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The existence of gapped boundaries of bosonic topological orders can be tested in terms of the vanishing
of higher central charges, which can be easily computed in terms of the modular data. For fermionic
topological orders, even the chiral central charge admits no simple expression in terms of the modular data.
Using the congruence property of representations formed by the modular data, we develop a method that
tests whether the higher central charges of a fermionic topological order, including the chiral central charge,
vanish. The test can be carried out entirely in terms of the modular data of the super-modular tensor
category describing the fermionic topological order, and does not require explicit computation of modular
extensions. This leads to a stringent set of easily computable necessary conditions for a fermionic
topological order to admit a gapped boundary. We apply our test to known examples of fermionic
topological orders to determine which of them potentially admit a gapped boundary.
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At itsmost basic level, bulk-boundary correspondence for
2D topological orders controls the gappability of its boun-
dary. The bulk hosts anyonic excitations whose braiding and
fusion properties are described mathematically by modular
tensor categories (MTCs) and their S and T matrices
(collectively called the “modular data”) [1–4], and only
some MTCs are consistent with a gapped boundary.
For bosonic topological orders, gapped boundaries are

now well understood. The boundary is gappable if and only
if the bulk hosts a set of anyons that can simultaneously be
condensed to yield the trivial vacuum—mathematically,
these anyons form a Lagrangian algebra [5–9]. In practice,
it is advantageous to compute simple quantities that
obstruct the existence of a gapped boundary. The best
known is the chiral central charge c (which determines the
thermal Hall conductance), whose value modulo 8 is
computed from the bulk data using the Gauss-Milgram
formula

e2πic=8 ¼ 1

D

X
a

d2aθa: ð1Þ

Here, the index a runs over anyon types, and da and
θa are respectively quantum dimensions and topological
spins of the anyons, and D is the total quantum dimension
of the MTC. The boundary cannot be gapped unless c
vanishes.
There are additional obstructions called higher central

charges that are also easily computed in terms of the bulk
data as [10–12]

ξn ¼
P

ad
2
aθ

n
a

jPad
2
aθ

n
aj
: ð2Þ

For the topological order to admit a gapped boundary, we
need ξn ¼ 1 for each n coprime to NFS (called the
“Frobenius-Schur exponent”), which is defined as the order
of the T matrix [13]. We will say that a higher central
charge ξn vanishes if ξn ¼ 1. While the vanishing of higher
central charges is only a necessary condition, it is a very
stringent one, ruling out many topological orders (even
with c ¼ 0 mod 8) from admitting a gapped boundary in
practice.
For fermionic topological orders, which contain a

fundamental fermion as an excitation such that the bulk
data is described by a super-modular tensor category
(super-MTC) [16,17], no analogous efficient method to
determine the gappability of its boundary had been known.
Even the Gauss-Milgram formula has no straightforward
fermionic analog, because the S matrix of a super-MTC is
degenerate. The chiral central charge of a super-MTC is
well-defined modulo 1

2
in principle, but it is defined by

reference tomodular extensions: regular MTCs that contain
the super-MTC as a subcategory [16,18,19], which may
physically be thought of as the bosonized theories [20–22].
For a given unitary super-MTC B, there are 16 distinct
unitary modular extensions [19,28]. Each modular exten-
sion has well-defined c mod 8 via Eq. (1), and the 16
modular extensions have equivalent c mod 1

2
, which we

define as the chiral central charge of B. The computation of
modular extensions, however, is highly nontrivial in gen-
eral (though see Ref. [29] for explicit computations in
low rank).*Contact author: miyou849@gmail.com
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The first result of the present Letter is a method to
determine whether c ¼ 0 mod 1

2
intrinsically in terms of the

super-MTC data, without explicit computation of modular
extensions. This makes our test completely tractable and
algorithmic.
As in the bosonic case, even if a super-MTC has c ¼ 0

mod 1
2
, it is not necessarily compatible with a gapped

boundary. By analogy to the bosonic case, we say that a
fermionic topological order admits a gapped boundary if it
admits a condensation to the trivial fermionic topological
order [30]. Mathematically, this means the bulk super-MTC
has to belong to the trivial super-Witt class [10,23,31,32].
Concretely, this means a given super-MTC B is compatible
with a gapped boundary if and only if it has a modular
extension B̆ that admits a gapped boundary in the bosonic
sense. Such a B̆ needs c ¼ 0 mod 8, which in turn requires
that B has c ¼ 0 mod 1

2
. However, there are additional

necessary conditions coming from the higher central
charges of B̆.
The second result of this Letter expresses the condition

that all higher central charges of B̆ vanish purely in terms of
the modular data of B. This leads to a stringent set of
necessary conditions for B to admit a gapped boundary.
Main result—We state our main result in the form of two

theorems, which together provide a stringent set of easily
computable necessary conditions for a given super-MTC to
admit a gapped boundary.
First, note that the modular data of a super-MTC always

admit the following tensor decomposition [17]:

S ¼ 1

2

�
1 1

1 1

�
⊗ Ŝ; T ¼

�
1 0

0 −1

�
⊗ T̂: ð3Þ

While S is degenerate and there is no canonical choice of T̂,
Ŝ is unitary and T̂2 is well-defined. We will refer to ðŜ; T̂2Þ
as the modular data of a super-MTC.
For a given super-MTC with modular data ðŜ; T̂2Þ,

define the following quantities. First,

TInd ≔

0
B@

0 T̂2 0

1 0 0

0 0 ðŜT̂2Þ−1

1
CA: ð4Þ

Second, Nc (called the “level candidate”), the smallest
positive integer such that every eigenvalue λi of TInd

satisfies λNc
i ¼ 1.

Third,

ĤðnÞ ≔ Ŝ2T̂n2−nŜT̂−ðn̄−1ÞŜðT̂2ŜÞn−1 ð5Þ

for each n∈Z×
Nc
, the multiplicative group of integers

modulo Nc. n̄ denotes the modular inverse of n, i.e., an
element of Z×

Nc
such that nn̄≡ 1 (mod Nc).

Theorem 1—A super-MTC with modular data ðŜ; T̂2Þ
has c ¼ 0 mod 1

2
if and only if the set of equations

T̂N ¼ 1

Ŝ2 ¼ Ĥð−1Þ
Ĥðn1ÞĤðn2Þ ¼ Ĥðn1n2Þ

Ŝ ĤðnÞ ¼ Ĥðn̄ÞŜ ð6Þ

are satisfied for each n; n1; n2 ∈Z×
Nc
. (The first equation is

well-defined since Nc is even).
Theorem 2—A super-MTC with modular data ðŜ; T̂2Þ

such that c ¼ 0 mod 1
2
admits a gapped boundary only if

X
a

ĤðnÞ1a ¼ þ1 ð7Þ

for all n∈Z×
Nc
.

Here, the index 1 denotes the vacuum component. ĤðnÞ
is always a signed permutation matrix, so

P
a ĤðnÞ1a

simply picks out the single nonzero entry of the first
row of ĤðnÞ.
The two theorems imply that, given ðŜ; T̂2Þ of a super-

MTC, we can test whether they are compatible with a
gapped boundary by simply computing Nc and all ĤðnÞ,
and seeing whether Eqs. (6) and (7) are satisfied. This
process is completely algorithmic.
In the rest of the Letter, we will prove these two theorems

using the representation-theoretic structure of the modular
data of super-MTCs and their modular extensions, and then
discuss examples.
Representation theory and the chiral central charge—

The key idea for proving Theorem 1 comes from observing
that the chiral central charge can be thought of as an
obstruction for the modular data forming a linear repre-
sentation. First, consider the bosonic case. It is well-known
that the modular data ðS; TÞ form a projective representa-
tion ρ [called the “modular representation” of the modular
group SL2ðZÞ]. SL2ðZÞ is generated by

s ¼
�
0 −1
1 0

�
; t ¼

�
1 1

0 1

�
: ð8Þ

These generators satisfy the relation (among others)

ðstÞ3 ¼ s2: ð9Þ

The representation ρ can be specified by the representation
matrices for the two generators

S ¼ ρðsÞ; T ¼ ρðtÞ: ð10Þ

Hence, we will often refer to the pair of generating matrices
as a representation. The representation ðS; TÞ is only
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projective in general, i.e., it only satisfies the relation up to
a phase, and this depends on the chiral central charge c,

ðSTÞ3 ¼ e2πic=8S2: ð11Þ

The representation ρ generated by ðS; TÞ is linear if and
only if c ¼ 0 mod 8; hence, we can determine whether
c ¼ 0 mod 8 by testing whether ðS; TÞ forms a linear
representation. We also note that the representation given
by

SCFT ¼ S; TCFT ¼ e−2πic=24T ð12Þ

is linear, for any c consistent with the value of c mod 8
determined from Eq. (11) [33,34].
In the fermionic case, the modular data ðŜ; T̂2Þ forms a

projective representation ρ̂ of Γθ, the subgroup of SL2ðZÞ
generated by s and t2 [17]. Γθ has no relation like Eq. (9);
thus, we cannot use Eq. (11) to determine its chiral central
charge.
The modular representation ρ, however, satisfies more

relations. The modular representation is in fact a congru-
ence representation of SL2ðZÞ [35], which means the
kernel of ρ contains ΓðNÞ (for some positive integer N),
the principal congruence subgroup of level N of SL2ðZÞ,
defined as

ΓðNÞ ¼
��

a b

c d

�
∈SL2ðZÞ

����
�
a b

c d

�

≡
�
1 0

0 1

�
mod N

�
: ð13Þ

The smallest N for which ker ρ ≥ ΓðNÞ is satisfied is called
the level of ρ, and N is equal to NFS, the order of T ≔ ρðtÞ.
[33,35]. Equivalently, congruence representations can be
defined as those representations of SL2ðZÞ that can also be
thought of as representations of SL2ðZÞ=ΓðNÞ ≃ SL2ðZNÞ.
The modular Γθ-representation ρ̂ of a super-MTC is also

congruence [36], and hence satisfies a large number of
additional relations. Explicitly, these relations can be
written in terms of ĤðnÞ ≔ ρ̂

�
n
0
0
n̄

�
[equivalent to

Eq. (5)], as Eq. (6), where N replaces Nc [14,37]. The
main idea, then, is to use these relations as a test of c ¼ 0

mod 1
2
of a given super-MTC: these relations will be

satisfied exactly if ρ̂ is linear, but only up to a phase if
ρ̂ is projective.
Unlike in the bosonic case, however, the level N of ρ̂

cannot be fixed from the order of T̂2 alone. Since the
relations Eq. (6) depend on N, we need a way to determine
the candidate level Nc for which we will test Eq. (6).
Induced representations and the level—Given a super-

MTC B with modular data ðŜ; T̂2Þ, the modular extension B̆
has modular representation that, in an appropriate basis,
takes the block-diagonal form [17,36]

ρðsÞ ¼

0
BBBBB@

Ŝ 0 0 0

0 0 2A
ffiffiffi
2

p
X

0 2AT 0 0

0
ffiffiffi
2

p
XT 0 0

1
CCCCCA

⊕ B;

ρðtÞ ¼

0
BBBBB@

0 T̂ 0 0

T̂ 0 0 0

0 0 T̂v 0

0 0 0 Tσ

1
CCCCCA

⊕ T̂v: ð14Þ

The first block, which we denote by ρþ, itself takes the
block form

ρþðsÞ¼

0
BB@
Ŝ 0 0

0 0 C

0 CT 0

1
CCA; ρþðtÞ¼

0
BB@

0 T̂ 0

T̂ 0 0

0 0 TR-NS

1
CCA; ð15Þ

where C ¼ �
2A

ffiffiffi
2

p
X
�

and TR-NS ¼


T̂v
0

0
Tσ

�
are square

matrices with the same dimension as Ŝ and T̂. After
restricting to Γθ this is further reducible and has ðŜ; T̂2Þ
in the first block.
When B̆ has c ¼ 0 mod 8, the modular representation ρ

is a linear representation of SL2ðZÞ, and hence ρþ is also
linear. Thus, the Γθ-representation ρ̂ obtained by restriction
of ρþ is also linear. On the other hand, given a linear Γθ

representation generated by ðŜ; T̂2Þ, we can form a repre-
sentation of SL2ðZÞ induced from it as [14]

ρIndðsÞ ¼

0
BB@

ρ̂ðsÞ 0 0

0 0 ρ̂ðsÞ2
0 1 0

1
CCA;

ρIndðtÞ ¼

0
BB@

0 ρ̂ðtÞ2 0

1 0 0

0 0 ðρ̂ðsÞρ̂ðtÞ2Þ−1

1
CCA: ð16Þ

We now state two lemmas, whose proofs are included as
Appendixes A and B, respectively.
Lemma 1—The induced representation ρInd, Eq. (16), is

isomorphic to ρþ, Eq. (15).
Corollary 1—Given a c ¼ 0 mod 1

2
super-MTC B with

modular data ðŜ; T̂2Þ, the c ¼ 0mod 8 modular extension B̆
has T of order Nc, where Nc is the smallest positive integer
such that every eigenvalue λi of TInd satisfies λNc

i ¼ 1.
Proof—As a consequence of Lemma 1, TInd ≔ ρIndðtÞ

and Tþ ≔ ρþðtÞ have the same set of eigenvalues. T of B̆ is
equivalent to Tdiag

þ ⊕ T̂v where T
diag
þ is the diagonal matrix

consisting of the eigenvalues of Tþ. T̂v simply duplicates a
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part of Tdiag
þ [see Eq. (14)], so the set of distinct eigenvalues

of T and Tþ are the same. Thus, Nc is the order of T. ▪
Lemma 2—The level N of the modular representation ρ̂

of a super-MTC B is equal to the level of ρ, the modular
representation of the c ¼ 0 modular extension B̆.
Now we are ready to prove Theorem 1.
Proof of Theorem 1—If c ¼ 0 mod 1

2
, there exists a

modular extension with c ¼ 0 mod 8. The corresponding
modular representation is linear since c ¼ 0mod 8, and has
level NFS, which, by Corollary 1, is given by Nc, the order
of the eigenvalues of TInd.
By Lemma 2, the level of ρ̂ is equal to the level of ρ,

which is NFS. Thus, ρ̂ is a Γθ-congruence representation of
level NFS ¼ Nc, which means it satisfies Eq. (6).
Conversely, suppose c ≠ 0mod 1

2
. Then, if ðS; TÞ denotes

the modular data of an arbitrary modular extension,
ðS; e−2πic=24TÞ generates a linear representation of
SL2ðZÞ [see Eq. (12)]. According to the proof of
Theorem III.1 of Ref. [14], this restricts to a linear
Γθ-congruence representation

ðŜ; e−2πic=12T̂2Þ: ð17Þ

This differs from the representation formed by the modular
data ðŜ; T̂2Þ by tensor product with a one-dimensional Γθ-
representation χ given by

χðsÞ ¼ 1; χðt2Þ ¼ e−2πic=12: ð18Þ

Hence, ðŜ; T̂2Þ is linear if and only if χ is a linear
congruence representation of Γθ. Linear congruence rep-
resentations can be classified using the method of Ref. [14],
and 1D irreducible representations of the form ð1; e−2πic=12Þ
exist precisely for c ¼ 0 mod 1

2
[38]. So, for c ≠ 0 mod 1

2
,

ðŜ; T̂2Þ is not a linear congruence representation, and hence
does not satisfy the conditions Eq. (6) linearly, for
any level.
Thus, c ¼ 0 mod 1

2
if and only if Eq. (6) is satisfied

for N. ▪
Galois conjugates and higher central charges—Before

moving on to the proof of Theorem 2, we note that an MTC
has “Galois conjugates”, that is, MTCs with different but
related modular data. The higher central charges of a given
MTC C can be computed as the chiral central charge of
Galois conjugate MTCs C0 [11]. In particular, when c ¼ 0
mod 8, a Galois conjugate exists for each n∈Z×

NFS
, and the

Galois conjugate S matrix is given by

S0ðnÞ ¼ HðnÞS; ð19Þ

where

HðnÞ ≔ ρ

�
n 0

0 n̄

�
¼ S2Tn2−nST−ðn̄−1ÞSðT2SÞn−1: ð20Þ

HðnÞ is always a signed permutation matrix [33,39,40].
According to Ref. [11] [Eqs. (83) and (84)], when c ¼ 0

mod 8, the higher central charges ξn can be computed as the
phase of S0ðn̄Þ11,

ξn ¼
S0ðn̄Þ11
jS0ðn̄Þ11j

: ð21Þ

We now state the following lemma (proved in
Appendix C):
Lemma 3—ĤðnÞ is a signed permutation matrix,

and
P

a ĤðnÞ1a ¼
P

a HðnÞ1a.
Proof of Theorem 2—First,

S0ðn̄Þ11 ¼
X
a

Hðn̄Þ1aSa1 ¼
X
a

Hðn̄Þ1a
da
D

: ð22Þ

Note that da and D are real numbers. Assuming that the
MTC we start out with is unitary, so that da > 0, we have,
from Eq. (21),

ξn ¼
X
a

Hðn̄Þ1a; ð23Þ

whose values are �1.
Now, for a super-MTC B with c ¼ 0 mod 1

2
, the ξn of the

c ¼ 0 mod 8 modular extension B̆ obey the above. We can
restrict the SL2ðZÞ representation ρ formed by the modular
data of B̆ to Γθ, after which ρ becomes reducible with ρ̂ as
the first block. Hðn̄Þ survives the restriction, and is thus
block-diagonalizable, with Ĥðn̄Þ as the first block.
By Lemma 3, Ĥðn̄Þ is again a signed permutation matrix,

and the nonzero entry of the first row of Ĥðn̄Þ is equal to the
nonzero entry of the first row of Hðn̄Þ.
Hence, we can compute the higher central charges of the

modular extension ðB̆; 0Þ purely in terms of the modular
data of the super-MTC B as

ξn ¼
X
a

Ĥ1aðn̄Þ: ð24Þ

Since admitting a gapped boundary requires ξn ¼ þ1 for
all n∈Z×

NFS
, and n̄ is in Z×

NFS
if and only if n is, this

completes the proof of Theorem 2. ▪
Examples—Weapply our test to known examples of super-

MTCs. Our test can be implemented easily onMathematica,
for example. We only consider intrinsically fermionic topo-
logical orders (corresponding to nonsplit super-MTCs),
which are not obtained from simply stacking a bosonic
topological order with the trivial fermionic topological order.
Reference [14] classified super-MTCs up to rank 10. There
are many super-MTCs with c ¼ 0 mod 1

2
; however, we find
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that only the following (among unitary super-MTCs) pass the
higher central charge test: (1) PSUð2Þ10 and PSUð2Þ−10
(rank 6) and (2) PSUð2Þ6⊠fPSUð2Þ6 (rank 8). In particular,
the new classes of rank 10 modular data found by Ref. [14],
which were constructed using the Drinfeld center of near-
group fusion categories in Ref. [41], do not admit gapped
boundaries in spite of having c ¼ 0 mod 1

2
.

Reference [16] also lists several super-MTCs of rank 12
and 14. Among these, we test those super-MTCs that are
nonsplit with c ¼ 0 mod 1

2
. For rank 12, one class of

examples come from the fermion condensation of
Uð1Þ8⊠Isingν or similar [42]. These do not have vanishing
ξn. For rank 12, another class of examples come from
fermion condensation of ðB2Þ2⊠Uð1Þ4 or similar. These do
not have vanishing ξn. For rank 14, we have a class of
examples that come from the fermion condensation of
Isingν1⊠Isingν2⊠Isingν3 . These have vanishing ξn.
Moreover, SUð2Þ4kþ2 and SOð4kþ 2Þ2 are known to be

infinite series of spin-MTCs, so their fermion condensa-
tions yield super-MTCs [45]. For SUð2Þ4kþ2, c ≠ 0 mod 1

2

(except for SUð2Þ10, which was considered earlier), so the
existence of a gapped boundary is already obstructed by the
chiral central charge. For SOð4kþ 2Þ2, we check up to
4kþ 2 ¼ 68 (we use Refs. [46,47] to compute the modular
data). we find that only the fermion condensation of
SOð36Þ2 (rank 14) has vanishing higher central charges.
We may ask whether this topological order actually

admits a gapped boundary. This super-MTC, contains three
bosonic simple objects, denoted by X0; X2λ1 ; Xγ12 (we use
the notation of Ref. [47]), with quantum dimensions 1,1,
and 2, respectively. There are also three simple objects with
θa ¼ −1, which comes from fusing the above objects with
the fermion X2λ17 . We can form the NS-sector Lagrangian
algebra object

LNS ¼ X0 ⊕ Xλ1 ⊕ X2λ17 ⊕ X2λ18 ⊕ 2Xγ6 ⊕ 2Xγ12 ð25Þ

(see the Supplemental Material [23] or Ref. [48] for an
explanation of fermionic Lagrangian algebras). If we write
this as LNS ¼ ⨁a∈ObjðBÞZaa, the coefficient vector Za is

invariant under Ŝ and T̂2 of B, which provides strong
evidence that this forms a gapped boundary.
In addition, for cases where the explicit modular exten-

sion data is available (e.g., via Ref. [29]), we verify that
higher central charge computed via our method from
ðŜ; T̂2Þ agrees with the higher central charges computed
from the c ¼ 0 modular extension via the bosonic for-
mula Eq. (2).
Discussion—In this Letter, we have developed a method

that tests whether the bulk data of a given fermionic
topological order is compatible with a gapped boundary.
For a given bulk data, expressed as the modular data ðŜ; T̂2Þ
of a super-MTC, we test (1) whether the chiral central
charge c ¼ 0 mod 1

2
and, (2) if so, whether the higher

central charges of the modular extension vanish. We have
applied our test to known examples of super-MTCs, and
found that most of them are ruled out from admitting a
gapped boundary.
Expressions similar to the higher central charge [Eq. (2)]

have been previously used for super-MTCs to investigate
properties of fermionic topological orders, such as the
gappability of the boundary in the presence of Uð1Þ
symmetry [48] and the detection time-reversal invariance
[49]. However, the present Letter addresses the long-
standing question regarding the constraints on the chiral
central charge and gappability of the boundary for general
super-MTCs, representing the first practical step toward a
fermionic generalization of the Gauss-Milgram formula
[Eq. (1)]. This method has relied crucially on the con-
gruence property of the representations formed by the
modular data. A deeper investigation of the congruence
representation conditions may lead to an algorithm that
determines c mod 1

2
even when it is nonzero.

We note that an anomaly indicator-type formula that
computes the chiral central charge mod 1

2
from the super-

MTC data should in principle exist: it comes from the K3
partition function of the 4D spin-Crane-Yetter topological
quantum field theory built from the super-MTC. In prac-
tice, however, this partition function is difficult to compute
and the formula is unknown [50]. Our test, on the other
hand, is highly practical.
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Appendix A: Proof of Lemma 1 [51]—The proof
relies on Frobenius reciprocity between restriction and
induction of representations. We refer to Ref. [14] for an
exposition of restriction and induction of representations,
as well as Frobenius reciprocity, in the context of
SL2ðZÞ and its index-3 subgroup Γθ.
Consider ρþ from Eq. (15). ρþ satisfies two crucial

properties: (1) ρþ takes a block form, where it acts on three
subspaces V1, V2, V3 by mapping among them in a

particular way, and (2) if we restrict this to Γθ, the first
block becomes decomposable and gives us exactly ρ̂.
If ρþ is irreducible, then Frobenius reciprocity tells us

immediately that it must be the induced representation of ρ̂,
and hence isomorphic to ρInd.
If instead ρI is a direct sum ⨁iðρþÞi of irreducible

representation ðρþÞi, each of the summands ðρþÞi also has
to map among the three subspaces, and hence are of
dimension 3ki, ki ∈N. If we restrict to Γθ, ρþjΓθ

and hence
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each ðρþÞijΓθ
leaves the first subspace V1 invariant. Each of

ðρþÞijΓθ
then contributes a ki-dimensional Γθ-representa-

tion ρ̂i to the Γθ-representation ρ̂ which acts on V1.
Each ρ̂i has to be an irreducible representation because,

by a straightforward application of Frobenius reciprocity,
the restriction of a G-representation R to H can only
contain H irreducible representation of dimension greater
than or equal to f1=½G∶H�g dimR; in our case the index is
½SL2ðZÞ∶Γθ� ¼ 3). Hence,

ρ̂ ¼ ⨁
i
ρ̂i: ðA1Þ

Now, since each ρ̂i and ðρþÞi are irreducible representa-
tions, we get Indρ̂i ¼ ðρþÞi by Frobenius reciprocity. Then,

Indρ̂ ¼ ⨁
i
Indρ̂i ¼ ⨁

i
ðρþÞi ¼ ρþ; ðA2Þ

which shows that ρþ is indeed the induced representation of
ρ̂, and hence isomorphic to ρInd. ▪

Appendix B: Proof of Lemma 2—Note that the modu-
lar data ðS; TÞ of ðB̆; 0Þ form a linear representation ρ of
SL2ðZÞ with ker ρ ≥ ΓðNFSÞ, where NFS ≔ ordT. By the
proofs of Theorem 3.1 of Ref. [36]

ker ρ̂ ≥ ΓðNFSÞ; ðB1Þ

i.e., the level of ρ̂ is at most NFS.
On the other hand, by Corollary 1, ρIndðtÞ has order NFS,

and thus ρInd has congruence level NFS.
ρ̂ is a Γθ-congruence representation of level m for some

m. We can think of ρ̂ as a representation of Γθ=ΓðmÞ for
some even m, and the induced representation ρInd as a
representation of SL2ðZÞ=ΓðmÞ. Then it is clear that
ker ρInd ≥ ΓðmÞ. But m cannot be any smaller than NFS
(note that bothm and NFS are even). Hence, the level of ρ̂ is
at least NFS.
Together, we see that the level of ρ̂ is exactly NFS. ▪

Appendix C: Proof of Lemma 3—Let us write

HðnÞ ¼
�A B � � �
C D � � �
..
. ..

. . .
.

�
; ðC1Þ

where A, B, C, D are each d-dimensional matrices
(where d is the dimension of Ŝ and T̂2), and B ¼ CT ,
AT ¼ A, DT ¼ D because HðnÞ is symmetric. As we
can block-diagonalize S and T, we can block-
diagonalize HðnÞ with the same basis change, which we
denote U. It takes the form

U ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
⊕ …; ðC2Þ

where 1 denotes the d-dimensional identity matrix.
Then, we have

0
BBB@

ĤðnÞ 0 � � �

0 . .
. � � �

..

. ..
. . .

.

1
CCCA

¼ UHðnÞU†

¼ 1

2

0
BBB@

AþBþCþD AþC− ðBþDÞ � � �
A−CþB−D A−C− ðB−DÞ � � �

..

. ..
. . .

.

1
CCCA: ðC3Þ

From this we get ĤðnÞ ¼ 1
2
ðAþ Bþ CþDÞ and

0 ¼ Aþ C − B −D ¼ A − Cþ B −D, which in turn
leads to

B ¼ C ðC4Þ

and

A ¼ D: ðC5Þ

Then,

ĤðnÞ ¼ Aþ B: ðC6Þ

Now, we note that A, B are part of HðnÞ, a signed
permutation matrix, on the same block row. If an entry
Aij ¼ �1, then the every entry of HðnÞ on the same row
should be 0—in particular, Bik ¼ 0 for all k. It is also
clear that if Aij ¼ �1, Aik ¼ 0 for all k ≠ j. Then,
Aþ B has no row with multiple nonzero entries.
Similarly, since C ¼ B, we can repeat the same analysis

for columns, and show that Aþ B has no column with
multiple nonzero entries. Moreover, since Aij and Bij

cannot both be nonzero for any i, j, every entry of
Aþ B is 1, 0, or −1.
We know a priori that ĤðnÞ must be unitary. Hence,

ĤðnÞ ¼ Aþ B is a unitary matrix whose entries are 1, 0, or
−1 and with at most one nonzero entry per each row or
column, i.e., it is a signed permutation matrix.
Moreover, it immediately follows that the first row of

Aþ B contains a nonzero entry �1, and this value must
equal the value of the nonzero entry of the first row
of HðnÞ. ▪
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