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Persistent currents circulate continuously without requiring external power sources. Here, we extend
their theory to include dissipation within the framework of non-Hermitian quantum Hamiltonians.
Using Green’s function formalism, we introduce a non-Hermitian Fermi-Dirac distribution and derive an
analytical expression for the persistent current that relies solely on the complex spectrum. We apply our
formula to two dissipative models supporting persistent currents: (i) a phase-biased superconducting-
normal-superconducting junction; (ii) a normal ring threaded by a magnetic flux. We show that the
persistent currents in both systems exhibit no anomalies at any emergent exceptional points, whose
signatures are only discernible in the current susceptibility. We validate our findings by exact
diagonalization and extend them to account for finite temperatures and interaction effects. Our formalism
offers a general framework for computing quantum many-body observables of non-Hermitian systems in
equilibrium, with potential extensions to nonequilibrium scenarios.

DOI: 10.1103/PhysRevLett.133.086301

Introduction—Recent intensive research in non-
Hermitian (NH) physics [1–4] has revealed intriguing
phenomena in both the classical [5–9] and quantum
realms [10–12]. The biorthogonal and non-Bloch frame-
works have reshaped the conventional bulk-edge corre-
spondence [13–16], while the symmetry classifications
of the NH matrices have enriched the topological phases
compared to their Hermitian counterparts [17–21].
Exceptional points (EPs), where the NH Hamiltonian is
not diagonalizable [22–24], can enhance sensing capabil-
ities [25–28] and trigger new critical phenomena [29–32].
In the field of open quantum systems, NH physics is

instrumental in characterizing the dissipative nature of
systems [33–35]. The Lindblad formalism [36–39] pro-
vides routes to address system-reservoir interactions. By
neglecting quantum jumps or focusing on Gaussian sys-
tems [40–42], the dynamics is dictated solely by an
effective NH Hamiltonian Heff . The Green’s function
formalism presents an alternative path to Heff by integrat-
ing out external reservoirs E to include complex self-
energies Σ ≠ Σ† [43–48]. Although the spectral properties
of Heff have been extensively explored, quantum many-
body observables [49], such as the supercurrents in phase-
biased superconducting–normal–superconducting (SNS)
junctions shown in Fig. 1(a), are currently under active
discussion. Existing approaches, such as the derivative of

complex eigenvalues [50,51] and the expectation values
obtained from the left-right (LR) or right-right (RR)
eigenvectors [52], often yield anomalies at EPs [53], calling
for a microscopic approach to grasp the subtleties of the NH
persistent current transport.
In this Letter, we provide a resolution to this conundrum

grounded on a NH Fermi-Dirac distribution associated with
the biorthogonal single-particle eigenstates. We find that
the supercurrent IðϕÞ in an SNS junction biased by a phase
ϕ and coupled to reservoirs is given by (in units of e=ℏ):

IðϕÞ ¼ −
1

π

d
dϕ

ImTrðHeff lnHeffÞ: ð1Þ

This formula is derived in the wide-band limit, which
is nonperturbative and can also accurately describe the
strong coupling regime. Moreover, it also applies to the
persistent current in a normal mesoscopic ring threaded
by a magnetic flux, as shown in Fig. 1(b). Our results
align with the exact diagonalization of the full Hermitian
system including the reservoir and do not exhibit any
singularities at EPs for both models [see Figs. 1(c) and
1(d)]. We further generalize Eq. (1) to finite temperatures
and find that persistent currents are reduced, which is also
observed when many-body interactions are taken into
account. Finally, as shown in Fig. 4, the signatures of
EPs can instead become evident in the current suscep-
tibility associated with response to an ac phase bias
drive. Our formalism not only clarifies the behavior of
persistent currents in fermionic NH systems but also
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sets the stage for analyzing other quantum many-body
observables with dissipation.
Phenomenology and methodology—Initially, we outline

a heuristic explanation of our main findings, deferring
the technical details to subsequent sections and the
Supplemental Material [54]. We focus, for simplicity,
on spinless fermionic systems with Hamiltonians that
depend on a parameter ϕ, such as in phase-biased SNS
junctions HsysðϕÞ ¼ C⃗†HsysðϕÞC⃗=2, where HsysðϕÞ is

the Bogoliubov–de Gennes (BdG) Hamiltonian, C⃗ ¼
ðc1;…; cN; c

†
1;…; c†NÞT is a 2N-dimensional spinor, and

c†j (cj) is the fermionic creation (annihilation) operator
at site j. The discussion below also applies to normal
metals described by HsysðϕÞ on an N-dimensional basis

C⃗ ¼ ðc1;…; cNÞT, substituting 2 for 1. For brevity, we will
use calligraphy to denote the first quantized operators and
omit the explicit dependence on ϕ in our notation for
Hamiltonians, eigenvalues, and eigenvectors hereafter.
For isolated and Hermitian systems Hsys, the

persistent current IisoðϕÞ n the many-body ground state
with energy E0 follows [56],

IisoðϕÞ ¼ 2
dE0

dϕ
¼

X
ϵn⩽0

dϵn
dϕ

¼
X
ϵn⩽0

hψnjJ jψni
2

; ð2Þ

where the factor of 2 stems from the Cooper pair,
J ¼ C⃗†J C⃗=2 is the persistent current operator, ϵn and
jψni are eigenvalues and eigenstates of Hsys. Given the

local conservation law of nj ¼ c†jcj in the N segment
(e.g., the normal part in SNS junctions), the site-resolved
current operator [35], Jj ¼ −itjðc†jcjþ1 − c†jþ1cjÞ, follows
the continuity equation in equilibrium: 0 ¼ hṅji ¼
ih½Hsys; nj�i ¼ hJji − hJj−1i, ∀ j∈N, where tj is the
hopping strength at site j. Therefore, we set J ≡ Jj at
the first site of N and omit the subscript.
To account for dissipation, we couple the system to a

thermal reservoir E. In the long-time limit, the system
reaches equilibrium and E acts as a source of dephasing
[57–65]. This coupling leads to the emergence of a
complex self-energy ΣðωÞ in the system. In the wide-band
limit ΣðωÞ ≈ Σð0Þ [66–68], the system is effectively
described by the NH Hamiltonian Heff ≡Hsys þ Σð0Þ,
which exhibits a complex spectrum εn with Imεn ⩽ 0
and supports biorthogonal single-particle modes [69]:
Heff jψR

ni¼ εnjψR
ni, H†

eff jψL
ni¼ ε�njψL

ni, and hψL
njψR

mi¼δnm.
Using this biorthogonal basis, we represent the retarded
Green’s function of the system as [70–72]

GsysðωÞ ¼
1

ω −Heff
¼

X
n

jψR
nihψL

nj
ω − εn

; ð3Þ

and obtain the density of states operator ρðωÞ ¼
i½GsysðωÞ −G†

sysðωÞ�=2π. In thermal equilibrium, any cor-
relator can be calculated by hc†i cji ¼

R hjjρðωÞjii×
fFDðωÞdω, where fFDðωÞ is the Fermi-Dirac distribution
of the entire system. Given fFDðωÞ ¼ Θð−ωÞ at zero
temperature, we derive an analytical correlator hc†i cji by
integrating over ω:

hc†i cji ¼
i
2π

X
n

�
ψL�
niψ

R
nj ln εn − ψR�

niψ
L
nj ln ε

�
n

�
; ð4Þ

where ψL=R
nj ≡ hjjψL=R

n i, ln εn ≡ ln jεnj þ i arg εn and
−π ⩽ arg εn ⩽ 0 [73]. Similarly, hcicji is obtained by
replacing i with N þ i on the right-hand side of Eq. (4).
Therefore, the expectation value of a general quadratic
Hermitian operator O ¼ C⃗†OC⃗=2 is [54]

hOi ¼ Im
X
n

hOiLRn feffðεnÞ
2

¼ ImTr½OfeffðHeffÞ�
2

; ð5Þ

where hOiLRn ≡ hψL
njOjψR

ni and feffðεÞ≡ −ð1=πÞ ln ε acts
as a Fermi-Dirac distribution for NH systems, whose
imaginary part reduces to Θð−εÞ as Imε → 0 [74].

FIG. 1. Schematic of systems coupled to external reservoirs E:
(a) an SNS junction with a phase bias ϕ; (b) a normal metallic
ring threaded by normalized magnetic flux ϕ. Each system is
characterized by an effective NH HamiltonianHeff that includes a
complex self-energy Σ from E. In equilibrium, both models
maintain persistent currents IðϕÞ and zero leakage currents IE. (c)
and (d) Complex spectra ε� showing EPs around π (black lines)
and persistent current IðϕÞ as a function of ϕ. The current IðϕÞ
calculated using Eq. (1) shows no signs of singularity at the EPs.
Parameters: (c) NL ¼ NM ¼ NR ¼ 4, NE ¼ 101, t ¼ −Δ ¼ −1,
κ ¼ 0.4t, μ ¼ g ¼ −1.1; (d) N ¼ 6, NE ¼ 101, t ¼ κ ¼ μ ¼ −1,
g ¼ 0, ti ∼ t � Unifð0.7; 1.3Þ.

PHYSICAL REVIEW LETTERS 133, 086301 (2024)

086301-2



Equation (5) represents one of our main results and remains
continuous at EPs [75]. The persistent current can be
calculated by substituting O with J in Eq. (5).
Furthermore, applying the identity hJ iLRn ¼ 2∂ϕεn for each
biorthogonal single-particle mode and rearranging the deriv-
atives, one can obtain Eq. (1) and verify that it recovers
Eq. (2) in the Hermitian limit. It is important to emphasize
that our Eq. (1) is distinct from a simple continuation of
Eq. (2) to complex eigenvalues

P
Reεn⩽0 ∂ϕεn (or, equiv-

alently, the LR-basis current ILRðϕÞ≡P
Reεn⩽0hJ iLRn =2)

recently proposed in Refs. [50–52], as well as the RR-basis
current IRRðϕÞ≡P

Reεn⩽0hJ iRRn =2 widely adopted with
postselection [76–78]. As demonstrated below, both of
these definitions fail to accurately describe the persistent
current in equilibrium, whereas Eq. (1) is in full agreement
with the exact diagonalization.
Model reservoir and self-energy—To validate our find-

ings, we connect the system Hsys to an NE-site fermionic

reservoir Hres ¼
P

j½ðtc†jcjþ1 þ H:c:Þ þ gc†jcj�, where
t < 0 is the hopping strength and g is the chemical
potential. This specific reservoir is chosen for its dual
analytical and numerical merits. First, connecting one end
of E to the l site of the system via Htun ¼ κðc†NE

cl þ c†l cNE
Þ

with coupling strength κ < 0 will induce a self-
energy Σlð0Þ ¼ Σð0Þ ⊗ jlihlj onto Hsys, where Σð0Þ ¼
−κ2=t2½τzg=2þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − ðg=2Þ2

p
� and τz is the Pauli-Zmatrix

acting in the particle-hole space [34]. This expression is
exact when NE → ∞ and also applies to normal metals
upon removal of τz [54]. Second, the tight-binding
form of Hres allows us to compare Eqs. (1) and (2)
by performing an exact diagonalization of the entire
Hermitian system Htot ¼ Hsys þHres þHtun. Next, we
apply this benchmark framework to two concrete NH
models: a phase-biased SNS junction and a normal ring
threaded by a magnetic flux.
NH SNS junctions—The SNS junction is a pivotal

platform for quantum transport, whose Hamiltonian reads

HSNS¼
X
j

�
tjc

†
jcjþ1þΔje−iϕjc†jc

†
jþ1þH:c:

�þμc†jcj; ð6Þ

whereΔj is the superconducting gap with phase ϕj at site j,
μ is the chemical potential and tj ¼ t. The number of sites
in the left, middle, and right parts is NL; NM; NR, respec-
tively. The middle segment is normal metal by setting
Δj ¼ ϕj ¼ 0, ∀ j∈N≡ ½NL; NL þ NM�. The outer seg-
ments are superconductors Δj ¼ Δ ≠ 0 with phase bias
applied such that ϕj ¼ ϕ in the right segment and ϕj ¼ 0 in
the left segment.
As depicted in Fig. 1(a), the SNS junction incorporates

self-energies ΣL¼Σ1ð0Þ and ΣR ¼ ΣNð0Þ, after being con-
nected to two separate reservoirs at its ends. This results in

an effective NH Hamiltonian Heff ¼ HSNS þ ΣL þ ΣR,
whose spectrum exhibits pairs ðþεn;−ε�nÞ pertaining to
the particle-hole symmetry of NH systems [18]. Figure 1(c)
highlights a pair of complex spectra ε� with EPs near
ϕ ¼ π, where Reε� are pinned to zero. The calculation of
supercurrents in the presence of EPs has recently garnered
attention and sparked ongoing debates. As mentioned
above, considering hJ iLRn ¼ 2∂ϕεn, a simple generalization
of Eq. (2) to complex eigenvalues

P
Reεn⩽0 ∂ϕεn [50,51] is

equivalent to the LR-basis current ILRðϕÞ [52]. However, as
shown in Fig. 2(a), this approach results in a divergent
supercurrent due to the nondifferentiable nature of EPs. On
the other hand, the RR-basis current IRRðϕÞ has a finite but
nonsmooth value at EPs, and also exhibits asymmetry
around π. Furthermore, IRRðϕÞ does not adhere to the local
conservation law and will show distinct curves for different
j∈N (see Supplemental Material [54] for details). In stark
contrast, the current IðϕÞ computed by Eq. (1) exhibits no
anomalies at EPs. It matches excellently with the current
calculated from Eq. (2) by exact diagonalization for the
entire Hermitian Htot with a large reservoir. Compared to
current IisoðϕÞ in an isolated SNS junction, we observe
an enhancement in IðϕÞ within the moderate coupling
regime κ ¼ 0.4t. This seemingly counterintuitive effect
arises because the lower-energy mode ε− has a negative
contribution to the current, which is effectively balanced
by εþ due to level broadening in the NH case. However,
as κ=t increases, IðϕÞ starts to decrease, since dissipation
also suppresses the positive current contribution from
other states [54].
NH normal rings—A mesoscopic ring threaded by a

magnetic flux Φ also carries a persistent current because
the coherence length of the wave function extends over

FIG. 2. Methodological comparisons of persistent currents in
two NH systems: (a) a phase-biased SNS junction; (b) a normal
ring threaded by a magnetic flux. The current IðϕÞ (dashed)
computed by Eq. (1) matches the exact diagonalization (gray) of
the full Hermitian system. The isolated system (green) acts as a
reference, showing an enhanced (reduced) current for the SNS
(ring) model upon coupling to reservoirs. In (a), LR-basis currents
(blue) diverge at the EPs (black lines), a feature not observed in (b),
where a pair of EP modes ε� cancel out the divergence. RR-basis
currents (red) violate the local conservation law and exhibit
asymmetry around π. The parameters are the same as in Fig. 1.
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its entire circumference [79–83]. The gauge-invariant
tight-binding Hamiltonian is given by [84–86]

Hring ¼
X
j

�
tje−iϕjc†jcjþ1 þ H:c:

�þ μc†jcj; ð7Þ

where the normalized magnetic flux ϕN ¼ ϕ ¼ 2πΦ=Φ0 is
placed between the Nth and first site, leaving other ϕj ¼ 0.
Here, Φ0 ¼ h=e is the flux quantum that reflects the
periodicity of Eq. (7) in the flux Φ [87]. We account for
elastic scatterings by assigning uniformly random hopping
strengths along the ring [88]. However, since the local
conservation law spans the whole ring, hJji remains uni-
form across all sites.
As illustrated in Fig. 1(b), the fermionic reservoir is

connected to a single site within the ring [89], inducing a
self-energy Σ≡ ΣNð0Þ. Consequently, the ring is described
by Heff ¼ Hring þ Σ. When μ ¼ 0, similar to the SNS
junctions, the LR-basis current ILRðϕÞ of the ring will
diverge at EPs near ϕ ¼ π. Here, in order to explore
different impacts of EPs, we set μ ¼ −1 and shift two
EP modes ε� below the Fermi level, as depicted in
Fig. 1(d). Since ε� contribute to ILRðϕÞ in pairs, their
divergences cancel out, resulting in a smooth curvature for
ILRðϕÞ in Fig. 2(b). The RR-basis current IRRðϕÞ violates
the local conservation law and exhibits a nonsinusoidal
curve due to inhomogeneous hopping strengths. Neither of
these approaches can accurately describe the persistent
current IðϕÞ. However, the current IðϕÞ calculated using
Eq. (1) aligns with exact diagonalization results that include
a large reservoir. Compared to the current in the isolated
ring, IðϕÞ is reduced because the positive current contri-
butions from single-particle modes are diluted by dissipa-
tion-induced level broadening [90]. These conclusions
remain consistent regardless of the number of reservoirs.
Finite temperature and interaction effects—First, we

consider the effect of thermal fluctuations on the persistent
current [91]. This requires integrating ρðωÞ over ω using
fFDðω; βÞ ¼ 1=ðeβω þ 1Þ with β ¼ 1=kBT and kB is the

Boltzmann constant. Subsequently, feffðεÞ in Eq. (5) is
extended to form an effective NH Fermi-Dirac distribution
at finite temperatures:

feffðε; βÞ ¼ −
1

π

�
Ψ
�
1

2
þ iβε

2π

�
−
iπ
2

�
; ð8Þ

where the digamma function Ψ [92] is defined as the
derivative of the log-gamma function logΓ [93]. Using
Eq. (8), we find that at finite temperatures, Eq. (1) becomes
(see Supplemental Material [54]):

Iðϕ; βÞ ¼ 2

β

d
dϕ

ReTr logΓ
�
1

2
þ iβ
2π

Heff

�
; ð9Þ

which extends the expression 2∂ϕF for the persistent
current, where F denotes the free energy in Hermitian
systems [56], to encompass NH scenarios. As shown in
Figs. 3(a) and 3(b), Eq. (9) includes Eq. (1) when at T ¼ 0
and accurately matches the currents for T ≠ 0 calculated by
exact diagonalization. This indicates a decrease in currents
for both systems as T increases. As illustrated in Fig. 3(c),
such an excellent agreement is grounded on the fact that
Imfeffðε; βÞ in Eq. (8) will revert to fFDðε; βÞ as Imε → 0.
The smoothness of persistent currents near EPs can be
attributed to the analytic properties of feffðε; βÞ in the lower
half of the complex plane [54].
To examine potential characteristics of EPs in the presence

of many-body interactions, we introduce the electrostatic
repulsion Hint ¼ U

P
j∈Nðnj − 1=2Þðnjþ1 − 1=2Þ, where

U is the interaction strength. In such interacting scenarios,
the first equality in Eq. (2) remains valid for the ground state.
To maintain each reservoir as large asNE ¼ 101, we perform
the density matrix renormalization group (DMRG) algo-
rithm via DMRGpy [94]. Figures 3(d) and 3(e) show that as
U increases, the amplitude of IðϕÞ in both systems will
eventually be suppressed to zero due to the enhanced
electron-electron scattering [95]. No signatures of EPs are

FIG. 3. Effects of temperature and interactions on persistent currents IðϕÞ in NH systems. Panels (a) and (b) display IðϕÞ at finite
temperatures β ¼ 1=kBT for an SNS junction and a mesoscopic ring, compared to isolated systems at T ¼ 0 (green). The currents
computed using Eq. (9) (dashed) are consistent with the exact diagonalization (solid), indicating a decrease in IðϕÞ as T increases.
(c) Illustration of the imaginary part of the NH Fermi-Dirac distribution at zero and finite temperatures, where Imfeffðε; βÞ in Eq. (8)
will reduce to the conventional Fermi-Dirac distribution (dashed) as Imε → 0. In (d) and (e), many-body interactions are shown
to suppress the amplitude of IðϕÞ in both systems. The parameters are as in Fig. 1. No singularities are found at EPs (black lines)
in all cases presented.
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detected in the current in any of the cases presented with
respect to temperatures and interactions.
Current susceptibility—To elucidate the presence of

EPs in systems with a phase-dependent spectrum, here
we derive their linear response to a time-dependent
phase driving ϕðτÞ ¼ ϕþ δϕðτÞ, with δϕðτÞ ≪ 1. The
current susceptibility that characterizes the response is
given by [96–98]:

Πðϕ; τÞ ¼ −iΘðτÞh½JðτÞ; Jð0Þ�i: ð10Þ

We first transform Eq. (10) to the frequency space
Πðϕ;ωÞ ¼ R

Πðϕ; τÞeþiωτdτ and use the biorthogonal
modes to obtain

ImΠðϕ;ωÞ ¼ πt2jRe½Pðϕ;þωÞ − Pðϕ;−ωÞ�;
Pðϕ;ωÞ ¼ þPjþ1;j;jþ1;jðωÞ − Pj;j;jþ1;jþ1ðωÞ

þ Pj;jþ1;j;jþ1ðωÞ − Pjþ1;jþ1;j;jðωÞ; ð11Þ

with PijklðωÞ≡ R hijρðω0Þjjihkjρðωþ ω0ÞjlifFDðω0Þdω0. In
the case of SNS junctions, Pðϕ;ωÞ contains four additional
terms stemming from the contributions of the holes [99].
Nevertheless, the integral PijklðωÞ is shared by both
systems and possesses an analytical expression at T ¼ 0:

PijklðωÞ ¼
X
nm

pnm−
ijkl þ pnm̃þ

ijkl þ pñm−
ijkl þ pñ m̃þ

ijkl

4
;

pnm�
ijkl ≡ −

1

π
ψR
niψ

L�
njψ

R
mkψ

L�
ml
feffð�εnÞ − feffð�εm ∓ ωÞ

ð�εnÞ − ð�εm ∓ ωÞ ;

ð12Þ

where the tilde over m conjugates the m eigenvalue and
exchange L ↔ R on the m-biorthogonal wave functions.
Equation (12) embeds feffðεÞ and reduces to the Hermitian
case PijklðωÞ¼

P
nmψniψ

�
njψmkψ

�
mlΘð−ϵnÞδðωþϵn−ϵmÞ

in the decoupled limit κ→0. In NH systems, ImΠðϕ;ωÞ
will peak at level transitions ω ¼ Reεm − Reεn with a
larger linewidth due to a finite Imεm. As shown in Fig. 4,
this broadened effect is more evident when transitions
between levels encounter EPs. As κ=t increases, these
peaks will be significantly enhanced and accumulate
towards the regions between EPs. Our results agree with
the full exact diagonalization [54] and are consistent with
the Lindblad formalism [40]: (i) the effect of EPs cannot be
observed in the steady state (including equilibrium); (ii) any
manifestation of an EP has a dynamical nature.
Conclusions and outlook—In this Letter, we identified an

effective distribution that captures the quantum many-body
observables of NH fermionic systems in equilibrium. This
distribution, derived microscopically from the biorthogonal
Green’s function, serves as an extension of the Fermi-Dirac
distribution for NH systems. We utilized this formalism in
the context of quantum transport and derived an analytical

equation for the persistent current flowing in SNS junctions
and normal mesoscopic rings connected to reservoirs.
We demonstrated that there are no anomalies in the
persistent currents near EPs, showing that their amplitudes
are suppressed by thermal fluctuations and many-body
interactions. Our findings have been validated through
exact diagonalization with excellent agreement. We con-
clude that the signatures of EPs are only discernible in a
dynamical quantity—the current susceptibility—rather
than a static observable.
Our formalism extends beyond quantum persistent

current transport and holds promise for broader applica-
tions. It can be adapted to systems such as multi-Josephson
junctions [100–102] and quantum spin chains [103],
potentially unveiling new insights into their topological
and entanglement characteristics. Furthermore, generaliz-
ing this formalism to encompass nonequilibrium scenarios,
such as quantum pumps [104–106], shows great potential.

Note added—Our formalism fully agrees with the
scattering matrix theory [107] and can be applied to
calculating additional thermodynamic quantities [108].
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