposited potassium on the same surface
[Fig. 5(c)]. Similarly to the case of Bi2Se3 [59,60], the
Dirac point is shifted to higher binding energies due to the
electron doping and an electronlike band appears below EF
likely due to a quantum well state. Most importantly, the
topological Dirac dispersion survives under severe external
perturbations (impurity scattering and potential gradient) on
the surface, verifying the WTI state is robust, similar to a
STI state.
In conclusion, we investigated a trilayer bismuth halide

Bi4Br2I2, based on the topological material design.
Bi4Br2I2 was identified as the most robust WTI with the
largest band gap (∼300 meV) among the existing WTIs.
The gap size is even comparable to that of Bi2Se3, which is
the largest among strong TIs. Very importantly, Bi4Br2I2
with the top and side planes both naturally cleavable has
advantages overcoming Bi14Rh3I9 with the second largest
bulk gap (∼200 meV) mainly in two ways. One is that the
topological state was identified via direct observation of the
topological surface band. Second is that the exfoliation
technique can be employed to prepare 1D flakes with spin
currents. Furthermore, potassium deposition experiments
ensure the robustness of the WTI phase. Bi4Br2I2, there-
fore, has a huge potential, even exceeding that of STIs, for
future research and device applications.
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