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Driven-dissipative physics lie at the core of quantum optics. However, the full interplay between a driven
quantum many-body system and its environment remains relatively unexplored in the solid state realm.
In this Letter, we inspect this interplay beyond the commonly employed stroboscopic Hamiltonian picture
based on the specific example of a driven superconductor. Using the Shirley-Floquet and Keldysh
formalisms as well as a generalization of the notion of superconducting fitness to the driven case, we show
how a drive which anticommutes with the superconducting gap operator generically induces an unusual
particle-hole structure in the spectral functions from the perspective of the thermal bath. Concomitant with
a driving frequency which is near resonant with the intrinsic cutoff frequency of the underlying interaction,
this spectral structure can be harnessed to enhance the superconducting transition temperature. Our work
paves the way for further studies for driven-dissipative engineering of exotic phases of matter in solid-state
systems.

DOI: 10.1103/PhysRevLett.133.086001

In the past decade, controllable light-matter coupling and
Floquet engineering have emerged as powerful tools to tailor a
plethora of phenomena in quantummany-body systems. This
has permitted the exploration of novel out-of-equilibrium
physics in the realm of quantum simulation as well as solid-
state platforms. In the context of superconductivity, these tools
have been shown to enhance [1–5] or induce superconduc-
tivity [6–9], and even generate exotic orders. These include
nontrivial topology [10–13], odd-frequency correlations
[14,15], η-pairing [16–19], entropy-cooling mechanism
[20], as well as Ampèrean [21] and chiral superconductivity
[22]. Most of these Floquet engineering schemes rely on the
effective stroboscopic Hamiltonians [23–25], which are
renormalized, acquire new terms, or obtain an extra synthetic
dimension [26–29].
Meanwhile, dissipative environments are ubiquitous, and

help mitigate the problem of heating endemic to most
interacting driven systems. Dissipation has also been
developed as a resource to engineer correlated steady states
especially for quantum computation applications [30].
Combining both drive and thermal dissipation paves the
way for the exploration of surprising phenomena associated
with the relative rotation between the system and the bath,
which is intrinsically beyond the scope of effective strobo-
scopic Hamiltonians. In quantum optical-gaseous systems,
dissipation is well captured by the rotating wave approxi-
mation and thus the Lindblad formalism, as the typical

system energy scales (<GHz) are much smaller than the
driving frequency (∼THz) [31,32]. This formalism predicts
unexpected driven-dissipative effects such as dissipative
freezing [33], quantum synchronization [34], modified
critical behaviors [35–37] and a stability towards high-
energy steady states [38–42].
In contrast, the intrinsic energy scales of solid-state

systems (∼100 GHz) are comparable to the terahertz
driving frequencies in state-of-the-art experiments, making
the Lindbladian approach insufficient. A more general
description of the complex interplay between the drive
and the thermal bath requires a combination of the Floquet
[23,24] and Keldysh [31,43–45] formalisms.
In this Letter, we explore how this interplay affects long-

range order. Focusing on the example of driven-dissipative
superconductors, we address whether periodic driving
enhances or reduces superconducting order. For static
superconductors, the fitness criterion based on the com-
mutator of the normal state Hamiltonian Ĥ0;k and the gap
matrix Δ̂k quantifies the potential stability of supercon-
ducting states [46–48]. It motivates us to propose a similar
measure for the driven system:

½Ĥ�1;k; Δ̂k�−ζ ¼ 0; ð1Þ

where Ĥ�1;k are the lowest order Fourier components of the
drive Hamiltonian and ζ ¼ þ1 (ζ ¼ −1) denotes the
commutator (anticommutator). Surprisingly, anticommut-
ing drives reorder the particle-hole structure of the Floquet
spectral functions, as depicted in Fig. 1(a). When coupled
to a thermal bath, this structure suggests a general scheme
for the enhancement of the superconducting transition
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temperature, see Fig. 1(c). Commuting drives, on the other
hand, are generically detrimental to superconductivity.
Our proposal is rather general and goes beyond standard
mechanisms like dynamic squeezing of phonons [1,2] and
coherent destruction of electronic tunneling [3–5]. It opens
the door for further studies for driven-dissipative engineer-
ing of exotic phases of matter in solid-state systems.
We consider a time-periodic single-particle Hamiltonian

coupled to a static bath

H ¼
X
l∈Z

eilΩt
X
k

Ψ†
kHl;kΨk þ

X
q;r

ξq;rb
†
q;rbq;r

þ
X
k;q;s;r

�
Wk;qc

†
k;sbq;r þ H:c:

�
; ð2Þ

where ck;s (bq;r) are the fermionic annihilation operators
of the system (bath) with momenta k (q) and internal
degrees of freedom s (r), andΨk ¼ ðck;s1 ; ck;s2 ;…ÞT;Wk;q

describes the weak system-bath coupling, while ξq;r is the
bath dispersion. We use the Floquet-Keldysh formalism in
this Letter.
The Shirley-Floquet formalism captures the time perio-

dicity of the Hamiltonian by expressing it in the Floquet
representation as [24,25,49] (ℏ ¼ kB ¼ 1)

H ¼
X
l∈Z

HlFl −ΩN; ð3Þ

where ðFlÞm;n ¼ δm;n−l and Nm;n ¼ mδm;n are matrices in
Floquet space, see Supplemental Material [50]. Since

Floquet matrix entries ðm; nÞ sharing the same l¼m−n
are physically equivalent, they can be categorized into the
lth family of the Wigner representation [49] as

HlðωÞ≡ Hm;mþl½ω − ðmþ l=2ÞΩ�: ð4Þ
This structure also applies to other quantities as Green’s
functions G and thermal distributions ρ.
In the Keldysh formalism, the bath is the source of

two effects [31,44,45]. First, the bath’s spectral func-
tion ΣðωÞ≡ π

P
q;r jWk;qj2δðω − ξq;rÞ enters the system’s

retarded or advanced Green’s function as ω ↦ ω� ¼
ω� iΣðωÞ, widening its poles and rendering the excitation
lifetime finite. Our results are qualitatively independent of
the specific structure of ΣðωÞ, and we consider a Markovian
bath ΣðωÞ ¼ Σ for an emphasis on the qualitative features.
Second, the bath defines the thermal density distribution ρ,
which relates the retarded and advanced Green’s function
GR=A ¼ ðω�F0 − HÞ−1, to the Keldysh Green’s function
through the generalized fluctuation-dissipation theorem in
Floquet space [31]

GK ¼ GRρ − ρGA: ð5Þ
Particularly, in the lab frame where the bath is static, ρ has a
simple form in the Wigner representation as

ρl ¼ tanhðω=2TÞδl;0: ð6Þ

The drive induces an intrinsic relative rotation between
the system and the bath, which cannot be eliminated in any
rotating frame. A usual strategy to solve the driven system
is to diagonalize the system Hamiltonian in Floquet space,
H ↦ H0 ¼ P†HP ¼ H0

0F0 − ΩN, where H0
0 is the effective

stroboscopic Hamiltonian, and the transformation operator
P is a function of Fl [25]. However, the frequency
dependence in the Floquet structure of ρðωÞ makes it
noncommuting with both GR and P. As a consequence, the
bath distribution becomes generally nonthermal in the
rotating frame, see Supplemental Material [50],

ρ ↦ ρ0 ¼ P†ρP ≠ ρ: ð7Þ

For example, for systems effectively described by a
Lindbladian, we obtain a frequency-detuned thermal distri-
butionρ0ðωÞ ¼ ρðωþ ΩÞ, which suggests the inadequacy of
the effective stroboscopic Hamiltonian to comprehensively
capture the full dissipative physics.More generally, a Floquet
Fermi liquid is obtained [51], leading to more exotic effects.
From now on, we focus on the specific example of

superconductors in the Nambu spinor basis Ψk ¼
ðck↑; ck↓; c†−k↑; c†−k↓ÞT. The single-particle Hamiltonian

of the superconductor Ĥl;k entering Eq. (2) is now
explicitly written in Nambu (with Pauli matrices τi) and
spin (σi) spaces. A time-independent attractive interaction
(g > 0) described by

FIG. 1. (a) Schematic representations of the Floquet band
structure of the driven superconductor, when the drive (left)
commutes and (right) anticommutes with the gap, cf. Eq. (1). In
the anticommuting case, the roles of particles and holes are
exchanged in every alternating temporal Brillouin zone. This
ensures the excitations unfavorable to superconductivity lie outside
of the cutoff frequency ΩC, and, consequently, the system is less
susceptible to temperature change of the bath. (b),(c) The time-
averaged gap Δ0 as a function of temperature T for (b) ζ ¼ þ1
[H1 ¼ ða=2Þτ0σy] and (c) ζ ¼ −1 [H1 ¼ ða=2ÞsgnðkxÞτzσy]. In
panel (c), Δ0 is also plotted in logarithmic scale in the inset. Here,
Eq. (9) is solved for flat-band superconductors Eq. (20).
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Hint ¼ −
X
k1;k2

gk1;k2
c†k1↑

c†−k1↓
ck2↑c−k2↓ ð8Þ

induces superconductivity in a specific symmetry channel
characterized in the mean-field treatment by the spin-
singlet gap matrix Δ̂k ¼ dkτyσy.
To evaluate the impact of drive and dissipation on the

superconducting order, we treat the interaction in the mean-
field limit using a Hubbard-Stratonovich transformation
generalized to the Floquet-Keldysh space [52]. In contrast
to Ref. [52], we explicitly consider the effects stemming
from Eqs. (5) and (7). Representing the gap in terms of its
Fourier components ΔðtÞ ¼ P

l∈ZΔleilΩt, we obtain a
self-consistent gap equation

X
l∈Z

ΔlFl ¼ ig
Z

dω
X
k

trτσ
�
Δ̂kĜ

K;
k

�
; ð9Þ

where the trace is normalized tr1 ¼ 1, and the Keldysh
Green’s function is defined by Eq. (5), with

�
ĜR=A
k

�
−1 ¼ ω�τ0σ0F0 − Ĥk − Δ̂k

X
l∈Z

ΔlFl: ð10Þ

Notably, using ½P; Fl�− ¼ 0 and the invariance of trace
under similarity transformations, the gap equation can be
shown to be invariant under a general change of reference
frame, see Supplemental Material [50]. This indicates that
any gap oscillation in a driven-dissipative superconductor is
intrinsic. It is a manifestation of Eq. (7) and allows us to
work in the lab frame where calculations are significantly
simplified.
To investigate the effects of the intrinsic system-bath

rotation, we consider a weak, sinusoidal drive with
momentum-dependent amplitude ak implemented upon a
superconductor with electronic dispersion ϵk,

Ĥ0;k ¼ ϵkτzσ0; Ĥ�1;k ¼
ak
2
τμσν; Ĥjlj≥2 ¼ 0; ð11Þ

with μ∈ f0; zg and jakj ≪ Ω. The driving frequency is at
least comparable to the electronic energy scaleΩ≳ ϵk. The
weak drive motivates us to assume a priori that the gap is
dominated by its time-averaged value Δ0 ≫ jΔjlj≥1j,

Δ̂k

X
l∈Z

ΔlFl ≈ Δ0dkτyσyF0; ð12Þ

where we have chosen the gauge Δ0 ≥ 0. This approxi-
mation captures the dominant features of the driven-
dissipative superconductor by allowing us to write a
Dyson equation for the Green’s function as

ĜR
k ¼ ˆ̃G

R
k

X∞
n¼0

�
ak
2
τμσνðF1 þ F−1Þ ˆ̃GR

k

�
n
: ð13Þ

Here, ˆ̃G
R
k ≡ ĜR

kðak ¼ 0Þ describes the nondriven system

and can be solved as ð ˆ̃GR
kÞlðωÞ ¼ δl;0

ˆ̃G
R
kðωÞ, with

ˆ̃G
R
kðωÞ ¼

ωþτ0σ0 þ ϵkτzσ0 þ Δ0dkτyσy
ω2þ − E2

k
; ð14Þ

where Ek ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ Δ2

0d
2
k

p
. By substituting the ansatz

Eq. (13) into the gap equation Eq. (9), the Fourier
components of the gap Δl are determined by the

Wigner Green’s functions ðĜR
kÞlðωÞ ∼ ðak=2Þjlj ˆ̃GR

kðωÞ×Ql
n¼1 ½τμσν ˆ̃G

R
kðω� nΩÞ�. By noticing that ak

ˆ̃G
R
kðEk −

nΩÞ ∼ ak=Ω for n ≠ 0, we find Δl ∼ ðak=ΩÞjljΔ0, which
validates Eq. (12).
The dominance of the static component of the order

parameter indicates that the superconducting excitations
can be characterized by the electron-hole spectral function
Aeh, the anomalous spectral function Aan, and the anoma-
lous response function Ran of the l ¼ 0 Wigner Green’s
functions,

Aeh
k ðωÞ ¼ −Im trτσ

h
ðĜR

kÞl¼0

i
=π;

Aan
k ðωÞ ¼ −Im trτσ

h
dkτyσyðĜR

kÞl¼0

i
=π;

Ran
k ðωÞ ¼ −Im trτσ

h
dkτyσyðĜK

k Þl¼0

i
=π: ð15Þ

Notably, the spectral functions capture the driving effects
on the superconductor, while the response function cap-
tures the thermal effects induced by the bath. The gap
equation Eq. (9) is now reduced to

Δ0 ¼ ig
X
k

Z
dωRan

k ðωÞ; ð16Þ

where Eq. (5) manifests in the lab frame as

Ran
k ðωÞ ¼ tanh

�
ω

2T

�
Aan

k ðωÞ: ð17Þ

The driving induces a specific Floquet structure in the

spectral functions. For the nondriven system, ð ˆ̃GR
kÞl¼0 has

two equivalent poles at ωþ ¼ �Ek reflecting the particle-
hole symmetry imposed by the Nambu basis. The corre-
sponding spectral functions are [Figs. 2(a) and 2(d)]

Ãeh
k ðωÞ ¼

1

2
½LΣðω − EkÞ þ LΣðωþ EkÞ�;

Ãan
k ðωÞ ¼

Δ0dk
2Ek

½LΣðω − EkÞ − LΣðωþ EkÞ�; ð18Þ

where LΣ denotes a Lorentzian distribution LΣðωÞ ¼
Σ=½πðω2 þ Σ2Þ�, which recovers a Dirac delta distribu-
tion LΣ→0þðωÞ ¼ δðωÞ in the weakly dissipative limit.
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In contrast, the Green’s function for the driven system
ðĜR

kÞl¼0 acquires infinitely many shifted poles at
ωþ ¼ �Ek þ nΩ, n∈Z. In the high-frequency limit
Ω ≫ ϵk for clarity, we find the lowest-order contributions
to the spectral functions in the (nþ 1)th temporal Brillouin
zone ω=Ω∈ðn−1=2;nþ1=2� behave as [Figs. 2(b), 2(c),
2(e), and 2(f)]

Aeh
k ðωÞ ≈

X∞
n¼−∞

1

ðn!Þ2
�
ak
2Ω

�
2jnj

Ãeh
k ðω − nΩÞ;

Aan
k ðωÞ ≈

X∞
n¼−∞

ζn

ðn!Þ2
�
ak
2Ω

�
2jnj

Ãan
k ðω − nΩÞ: ð19Þ

The following discussion is valid for large Ω up to
Ω ≈ 2Ek, in which case the drive induces a parametric
resonance between the particle and hole excitations [50].
We now elucidate the role of the commutator, Eq. (1). In

the commuting case [cf. Eq. (1)], ζ ¼ þ1, e.g., when the
drive is realized by a magnetic field along the y direction
μ ¼ 0, ν ¼ y, the Wigner Green’s functions admit analyti-

cal solutions as ðĜR
kÞlðωÞ ¼

P
l̃∈Zþl=2

ˆ̃G
R
kðωþ l̃ΩÞ×

Jl̃þl=2ðak=ΩÞJl̃−l=2ðak=ΩÞ, with Jl the Bessel functions
of the first kind, see Supplemental Material [50]. The
physical consequences of the driving are not reflected in the
spectral functions

R
∞
−∞ dωAeh=an

k ðωÞ ¼ R
∞
−∞ dωÃeh=an

k ðωÞ
[53], but only in the response function

R∞
−∞ dωRan

k ðωÞ <R∞
−∞ dωR̃an

k ðωÞ. In this case, the intrinsic system-bath

rotation is detrimental to superconductivity, cf. Eq. (16),
as confirmed in Fig. 1(b).
In contrast, the anticommuting case, ζ ¼ −1, has more

intriguing features. This can be realized by μ ¼ z, ν ¼ y,
associated to a Rashba-like spin-orbit coupling. In the
anomalous spectral function Aan [Fig. 2(f)], an extra phase
shift of π is introduced in the gap Δ0 → −Δ0 as one moves
from one temporal Brillouin zone to the next, which
results in an alternating sign in Aan across temporal
Brillouin zones. Effectively, the roles of particle and hole
are successively exchanged, as depicted in Fig. 1(a). The
physical consequences of this phase shifting is evident in
the response function Ran [Fig. 2(i)]. Its four poles closest
to the Fermi surface at ωþ ¼ �Ek and ωþ ¼ �ðEk −ΩÞ
carry positive weights.
We now discuss the effects of an anticommuting drive on

the gap equation, Eq. (16). To the lowest order, the response
functions at ωþ ¼ �Ek contribute to the gap with
ðΔ0=EkÞ tanh ðEk=2TÞ, cf. Eq. (13). This contribution is
significant at zero temperature and very sensitive to
temperature because of its proximity to the Fermi surface.
In contrast, the response functions at ωþ ¼ �ðEk −ΩÞ
contribute with ða2=4Ω2Þ½Δ0ðΩ2 − 4ϵ2kÞ=EkðΩ − 2EkÞ2�×
tanh ½ðΩ − EkÞ=2T�. Particularly, at large driving frequency
Ω ≫ Ek, these excitations are distant from the Fermi
surface, and their contribution is much less sensitive to
temperature. Consequently, the combined contribution
from all four excitations is expected to be greater than
the non-driven counterpart [Fig. 2(g)] at high temperatures
T > Ek. To enhance superconductivity, the analysis of the
response function motivates us to suppress all other
excitations, particularly the ones detrimental to the gap
at ωþ ¼ �ðEk þΩÞ. This can be achieved by choosing a
drive in close resonance to the intrinsic interaction’s cutoff
frequency ΩC, such that δΩ≡Ω − ΩC ≪ Ω. We assume
that the cutoff, as given, for example, by the phonon Debye
frequency, remains unaffected by the drive.
We show how our scheme works for the simple scenario

of a flat-band system with s-wave superconductivity
and a drive associated with a Rashba-like spin-orbit
coupling, i.e.,

ϵk ¼ 0; dk ¼ 1; ak ¼ asgnðkxÞ: ð20Þ

To the order of Oða2=Ω2Þ, the anomalous spectral function
can be approximated by

AanðωÞ≈
�
1

2
−

a2

4Ω2

�
½LΣðω−Δ0Þ−LΣðωþΔ0Þ�

þ a2

8Ω2
½LΣðω−ΩþΔ0Þ−LΣðωþΩ−Δ0Þ�; ð21Þ

where excitations lying beyond the cutoff frequency
jωj > ΩC are omitted. The corresponding gap equation
for Δ0 in the weakly dissipative limit Σ → 0þ now reads

FIG. 2. (a)–(c) The electron-hole spectral functions, (d)–(f) the
anomalous spectral functions, and (g)–(i) the anomalous response
functions [Eq. (15)] of the weakly dissipative Σ → 0þ super-
conductors in the first three temporal Brillouin zones
ω∈ ð−3Ω=2; 3Ω=2�, for the (a),(d),(g) undriven, (b),(e),(h) com-
muting (ζ ¼ þ1), and (c),(f),(i) anticommuting (ζ ¼ −1) cases.
Parameters are taken as ϵk ¼ 0, Δ0dk ¼ 0.1Ω, ak ¼ 0.6Ω.
(g)–(i) For the response functions, results for zero temperature
(blue dots) and intermediate temperature (red squares) are shown.
The green background indicates the region below the cutoff
frequency ΩC.
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Δ0

gN
≈
�
1 −

a2

2Ω2

�
tanh

�
Δ0

2T

�

þ a2

4Ω2
tanh

�
Ω
2T

�
; ∀Δ0 > δΩ; ð22Þ

where N is the total density of states. Dissipation with
characteristic energies comparable to the gap Δ0 will
suppress superconductivity [52].
The enhancement of superconductivity can be confirmed

by a finite order parameter beyond the critical temper-
ature of the nondriven superconductor Tc0 ¼ gN=2. At
high temperatures T ≫ Ω, the gap of the driven super-
conductor exhibits an asymptotic behavior of Δ0 ∼ 1=T,
with a first-order jump from finite to vanishing values at the
temperature

Tc

Tc0
≈

a2

8Ω2

Ω
δΩ

: ð23Þ

This result implies the existence of superconductivity at
arbitrarily high temperatures for a resonantly tuned driving
frequency δΩ → 0. We confirm our analysis by numerically
solving Eq. (9) for flat-band superconductors Eq. (20) at
different temperatures; see Fig. 1(c). The numerical sol-
utions confirm our assumption that the oscillating compo-
nents are negligible compared to the constant component,
see Supplemental Material [50]. In the weak coupling limit,
the robustness of our scheme manifests itself in its
qualitative validity (i) when the driving frequency is set
to be resonant with any odd submultiple of the cutoff
frequency, and (ii) for dispersive superconductors (see
Supplemental Material [50]) and superconducting gap of
symmetries other than s wave.
In summary, the Floquet-Keldysh formalism, in con-

junction with a generalization of the fitness criterion to
driven superconductors, provides a framework to engineer
specific drives to enhance the superconducting transition
temperature [48]. In the static limit, a normal state fully
anticommuting with the gap matrix ½Ĥl¼0;k; Δ̂k�þ ¼ 0
induces a maximal gap, which can be reduced by any
commutativity. Based on a given static system, a drive in
the normal state anticommuting with the gap matrix
½Ĥl¼�1;k; Δ̂k�þ ¼ 0 further potentially enhances the gap
in the vicinity of the transition temperature of the static
system. Our mean-field treatment of the interaction media-
tor intrinsically neglects its fluctuations. These fluctuations
potentially stabilize the superconductivity in equilibrium
[54–59], but can also induce thermalization and quasipar-
ticle scattering in driven systems. These effects should be
further investigated in the future.
We clarify the distinctions between our scheme with

others in literature. Schemes for the enhancement of
superconducting order based on phonon driving and
squeezing [1,2] or coherent suppression of electron

tunneling [3–5] rely on the description of stroboscopic
Hamiltonians. Moreover, Ref. [60] studied a Rabi drive
using the formalism presented here. Unlike the sinusoidal
drive discussed here, the Rabi drive inherently induces
solely corotating dynamics, validating a simplified treat-
ment using Lindbladians, cf. Eq. (7). Furthermore, the
interaction mediator also acts as a thermal bath, and it is
usually coupled to the electronic system in a fundamentally
different form than Eq. (2). Its effects have been inves-
tigated for cavity-mediated [58] and driven phonon-
mediated [61,62] superconductors. Particularly in the latter
case, features similar to our systems are observed, like first-
order transition and the associated hysteresis of the super-
conducting gap.
Our results indicate that the enhancement of the super-

conducting transition temperature is most pronounced for
flat-band systems [50]. Material platforms with flat elec-
tronic bands have been extensively discussed in the context
of twisted two-dimensional Van der Waals materials
[63,64] and heavy fermion systems [65]. Flat bands have
also been theoretically identified near the Fermi level in
three-dimensional materials, including Weyl-Kondo semi-
metals [66] and materials with kagome, pyrochlore, or
Lieb sublattice structures [67]. In addition, recent exper-
imental developments have shown that it is possible to
generate Floquet bands in Van der Waals materials [68]
and graphene [69] with light in the THz regime. These
results suggest that the necessary experimental ingre-
dients for realizing our proposal are readily available.
Moreover, materials with other unconventional band struc-
tures like Van Hove singularities, which has high density of
states close to the Fermi surface, can also potentially be
candidates of our proposal and manifest more intriguing
features [51].
To conclude, inspired by the interplay between drive and

dissipation in quantum optical systems, we have illustrated
the capability of driven-dissipative engineering, specifi-
cally in tailoring superconducting order. This stimulates
exploration and generalization of the technique to other
ordered states of matter in solid state platforms.
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