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While altermagnetic materials are characterized by a vanishing net magnetic moment, their symmetry
in principle allows for the existence of an anomalous Hall effect. Here, we introduce a model with
altermagnetism in which the emergence of an anomalous Hall effect is driven by interactions. This model is
grounded in a modified Kane-Mele framework with antiferromagnetic spin-spin correlations. Quantum
Monte Carlo simulations show that the system undergoes a finite temperature phase transition governed
by a primary antiferromagnetic order parameter accompanied by a secondary one of Haldane type. The
emergence of both orders turns the metallic state of the system, away from half-filling, to an altermagnet
with a finite anomalous Hall conductivity. A mean field ansatz corroborates these results, which pave the
way into the study of correlation induced altermagnets with finite Berry curvature.
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Introduction—Ferromagnetic conductors are generally
endowed with an observable anomalous Hall effect (AHE),
where an electric current perpendicular to the magnetiza-
tion gives rise to a transversal Hall potential [1]. Here, the
magnetization of the ferromagnet takes over the role of an
external magnetic field that is the root cause of the standard
Hall response in time-reversal invariant (i.e., nonmagnetic)
conductors. On this basis one might expect that in a fully
compensated antiferromagnet the lack of a net magnetiza-
tion forces the AHE response to vanish. Interestingly,
a symmetry analysis shows that this is not necessarily
the case—only time-reversal symmetry breaking by itself
is a sufficient condition to allow for an AHE, also in the
absence of a net ferromagnetic moment. However, the
combination of time-reversal and translation symmetry,
which characterizes most antiferromagnetic materials,
implies a vanishing AHE. Altermagnets comprise the class
of compensated collinear antiferromagnets without this
combined symmetry [2–8] and a large set of altermagnetic
materials have been identified by first principles electronic
structure calculations [9,10]. They are characterized by a
fully compensated magnetic order and therefore a zero
net magnetic moment, but their symmetry properties reveal
that this type of compensated magnetic order may induce
an AHE [2,11–15].
In spite of the clear ground-state symmetry consider-

ations, so far no interacting models have been proposed in
which an altermagnetic AHE emerges. The latter requires a
time-reversal invariant Hamiltonian in which time-reversal
symmetry (TRS) is spontaneously broken with zero total
moment and still finite anomalous Hall conductivity. Here

we show that precisely such an altermagnetic order emerges
in a modified Kane-Mele model with broken inversion
symmetry and antiferromagnetic spin-spin interactions.
Quantum Monte Carlo calculations reveal that, at finite
temperature, the primary antiferromagnetic (AFM) order
parameter gives rise to a secondary altermagnetic one,
inducing a finite AHE. The occurrence of these two order
parameters is in full agreement with the recently developed
Landau theory of altermagnetism [16]. The smoking gun of
this emergent altermagnetic phase is a spin-split electronic
band structure with an anomalous Hall conductivity that
can be tuned by doping.
Interacting altermagnetic Kane-Mele model—We start

with a modified Kane-Mele (KM) model on a honeycomb
lattice with a unit cell containing two sites denoted
by A and B. In contrast to the canonical KM model,
the sign of the complex phase of the hopping integrals
between next nearest neighboring (NNN) sites is opposite
on the two sublattices, as in Ref. [17]. The corresponding
Hamiltonian is

Ĥ0 ¼ −t
X
hi;ji;s

ĉ†i;sĉj;s − λ
X
⟪i;j⟫;s

eisΦi;j ĉ†i;sĉj;s − μ
X
i;s

n̂i;s; ð1Þ

where ĉi;s is the annihilation operator of an electron of spin
s on a honeycomb lattice site, n̂i;s ≡ ĉ†i;sĉi;s, and μ is the
chemical potential. t and λ are the hopping integrals
between the nearest neighboring (NN) and NNN sites,
respectively. Φi;j ¼ �π=2 is the complex phase gained by
an electron during a NNN hopping process according to the
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pattern shown in Fig. 1(a). Effectively the λ term introduces
a pseudoscalar potential that offsets the Dirac cones for the
two spin components, thus generating anisotropic spin-split
electronic bands [see Fig. 1(b)]. For any finite value of λ, the
SU(2) total spin symmetry is reduced to a U(1) one, and the
inversion symmetry is broken, while TRS remains unbroken.
Note that the canonical KM model maintains both time-
reversal and inversion symmetries, resulting in degenerate
spin states without spin splitting. For an altermagnetic state
to emerge, spin-spin interactions must maintain zero net
magnetization while they spontaneously break TRS.
Accordingly we consider an AFM interaction term, ensuring
that each spin on one sublattice is coupled exclusively to
spins on the opposing sublattice. The total Hamiltonian,
taking into account an appropriate interaction that realizes
the aforementioned physical characteristics, reads

Ĥ ¼ Ĥ0 −
Jz
2

X
hi;ji

�
Ŝzi − Ŝzj

�
2; ð2Þ

where Ŝzi ¼ 1
2

P
σσ0 ĉ

†
iσσ

z
σσ0 ĉiσ0 is the fermion spin operator

and σ corresponds to the vector of Pauli spin-1=2 matrices.
We consider Jz > 0 such that the Ŝzi Ŝ

z
j term harbors the

potential for the development of long-range AFM order in
the spin-z direction. In addition an effective on-site Hubbard
repulsion term U

P
in̂i↑n̂i↓ withU ¼ 3Jz

4
is generated, which

preempts any local pairing instability.
Symmetry analysis—To establish that the effective

Landau theory of our model is of altermagnetic

nature [16], we consider the continuum limit where the
low energy effective Hamiltonian is

Heff
0 ¼

X
k

Ψ†
kðkxτxμz − kyτyÞΨk þ λ

X
k

Ψ†
kμ

zσzΨk:

Here, Ψ†
k ¼ Ψ†

k;τ;μ;σ and τ, μ, σ account for the sublattice,
valley, and spin indices, respectively, on which the Pauli
matrices τα, μα, σα act. The first term corresponds to the
Dirac Hamiltonian of graphene with unit Fermi velocity
and the second term to the NNN hopping of the lattice
model. Importantly, we note that this term differs from
the quantum spin Hall mass, which takes the formP

k Ψ
†
kμ

zτzσzΨk [18]. It does not open a gap in the
spectrum, but shifts the valleys in energy by λμzσz, as is
seen in Fig. 1(b). The Hamiltonian is invariant under
global U(1) spin rotations around the z axis, while
discrete symmetries include time reversal: T−1αΨ†

kT ¼
ᾱΨ†

−kμ
xiσy, where ᾱ denotes the complex conjugation of

the α. Importantly, the λ term breaks inversion symmetry:
I−1αΨ†

kI ¼ αΨ†
−kτ

xμx. The interaction term generates

HI ¼ −Jz
Z

d2x
�
Ψ†ðxÞσzτzΨðxÞ�2; ð3Þ

which does not lower the symmetry of the model, and
clearly promotes antiferromagnetism. To proceed, we now
consider a symmetry broken antiferromagnetic state in
the spin-z direction described by the collinear Néel order
parameter

NkðxÞ ¼
�
Ψ†ðxÞσzτzΨðxÞ�: ð4Þ

This order parameter solely breaks TRS such that a
Ginzburg-Landau theory accounting for this state can
include even powers of NðxÞ. However, terms of the
form NðxÞMðxÞ are also allowed in the Ginzburg-
Landau functional provided that MðxÞ is odd under time
reversal and that NðxÞMðxÞ shares the same symmetries
as the Hamiltonian. This requirement is fulfilled by the
Haldane mass [19]

MHðxÞ ¼
�
Ψ†ðxÞτzμzΨðxÞ�; ð5Þ

which indeed is odd under time reversal and generates
the AHE. Since at λ ≠ 0 the Hamiltonian does not enjoy
inversion symmetry, NkðxÞMHðxÞ is allowed in the
Ginzburg-Landau theory. As a consequence, as soon as
NkðxÞ acquires a nontrivial expectation value, the Haldane
mass is generated as a secondary order parameter [16]. We
note that at half-band filling, characterized by the particle-
hole symmetry P−1αΨ†

kP ¼ ᾱΨT
k τ

zσx, the linear coupling
between the two order parameters is forbidden since Nk is
even and MH is odd under this symmetry. It is worth

(c)

(b)(a)

FIG. 1. (a) The model of fermions on the honeycomb lattice
with hopping ðt; λÞ and interaction ðJz; UÞ terms in Eq. (2).
(b) Noninteracting band structure at λ ¼ 0.1 for the half-filled
case. The red (blue) line corresponds to the spin-up (spin-down)
component. Inset: the first Brillouin zone is depicted and the
black lines indicate the scans considered here. (c) Quantum
Monte Carlo average sign, hsigni, as a function of L for various
electron densities n at temperature T ¼ 1=20.
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stressing that in the case of an in-plane magnetic ordering,
the Ginzburg-Landau formulation will be rephrased in
terms of a two-component primary order parameter
N⊥ðxÞ ¼ hΨ†ðxÞτzðσx; σyÞΨðxÞi, which breaks Uð1Þ spin
symmetry as well as TRS. As a consequence, it cannot be
linearly coupled to the scalar secondary order parameter
MHðxÞ, forbidding by symmetry the emergence of MHðxÞ
and the subsequent altermagnetic properties.
On the lattice, it is clear that the model harbors magnet-

ism beyond simple AFM order as the collinear AFM
ordered spin state on the two sublattices cannot be con-
nected by a translation or inversion symmetry combined
with time reversal due to the specific phase patterns in the
NNN hopping Hamiltonian, as is expected for an alter-
magnet [5]. Indeed, we will show that this results in a finite
total Berry curvature away from half-filling, in sync with
the finite Haldane mass in the continuum description.
Quantum Monte Carlo results—The Hamiltonian (2)

was simulated using the ALF (Algorithms for Lattice
Fermions) implementation [20,21] of the grand-canonical,
finite-temperature, auxiliary-field quantum Monte Carlo
method [22–24]. In fact the interaction part of Eq. (2) in
terms of perfect squares can be implemented in the ALF
implementation. Results were obtained on lattices with
L × L unit cells (2L2 sites) and periodic boundary con-
ditions. Henceforth, we use t ¼ 1 as the energy unit, set
λ ¼ 0.1, Jz ¼ 2 and set the Trotter imaginary time step to
Δτ ¼ 0.1. The negative sign problem is absent at half-filling
since in a Bogoliubov basis, ðγ̂†i;↑; γ̂†i;↓Þ ¼ ðĉ†i;↑; ð−1Þiĉi;↓Þ,
and after decoupling the perfect square term with a
Hubbard-Stratonovitch transformation, time-reversal
and U(1) charge symmetries are present for each field
configuration [25]. Doping breaks this symmetry and
the sign problem sets in. Nevertheless, for our specific
implementation it turns out to be mild [see Fig. 1(c)] such
that large lattices and low temperatures can be reached.
In particular, we are able to reveal an altermagnetic phase,
as shown in Fig. 2. In fact, this was achieved by viewing
the sign problem as an optimization problem over the
space of possible path integral formulations.
To verify the above low-energy theory, we measure

equal-time correlation functions

COðqÞ≡ 1

L2

X
r;r0

hÔO
r Ô

O
r0 ieiq·ðr−r

0Þ ð6Þ

of fermion spin Ô
SzðSxyÞ
r ¼ ŜzðxyÞr;A − ŜzðxyÞr;B with Ŝsr ¼ 1

2
ĉ†rσsĉr,

and the operator corresponding to the Haldane mass,
ÔAH

r ¼ P
⟪δ;δ0⟫;σ e

iΦrþδ;rþδ0 ĉ†rþδ;σ ĉrþδ0;σ . Here, r specifies a
unit cell, or hexagon, and ⟪δ; δ0⟫ runs over the NNN sites
of this hexagon. After computing the correlation functions,
we extracted the renormalization-group invariant correla-
tion ratios [26,27]

RO ¼ 1 −
COðq0 þ δqÞ

COðq0Þ
: ð7Þ

Here, q0 is the ordering wave vector and q0 þ δq the
longest wave-length fluctuation of the ordered state for a
given lattice size. Long-range AFM and anomalous Hall
(AH) orders here imply a divergence of the corresponding
correlation functions COðq0 ¼ 0Þ. Accordingly, RO → 1

for L → ∞ in the ordered phase, whereas RO → 0 in the
disordered phase. At the critical point, RO becomes scale-
invariant for sufficiently large system size L, leading to a
crossing of results for different L.
We find the altermagnetic phase in the range of para-

meters, specifically temperatures T and electron densities
n, shown in Fig. 2. Figure 2(a) shows the results as a
function of T at n ¼ 0.95. The onset of the AFM in spin-z
(x) direction, termed z-AFM (x-AFM), is detected from the
crossing of RSzðRSxÞ, whereas the onset of the AH order can
be detected from RAH. As the temperature decreases, we
observe the onset of the z-AFM order. We note that z-AFM
only breaks time-reversal symmetry such that ordering at
finite temperature is allowed. A key feature is that its
appearance coincides with the onset of the AH order.
Indeed, the data for RAH are consistent with a finite-
temperature phase transition to the z-AFM phase.
Furthermore, within the range of parameters we investi-
gated, we do not observe the emergence of the
x-AFM order. Results as a function of n for T ¼ 1=20
are presented in Fig. 2(b). The consequence of the
simultaneous emergence of both z-AFM and AH orders
persists against changes in electron density away from half
filling. At half-filling the z-AFM ordering persists while
AH correlations are suppressed. This agrees with our

0
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0.90 0.95 1
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5.00
T/t
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RAH

(b)(a)
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L=9
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FIG. 2. (a) Temperature dependence of correlation ratios for
z-AFM and x-AFM orders (top panel) and AH order (bottom
panel) at electron density n ¼ 0.95. Here, L is the system size,
λ ¼ 0.1 and Jz ¼ 2 in units of t. (b) Same as (a) for varying
electron density n at temperature T ¼ 1=20.
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finding of a vanishing linear coupling between the AH
and z-AFM order in the Ginzburg-Landau functional
when particle-hole symmetry is present. As n is further
decreased, the correlation ratios do not provide clear
evidence of both these orders, transitioning to the disor-
dered phase.
We conclude this section by noting that we have checked

that no ferromagnetic order emerges, such that the state that
we observe is a compensated collinear antiferromagnet.
AHE in mean field approximation—Within a mean

field (MF) approximation the AHE that emerges in the
interacting modified KM model can be accessed
directly. Using the spin-dependent sublattice basis
ðψA↑;ψB↑;ψA↓;ψB↓Þ, the corresponding Hamiltonian,
given by Eq. (2), reduces to

HMFðkÞ ¼ ðϵ − μÞσ0τ0 þ akτ0σz þ hðkÞ · τ; ð8Þ

where hðkÞ ¼ ðbkσ0; ckσ0; hzÞ, hz ¼ −ΔMAFM
z σz,

Δ ¼ 3
2
Jz þ 3

4
jJzj, μ is the chemical potential,

ϵ ¼ 3
8
jJzjðn − 1Þ, n ¼ na ¼ nb is the electron density on

site A or B, with nl ¼ hn̂l↑i þ hn̂l↓i, l ¼ a, b being the
sublattice index. The antiferromagnetic MAFM

z order
parameter along the z direction is expressed in terms of
the on-site magnetization as MAFM

z ¼ 1
2
ðma

z −mb
z Þ, where

ml
z ¼ 1

2
ðhn̂l↑i − hn̂l↓iÞ. The hopping terms ak, bk, and ck

are given by ak ¼ −2λ
P

3
i¼1 sin ðk · aiÞ, bk ¼

−t
P

3
i¼1 cosðk · δiÞ, ck ¼ −t

P
3
i¼1 sinðk · δiÞ. δi and ai

are, respectively, the vectors connecting NN and NNN

sites; a1 ¼
ffiffiffi
3

p
að− 1

2
;

ffiffi
3

p
2
Þ, a2 ¼

ffiffiffi
3

p
að− 1

2
;−

ffiffi
3

p
2
Þ, a3 ¼ffiffiffi

3
p

að1; 0Þ, δ1 ¼ að
ffiffi
3

p
2
; 1
2
Þ, δ2 ¼ að−

ffiffi
3

p
2
; 1
2
Þ, δ3 ¼ að0;

−1Þ, where a is the distance between NN
sites. τ0 (σ0) is the 2 × 2 identity matrix in the
sublattice (spin) space.
The spectrum of the mean field Hamiltonian (8) is

given by

EMF
ν;σ ðkÞ ¼ ϵ − μþ akσ þ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k þ c2k þ ðΔMAFM

z Þ2
q

;

where ν ¼ � (σ ¼ �) is the band (spin) index. The spin-
dependent mass term hz in Eq. (8) breaks TRS and a
nonvanishing Berry curvature (BC) is expected away from
half-filling. For a given spin projection σ, the BC of a band
ν can be expressed as [28,29]

Ων
zðσ;kÞ ¼ −

ν

2jhðkÞj3 hðkÞ · ½∂kxhðkÞ × ∂kyhðkÞ�

and the AH conductivity [7] is given by the integral

σHall ¼ −
e2

ℏ
1

ð2πÞ2
X
σ;ν

Z
BZ

dkΩν
zðσ;kÞfνðk; μÞ;

where hðkÞ ¼ ðbk; ck;−ΔMAFM
z σÞ and fνðk; μÞ is the

Fermi-Dirac distribution function [30].
σHall can be computed using the values of the chemical

potential and the AFMmagnetizationMAFM
z extracted from

the mean field calculations. The results are depicted in
Fig. 3 showing σHall as function of the electronic density n.
The occurrence of a nonvanishing AH conductivity can

be understood from the spin-valley dependence of the BC
and the offset of the Dirac points induced by the modified
KM term akσzτ0 of Eq. (8), which shifts oppositely the
spin-split bands. To gain further insight into these features,
let us focus on the states k ¼ μzKþ q, (q ≪ jKj) in the
vicinity of the Dirac points μzK, where μz ¼ � is the valley
index. These states contribute strongly to the BC, which
reduces, around μzK, to

Ων
zðσ; μz;qÞ ¼ sgn

ðℏvFÞ2ΔMAFM
z

2
�ðℏvFqÞ2 þ ðΔMAFM

z Þ2�3=2 ; ð9Þ

where sgn ¼ −νμzσ is the sign of the BC and ℏvF ¼ 3
2
at.

Given the spin-dependent offset of the Dirac points, a spin-
split subband EMF

ν;σ ðkÞ [EMF
ν;−σðkÞ] of an occupied band ν,

contributes to the BC by the states around the valley μz

(−μz). Thus, the two contributing spin-dependent BCs have
the same sign, resulting in a nonvanishing total BC away
from half-filling. Data are shown in the Supplemental
Material [32]. We note that in the continuum limit, our
modified KM term, akτ0σz, indeed corresponds to a valley-
Zeeman spin-orbit coupling, akin to that considered in
transition metal dichalcogenides [33,34]. Both systems
exhibit effects that induce spin-split band structures and
enable spin-valley locking, but their underlying origins
differ, as detailed in the Supplemental Material [32].
The doping dependence of the AH conductivity (see

Fig. 3) reflects the behavior of the secondary order
parameter of Haldane type MH. At half-filling (n ¼ 1),
σHall vanishes as the bands below the Fermi level are fully
occupied, resulting in zero total BC. Decreasing n from
half-filling, jσHallj increases up to a maximum value, at a

0.7 0.75 0.8 0.85 0.9 0.95 1

n

0

0.1
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H
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l/(

e2 /
h)

J
z 
= 1.6t

J
z
 = 2t

FIG. 3. Anomalous Hall conductivity σHall in units of e2=h as a
function of the electron density n for Jz ¼ 1.6t and Jz ¼ 2t using
the mean field parameters for n and MAFM

z .
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doping nc, where it drops and vanishes below a critical
doping value nc0. Larger coupling constants Jz give
smaller nc0. For a fixed Jz, the increase of jσHallj can
be understood from the BC contribution, which is
enhanced as the area of the spin-polarized Fermi surface
increases (see the Supplemental Material [32]). The drop
of jσHallj is a consequence of the sharp decrease of MAFM

z
below nc, inducing a decrease of the BC. The doping
regime with a nonzero AH conductivity gets wider as Jz
increases, which results from the enhancement of the
mass term MAFM

z .
Conclusions and outlook—We have shown how elec-

tronic interactions induce altermagnetism in a noncentro-
symmetric system by stabilizing a primary AFM ordering
that hosts a secondary one that directly induces the
altermagnetic anomalous Hall effect. Specifically, our
quantum Monte Carlo calculations on the interacting
modified Kane-Mele lattice model reveal a finite temper-
ature phase transition into an altermagnetically ordered
state, whose physical features are captured by its effective
continuum theory. The interacting model may in principle
be implemented in cold atoms in optical lattices that
have been proposed to realize altermagnetism [38].
Time-modulated optical lattices of ultracold atoms allow
for complex NNN tunneling, as demonstrated for the
Haldane model [39], while Hubbard models with AFM
order have been realized in ultracold fermions [40,41]. This
suggests potential for combining these techniques, incor-
porating both complex NNN tunneling and Hubbard-
type models with AFM order. Interestingly, recently an
experimental realization of a noncentrosymmetric 3D
altermagnet has been reported in GdAlSi, a collinear
antiferromagnetic Weyl semimetal [42]. This suggests
generalization of the lattice model to higher dimensions
to determine how electronic correlations generate Berry
curvature in altermagnetic semimetals that may as well
harbor 3D electronic topology.
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