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Experimental demonstration of tunable temporal Goos-Hénchen shift (GHS) in synthetic discrete-time
heterolattices with scalar and vector gauge potentials is reported. By using Heaviside-function modulation
in two fiber loops, we create a sharp gauge-potential interface and observe temporal GHS for total internal
reflection (TIR), which manifests as a time delay rather than a spatial shift. The TIR occurs as the incident
mode falls into the band gap of transmitted region with band shifting by scalar and vector potential. We find
that both scalar and vector potential codetermine GHS by controlling the decay (imaginary part) and
oscillation (real part) of a penetrated evanescent wave, in stark contrast to traditional spatial GHS only
determined by the decay factor. We also observe diverging characteristics of GHS at band-gap edges where
evanescent-to-propagating wave transition occurs. GHS for frustrated total internal reflection (FTIR) by a
finite-width evanescent barrier is also demonstrated, which shows saturation properties to the single-
interface TIR case under infinite-width limit. Finally, we develop an accumulation measurement method
using multiple TIRs to improve the precision for measuring even tinier GHS. The study initiates precise
measurement of temporal GHS for discrete-time reflections, which may feature potential applications in

precise time-delay control and measurement.

DOI: 10.1103/PhysRevLett.133.083802

Introduction—Goos-Hénchen shift (GHS) [1] refers to a
spatial beam displacement relative to its geometric center
upon total internal reflection (TIR) at two media’s interface.
The existence of GHS indicates more precision of wave
optics over ray optics in describing light propagation
in dielectric media [2-4], with some key applications in
optical sensing and interferometry [5—7]. Since GHS is
essentially an interference effect, it arises in many other
wave systems beyond optics, including electron waves
[8,9], neutrons [10], spin waves [11], matter waves [12,13],
and Weyl media [14-16]. Besides in continuous media,
GHS has been also extended to structured media like
photonic crystals [7,17-21], waveguide arrays [22,23],
subwavelength gratings [24,25], and metamaterials [26].
However, all these studies have been limited to spatial
interfaces, where GHS manifests as a purely spatial
displacement that usually cannot be tuned or reconfigured
once the media or structures have been fabricated. Inspired
by recent interest in studying temporal boundary effects,
including time reflection and refraction [27-30], temporal
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light guiding [31,32] and time crystals [33—35], there also
emerges a theoretical proposal on realizing temporal GHS
at continuous time boundary created via an abrupt change
of the medium’s refractive index [36]. However, con-
tinuous temporal boundaries usually require very fast and
large index modulations, which are challenging to realize
in experiment. Alternatively, discrete temporal bounda-
ries can also be created in synthetic temporal lattices
using fiber-loop circuits [37-42]. Without relying on real
material’s index change, discrete time boundaries are
created by introducing scalar and/or vector potential
steps, which can be readily synthesized and reconfigured
through external modulations. Since the real timescales of
synthetic lattices are defined by fiber-loop lengths, they
can also be flexibly scaled up or down to fit high-speed
modulation demands.

In this Letter, we theoretically propose and experimen-
tally demonstrate tunable temporal GHS at gauge-potential
interfaces created in discrete temporal lattices. We show
that scalar and vector potentials can induce a vertical and
horizontal band shift, enabling the creation of a potential
step via Heaviside-function modulation. As the incident
mode falls into the band gap of the transmitted region,
temporal TIR occurs and GHS is generated. We find both
scalar and vector potential codetermine GHS by controlling
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evanescent-wave decay and oscillation tails, with a giant
GHS reached at band-gap edges. We also measure GHS for
frustrated total internal reflection (FTIR) by a finite-width
evanescent barrier, which increases with barrier width and
saturates at infinite-width limit of single-interface case.
Finally, an accumulation measurement technique using
multiple TIRs is proposed and demonstrated, which can
provide accurate measurements of very tiny GHS.

GHS for temporal TIR—To observe temporal GHS,
we synthesize a discrete-time heterolattice using pulse
evolutions in two coupled fiber loops [Fig. 1(a)], where
light dynamics is described by the discretized iteration
equations [37-42]

ult = [cos(B)urcl + isin(B)vml]e

v = [isin(B)u™! + cos(B)v e, (1)

where u)!, v} are pulse amplitudes in leftward or rightward
path towards the node at site n and step m, (0 < f < z/2)
is the coupling angle of central coupler, corresponding
to a splitting ratio of cos?(f)/sin?(). The additional
phase shifts ¢, ¢, in short or long loops are associated
to a scalar ¢ and vector potential A through Peierls’
substitution [43—46]: ¢, = [ pdm+ [" | Adn=g—A,
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FIG. 1. (a) Sketch of two coupled fiber loops to realize
synthetic temporal lattice. PM: phase modulator; PD: photon
detector; OC: optical coupler. (b) Schematic band shift by scalar
potential ¢ = z/5 or vector potential A = /2 under f = /4.
(c) Discrete-time heterolattice with gauge-potential distribution
(@1,A1), (¢2,A5) using nonuniform phase modulations
(urs@Pu1)s (Puz,dyo), with interface locating at ng; = 0.5.
The input, output packets’ positions are n;, n,, and total evolution
step is m = M. The dashed arrow denotes geometric-optics-
predicted beam center. v,(k;) denotes group velocity of the
incident packet. GHS is denoted by A.

¢, = [" pdm+ [" Adn =@+ A, which yields
o= (¢, +¢,)/2, A= (¢, — ¢,)/2. For a homogeneous
lattice with uniform ¢,, ¢,, the Bloch -eigenstate
is  (u?, v = yekre=0m  where w = (U,V)T s
eigenvector, k is the transverse Bloch momentum, and 6
is the longitudinal propagation constant (quasienergy)
defined by Floquet band structure 6. (k) =
+cos~![cos(p) cos(k — A)] — ¢, “+” denote upper and
lower band branches. The vector and scalar potentials
can thus induce horizontal and vertical band shifts, respec-
tively [Fig. 1(b)]. Note that the Floquet band has two band
gaps: a “0-gap” between —ff < 6 < f centered at @ = 0 and
a “zm-gap” between 1 —f <@ <mor —x<0<-—-n+p
centered at 6 = x [Fig. 2(a)], which are responsible for
temporal TIR and GHS.

To induce TIR, we create a gauge-potential interface
between n =0 and n =1, corresponding to a gauge-
potential distribution (¢;,A,) = (0,0) for n <0 and
(@2, Ay) = (Ap,AA) for n>1 [Fig. 1(c)], where Ag,
AA are scalar and vector potential steps. Consider a
Bloch wave packet at (k;, ;) in “+” band incident from
the left side, it will excite reflected and transmitted packets
at (k,,0,) and (k,,0,), which generically read

(l//ieikln + rv/reik,n>e—i9,»m

twteik,ne—iﬁ,m

(n<0)
(nx1)

winm) = { @
where r, t are reflected and transmitted coefficients, v, y,.,
and y, are eigenvectors of incident, reflected, and trans-
mitted packets: y; = w(k;), = [1.—ete T /1 + e*4,
w, =y(k,), =[1,—ere ™| /V1+ ey, =y(k). =
(1, F eFhe i=bNT /\/1 4 ¢*24 }, . = sinh~![cot(f) x
sin(k; )], A, = sinh~![cot(B) sin(k, — AA)], and 6;,=
cos~![cos(B)cos(k; )], O,=cos™[cos(fB)cos(k,—AA)|—Agp.

To determine k,, according to Snell’s law, i.e., conser-
vation of tangential momentum (propagation constant)
parallel to the m axis, 8, = 6, = 0,, one obtains

cos(f) cos(k, — AA) = cos(0; + Ag). (3)

Throughout the Letter we choose Ag < 0, so that the right-
side band is shifted upward with respect to left one. This
analysis is also applicable to Ag > 0. As we continuously
increase —Ag from 0 to 2z [Fig. 2(a)], 6; will fall into
the 0 gap and 7 gap when (0; —f) < —Ag@ < (6, + p)
and (0, — p+ 7)) < —A@ < (6; + f + =). For both cases,
TIR occurs and the transmitted packet becomes an evan-
escent wave, which possesses a complex-valued Bloch
momentum

(0-gap)

- {AA +iK,
t (n-gap)

. 4)
AA + 7+ ik,

where k = cosh™![cos(0; + Ag)/ cos(B)] in 0-gap and
k = cosh™![—cos(0; + Ag)/cos(p)] in the = gap. In
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(a) Band matching for left- and right-side regions as —A¢ increase continuously from 0 to 2z under AA = 0. (b) Theoretical

GHS versus Agp and AA, where orange, green, and red curves denote AA = 0, z/2, and 7. (c),(d) Theoretical and measured GHS for
AA =0, n/2. (e),(f) Measured packet’s evolutions for AA = 0, Ap = —0.3667x, and AA = n/2, Ap = —0.5z under f = /6.

contrast to the traditional spatial evanescent wave taking a
purely decay shape ~e¢™" [1-26], the temporal evanescent
wave manifests a simultaneously oscillatory decay shape
~eAAne=kn where the oscillation and decay constants are
determined by vector and scalar potential differences,
respectively. More explicitly, there totally exist 4 cases
where y, belongs to, case 1: “4-” band in 0 gap; case 2: “—”
band in 0 gap; case 3: “—" band in z gap; and case 4: “+4”
band in 7 gap, as shown from bottom to top panels in
Fig. 2(a), where “+/—""is chosen for cases 1, 4 and 2, 3.
The reflection coefficient r can be obtained by imposing
wave function continuity of U atn = Oand Vatn = 1 [41],
|

(eﬂ:Z/l,—i;—HZAA _ 6_}”)6111-/09 + (e:tﬂ,—Z/l;-‘riAA _ e:l:ﬂ,—}—iAA)aj‘,/ag

Wi+, = ty,, ye*i + ry.e*r = ny et yielding

+1 — e:bl,—ﬂ[-&-iAA
r+ = PEET T (5)
where “+/—"is chosen for cases 1, 4 and 2, 3 with “—/+”
chosen in “F” (same below). Since TIR occurs, .. must be
unimodular and can be rewritten as . = e'?+, where ¢, =
—iln(ry) is the reflection phase. GHS is calculated using
Artman’s stationary-phase method: A, =0d¢. /00|,_y =
—i(0ry/00)/rilg_y,[8,20-23],  which  reads (see
Supplemental Material, Sec. II for derivation [47])

Ai:—i

Here 0J;/00 = cos(6)/+/cos?(B) — cos*(0), 04,/00 =
+cos(0 4 Agp)/+/cos?(f) — cos?(0 + Ag), in 9,/d6,
“+/—""1is chosen for cases 1, 3 and 2, 4. The behavior
of GHS versus A and AA is shown in Fig. 2(b). As
expected, GHS is nonvanishing only within the band gaps,
which is larger near band-gap edges than band-gap centers.
Specifically, as 8; + Ap = £ (or # £ ) at O-gap or z-gap
edges, the term 04,/d6 and hence GHS diverges at the
critical points where evanescent-to-propagative wave tran-
sition occurs. However, such a diverging behavior is
unphysical and disappears when we consider the full
scattering problem of a finite-width packet obtained from

(£1 — P AHBAY (FAHiBA I o) 9:91.'

(6)

|

superposition (integral) of wave numbers near a carrier k.
Since near the critical point the phase ¢ changes rapidly
as @ is varied, strong wave packet distortion occurs and
stationary-phase analysis breaks down, making the GHS
expression A = d¢/0d0 invalid [36] (more details are given
in Supplemental Material [47], Sec. II).

The theoretical analysis has been verified by our reflec-
tion experiments based on two fiber loops. The gauge-
potential interface is created by applying a Heaviside
modulation  from (¢ulv¢vl) = (070) to (¢u27 ¢v2) =
(Ap — AA, Ap + AA) between n = 0 and n = 1. The real
time intervals of m and n axes are T, ~ 25 ps, At ~75 ns
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by choosing two-loop lengths L ~5 km % 15 m, which
allow abrupt jump of the electro-optical modulation signal
at ~ns speed. Details of the experimental setup and key
techniques are discussed in Supplemental Material [47],
Sec. I. We record the packet’s input and output positions
n;, n, and total evolution step M. According to (neg —
ni)/|vg<ki)| + (neff - no)/|vg<kr)‘ + Aexp =M and equal
packet’s group velocities |v,(k;)| = |v,(k,)| for k, = —k;,
we can retrieve the experimentally measured GHS

(7)

where n.; = 0.5 is the effective boundary position between
n=0and n=1.

The measured GHS versus Ag for representative AA =0
and /2 are denoted by red circles in Figs. 2(c) and 2(d),
which agree fairly with theoretical predictions by Eq. (6).
Here we choose ff = /6, 8; = z/2 for k; = /2. The two
cases have different GHS although they share the same
k (green curves). For AA=0, GHS is symmetric in two

|

(prie®im + ryyyefrm)e=iom,

+ e

ikyn

(tayrye
[3V/3[€ik3’n€7i€im ,

w(n.m) =

where ¢, r, are amplitudes of forward and backward waves
Ve, W In region s (see Supplemental Material [47],
Sec. III for explicit forms), kg, k,,. are Bloch momenta,
—Agr = Ay = sinh~!cot(p) sin(k;, — A;)].  With  similar
procedures of applying wave function continuities at
n=0,1and n =W, W+ 1, we can obtain the reflection
and transmission coefficients (see Supplemental Material
[47], Sec. III for derivation)

l — pie_lli
rn+ = P — e~
iky W +4 A
o 2 (T E T ()
3= eik3,W e:t/l{Zr :F 6131 L]

where the barrier-width factor is given by

(iell_;t _ eﬂzf)efzxweﬂz, ¥ (6/13, == eﬁz,)eﬁz,
(6/13, == eﬂz,)e—zxw _ (6’13‘ ¥ eiﬂz,)

P+= (10)

GHS is still calculated using stationary-phase analysis:
Ay = —i(dr +/00)/r| +|g_g, The transmittance is T =
|t3]* < e showing characteristic exponential decay
with barrier width W. Specifically, in the infinite-width
limit W — oo, eV 50, p.=det, r L= (1-

ethi=hi) [(ethr T e~41), which reduces to single-interface

iky,nY ,—i6;m
2r )e i s

band gaps while asymmetric in each gap, showing diverging
(giant) characteristics at band-gap edges. While for AA=7/2,
GHS becomes symmetric in each gap. Figure 2(e) shows
field evolution for Agp = —0.3667, AA = 0. The experimen-
tally measured GHS is A, ~ 4, corresponding to a real time
delay of ~4T, = 100 ps. For Ap = —0.57, AA =0.57
[Fig. 2(f)], we get A., ~3.7. Theoretical and simulated
GHS results for other gauge-potential cases are discussed in
Supplemental Material [47], Sec. II.

GHS for temporal FTIR—We argue that GHS can also
exist for temporal FTIR by a finite-width gauge-potential
barrier. FTIR is an optical analog of quantum tunneling
effect through an evanescent barrier sandwiched by two
propagative-wave regions, which shows the exponential
damping tunneling probability (transmittance) with respect
to the barrier’s width [48—53] and superluminal tunneling
times via the Hartman effect [48,49,54-56]. To inspect how
exponential tunneling affects GHS, we consider a potential
barrier ¢, = Agp, A, =0 within 1 <n<W, and ¢, =¢; =0,
A; = A; = 0 outside, where W is the barrier width. The
wave functions in the three regions s = 1, 2, 3 are

(s=1,n<0)
(s=2,1<n<W), (8)
(s=3.n>2W+1)

|
case in Eq. (5). Accordingly, 7 — 0 and GHS reduces to
single-interface case.

The measured 7 and GHS versus Ag for representative
W =1, 2, and 5 are shown in Figs. 3(a) and 3(b). T
decreases with W while GHS increases with W, both
saturating at single-interface limit W — oo. These trends
can be explained from forward-backward evanescent-
wave interference analysis (Supplemental Material [47],
Sec. 1V): forward-backward waves are out-of-phase with
one another, their destructive interference makes GHS
smaller than the single-interface case. Since r,/t, x e >V,
the weight factor of the backward wave decreases exponen-
tially with W, leading to an increase of GHS with W. When
W — o0, r, — 0, the backward wave nearly vanishes, mak-
ing GHS reduce to the single-interface TIR case. Figure 3(c)
shows T and GHS for Agp = —0.4z, where T follows the
characteristic ~¢=2W law of the quantum tunneling effect
[48-53]. Figures 3(d)-3(f) show the packet’s evolutions for
W=1,2,5, and Ap = —0.4x, where T decreases with W
and Agp = 1.06, 1.95, and 3.13, respectively.

Accumulated measurement of very tiny GHS—For even
tinier GHS, its measurement can be easily influenced by
parameters measuring precision. To improve the measure-
ment precision, we propose an accumulation measurement
method using multiple TIRs to probe averaging rather than
one-time GHS. As sketched in Fig. 4(a), we design a
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FIG. 3. (a) Theoretical and measured transmittances versus A¢g

for a gauge-potential barrier with width W =1, 2, 5 and oo
(single-interface case). (b) Theoretical and measured GHS versus
A for W =1, 2, 5 and 0. (c) Transmittance and GHS versus W
under Agp = —0.4z. (d)—(f) Measured packet’s evolutions for
W=1,2,5 with Ap = —04r, = r/6.

temporal waveguide structure composed of a propagative-
wave core sandwiched by two evanescent claddings. By
denoting n;, n, the left and right boundaries, W = n, — n,
the core width and N the total reflection times, we can
obtain the averaging GHS

(a) w (b) 15
evem\'—-7n—"——-_M A

R N )

75

50
P, X P,

25

Step m

20 0 0 10 20
Position n

20 10 0 10 20
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FIG. 4. (a) Schematic temporal waveguide with multiple TIRs
for accumulated measurement of GHS. Input, output packets’
positions and two boundaries are n;, n, and ny, n,, with width
W = n, —n;. N, M are total reflection times and evolution steps.
(b) Measured GHS for N =3, 4 and theoretical GHS. (c),
(d) Measured packet’s evolutions for N = 3, 4 and f = =/3.5.

[M _ —<N—'>V‘Vl,_j§,;j;(”v‘"f} . (0ddN)

exp M — NW+Hn,—n;
lvg k)l |”

S

A (11)

(even N)

2=

Note that for N =1, Eq. (11) reduces to one-time
reflection case of Eq. (7) with n, acting as the single
interface. The measured field evolutions after odd N =3
and even N =4 reflections are shown in Figs. 4(c)
and 4(d), where f = /3.5, A¢p = —0.57, AA=0. The
averaging GHS is A.,, ~ | for N = 3, 4 in Fig. 4(b), which
agrees well with theoretical value of A ~ 0.8.

Conclusion—In summary, we reported on the first
experimental demonstration of tunable temporal GHS at
gauge-potential interfaces, which manifests as a temporal
beam delay rather than a spatial shift. Unlike ordinary
spatial GHS, temporal GHS is affected by both scalar and
vector potentials via decay and oscillatory tails of evan-
escent waves. By measuring GHS for FTIR by a finite-
width gauge-potential barrier, we find a wider potential
barrier can boost GHS, which saturates at infinite-width
limit of single-interface case. Finally, we develop an
accumulated measurement technique to precisely probe
very tiny GHS. Our experimental work pushes the GHS
concept into the temporal domain exploiting tunable scalar
and vector gauge fields, which may feature applications in
precise time control and measurement for optical commu-
nications, signal processing, and optical sensing.
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